

Routine Trace Metal Analysis of Marine Fuels Using Microwave Acid Digestion

Multiwave PRO

Dr. Markus Michaelis

markus.michaelis@anton-paar.com

www.anton-paar.com

Anton Paar – Company Profile

Establishment	1922
Owner	Charitable Santner Foundation
CEO	Dr. Friedrich Santner
Chairman of the Board	DI Ulrich Santner
Number of employees (*as of the end of 2015)	967* Headquarters 2.259* worldwide
Turnover 2015	~ 260 million Euros
Export share	93 %
Investment in R&D	20 % of the annual turnover

Company Presence - Worldwide

²⁹⁰WWW.anton-paar.com

www.anton-paar.com

Trace Metal Determination in Petro Products

- ... to define the quality
- ... to prevent deactivation of catalysts
- ... to monitor and analyze contaminations
- ...to follow regulations and much more...

Common sample preparation techniques:

- Dry ashing with open vessel acid digestion (e.g. IP 501, ASTM D5708-B, or D5863-A)
- Direct dilution using organic solvents (e.g. ASTM D4951, D5708-A, D5863-B, D5185)
- Microwave-assisted acid digestion (ASTM D7876)

Trace metal determination ICP-OES, ICP-MS, FAAS

Limitations of Conventional Methods

Dilution Method:

- Metal particles > 5 µm cannot be measured with the dilution method
- Clogged nebulizers
- Employed organic solvents interfere with modern measuring systems
- Special measuring equipment required
- Dry Ashing & Open vessel digestion
 - Losses of volatile elements
 - Increased risk of contamination
 - Time consuming (in the range of 6 hrs to 1.5 days)

- Multiwave PRO The Master of Sample Preparation
 - Possible Applications:
 - Acid Digestion / Leaching
 Solvent Extraction
 - Oxygen Combustion
 - UV Digestion
 - Protein Hydrolysis

- Acid Evaporation
- Drying
- Synthesis

- Shortest process times
- ▶ Reliable acid digestions up to 300 °C @ 80 bar (1160 psi)
- No losses of volatiles & minimized risk of contamination
- Minimized reagent consumption
- ► Full reaction control:
 - Wireless temperature control in each position
 - Wireless pressure control in each vessel
- Easy data transfer via USB, LAN
- ► Safety CE, GS & NRTL approval

Microwave Reaction Syst

Why High Temperature? – Complete Digestions

Samples: 300 mg Lubrication Oil

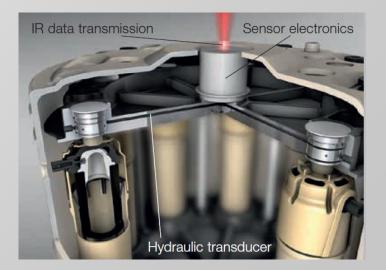
Higher temperature and pressure → Better digestion result!

170 °C 190 °C 230 °C 260 °C Same holding time, different temperatures

High Performance Rotor 8N

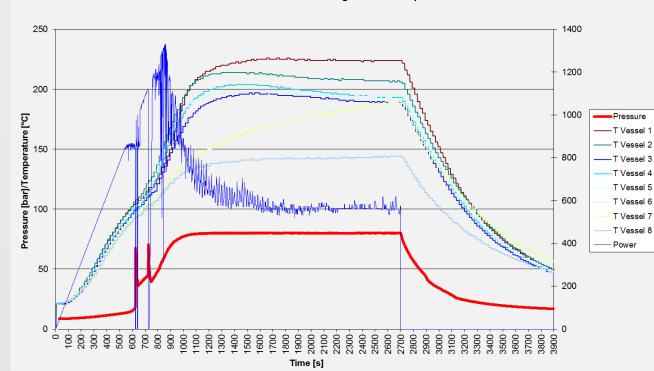
- ► 8 vessels for high performance
- Unique pressure sensor system for simultaneous control of all reaction vessels
- Wireless data transmission
- Robust rotor upper plate
- Temperature control on all positions (via IR sensor)
- T-sensor in one reference vessel (optional)
- ▶ XF100: 260 °C @ 60 bar
- ▶ XQ80: 300 °C @ 80 bar
- ▶ p_{MAX}: 140 bar

Pressure Measurement for Full Reaction Control & Safety



Quick & simultaneous

- Measures pressure (p)
- Measures pressure increase rate \rightarrow Every 20 milliseconds


If limits are exceeded:

- MW Power is reduced
- Cooling is increased

High-speed pressure sensing in action

XQ Digestion with spontaneous reactions

- @ 10 + 12 min: pjump of 35 bar
- Controlled by power cut and cooling up
- No indication of vessel number, probably different vessels
- Normal process continuation afterwards

