Expertise in wet chemical analysis - a route to success or totally obsolete?

Birgitta Gustafsson Kemikompassen AB

Overwiew

- What is pretreatment?
- Different sample types
- What is this?
 - Example 1 and 2
- Conclusion

Pretreatment - Wet Chemistry

Acidification

- Dilution
- Dry-Ashing (575°C and/or 900°C)
- Wet Digestion with nitric acid (HNO₃) in closed vessel
 Microwave
- Fusion reactions
 - Acidic flux $(K_2S_2O_7)$
 - Basic flux (KNaCO₃)

Wet Digestion - Select reagents

Sample type and Issue

- ▶ HNO₃ oxidizing organic material (CO₂, H₂O, NO_x)
- $\blacktriangleright \text{HNO}_3 + \text{H}_2\text{O}_2 \text{ NO}_x$
- $H_2O_2 + HNO_3 (SO_4)$
- Aqua regia
- Aqua regia + HF
- ► HF
- \blacktriangleright H₂SO₄

Recovery Area

Sample types - Pretreatment and End determination, past and present

Sample type	Pretreatment		End determination	
	förr	nu	förr	nu
Wood, Pulp, Board, Paper	Dry ashing-HCl or Open vessel-HClO ₄	Mw-digestion HNO ₃ +H ₂ O ₂	AAS-flame or AAS-THGA	
Black Liquor, 10%-75% DS	H ₂ O ₂ +HCl+ dry ashing	Mw-digestion H ₂ O ₂ +HNO ₃	AAS-flame	ICP-OES ICP-MS
White Liquor, Green Liquor	H ₂ O ₂ +HCl			
ESP	HCl	Mw-digestion HNO ₃		
Lime mud, Lime	HCl+ashing+HF			

Sample - What is this?

The size of this "stone piece" ~ 3 x 7 cm

Analytical procedure - Deposits

- Origin
- Shape
- Texture
- Colour
- Smell
- Solubility
- Ash content
- Anion analysis
- Metal analysis
- Organic analysis

Metal analysis - Deposits

Deposit from Pulp mill no 1 Methods

- ▶ The ash content at 575°C, 3h and 900°C, 1h was determined.
- The anions were determined by ionchromatography, IC, after ion-exchange pre-treatment.
- The carbonate content was determined according to SCAN-N 32:88.
- The metal content was determined with ICP after dry-ashing and dissolution in HCl.
- The lignin was precipitated by the addition of HCl and determined gravimetrically.

Deposit from Pulp mill no 1 Analytical results

Analysis	Results (%w/w DS)	
Ash content, 575°C	89	
Ash content, 900°C	80	
рН	10,6	
Carbonate, CO ₃ ²⁻	15,6	
Oxalate, $C_2 O_4^{2-}$	<0,5	
Sulphate, SO ₄ ²⁻	30,7	
Sodium, Na	33,9	
Potassium, K	2,7	
Calcium, Ca	0,2	
Iron, Fe	0,4	
Lignin	13,9	

What does these results mean

Ash content $(575^{\circ}C) = 89\%$ Ash content $(900^{\circ}C) = 80\%$ 9% as CO₂ (12% CO₃) or others Ca = 0,2 %

No $CaCO_3$ in this sample

 CO_3 (analysed) = 15,6% Na (analysed) = 33,9% Na₂CO₃ = 26% M(CaCO₃) = 100 g/mol M(CaO) = 56 g/mol M(Ca) = 40 g/mol M(CO₂) = 44 g/mol M(CO₃) = 60 g/mol

 $M(Na_2CO_3) = 106 \text{ g/mol}$ M(Na) = 23 g/mol

Deposit from a Pulp mill no 1 Summary

- The deposit consists mainly of Na_2SO_4 , 45 %, Na_2CO_3 , 26 % and NaOH, 15 %.
- ▶ The organic part of the deposit consists mainly of lignin, 14 %.
- The composition indicates that the origin of the deposit is oxidized black liquor.
- The deposit is totally water soluble
- The massratio between Na₂SO₄/Na₂CO₃ shows that the main part of the deposit consists of burkeite, 2 Na₂SO₄.Na₂CO₃.

Deposit from Pulp mill no 2 Methods

- ▶ The ash content at 575°C, 3h and 900°C, 1h was determined.
- The anions were determined by ionchromatography, IC, after ion-exchange pre-treatment.
- The carbonate content was determined according to SCAN-N 32:88.
- The metal content was determined with ICP after dry-ashing and dissolution in HCl.
- The lignin was precipitated by the addition of HCl and determined gravimetrically.

Deposit from Pulp mill no 2 Analytical results

Analysis	Results (%w/w DS)
Ash, 575°C	57
Ash, 900°C	48
рН	10,0
Carbonate, CO32-	10,0
Oxalate, $C_2 O_4^{2-}$	1,1
Sulphate, SO ₄ ²⁻	2,9
Sodium, Na	16
Potassium, K	3,2
Calcium, Ca	3,7
Magnesium, Mg	0,03
Lignin	17

Deposit from Pulp mill no 2 Summary

- The deposit consists mainly of sodium compounds, such as Na₂CO₃, 8 %, Na₂SO₄, 2 % and Na₂C₂O₄, 2 %. Some of the sodium can also be bounded to organic substances like lignin.
- There are also some $CaCO_3$, 8 % and $CaSO_4$, 2%.
- The organic part of the deposit consists mainly of lignin, 17 %.
- There is no or little burkeite, $2 \text{ Na}_2\text{SO}_4$. Na_2CO_3 , in the deposit.
- The deposit is almost totally water soluble.

Conclusion

Expertise in wet chemical analysis a route to success or totally obsolete???