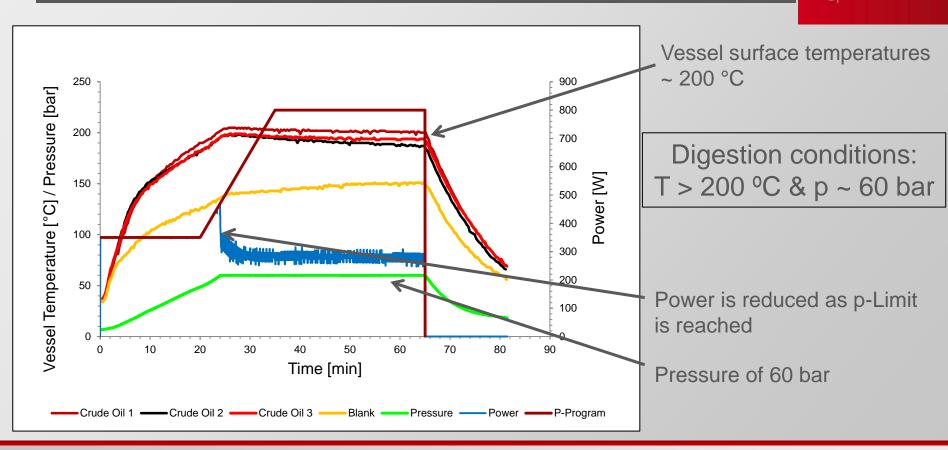
► ASTM D7876

Standard Practice for Sample Decomposition Using Microwave Heating (With or Without Prior Ashing) for Atomic Spectroscopic Elemental Determination in Petroleum Products and Lubricants.

Applicable to:

- Petroleum products and lubricants
 Fossil fuel products:
 - Greases
 - Additives
 - Lubricating oils
 - Gasolines
 - Diesels

- Coal
- ► Fly ash
- Coal ash
- Coke
- ► Oil shale


- ► ASTM D4951, ASTM D5185, ASTM D7876
- ► 3 Samples:

Engine Oil Lubricant, Crude Oil, Residual Fuel Oil

ASTM Interlaboratory Crosscheck NIST SRM 1634c

- Multiwave PRO equipped with Rotor 8NXF100
- Two digestion reagents:
 - 1.) 7 mL HNO₃ (65%) + 1 mL H₂O₂ (30%)
 - 2.) 7 mL HNO₃ (65%) + 1 mL H₂O₂ (30%) + 200 μ L of a 50% NH₄F
- Solutions measured with ICP-OES (1+2) and with ICP-MS (2)

Digestion Program of Crude Oil Samples

	D7876 ICP-OES [µg⋅g⁻¹]	D7876 ICP-MS [µg⋅g⁻¹]	Certified value [µg⋅g⁻¹]
Al	3.6 ± 0.6		
Со		0.14 ± 0.05	0.1510 ± 0.0051
Fe	49.5 ± 1.5	47.8 ± 2.9	
Mg	2.0 ± 0.1		
Na	42 ± 2	33 ± 2	(37)*
Ni	15.7 ± 0.2	17.2 ± 0.3	17.54 ± 0.21
V	27.1 ± 0.4	28.6 ± 0.2	28.19 ± 0.40

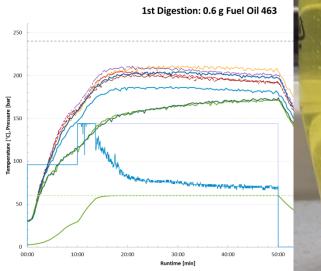
ICP-OES: n = 6 (mean of digestions with and without NH_4F)

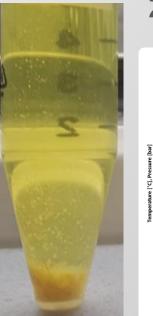
ICP-MS: n = 3 (only digestions with NH_4F)

*...information value

	2-step, 0.6 g [µg⋅g⁻¹]	2-step + NH₄F 0.6 g [µg⋅g⁻¹]	Referencevalue [µg⋅g⁻¹]
Al	8.1 ± 0.6	8.1 ± 0.6	7.5 ± 1.1
Si	10.2 ± 0.3	4.2 ± 2.2	15 ± 2.2
Са	48.7 ± 27.6	23.8 ± 0.9	13 ± 2.5
Fe	86.1 ± 0.8	76.7 ± 7.0	53 ± 12
Ni	39.3 ± 6.7	37.2 ± 6.7	39 ± 2.7
Na	26.8 ± 1.4	25.8 ± 0.9	22 ± 4.3
V	80.8 ± 9.3	78.5 ± 5.6	78 ± 4.3

- Good agreement for most elements
- Si: problem with sampling heterogeneity?
- ► Ca, Fe contamination issues




- Measured values are in a good agreement
- ► Values from ICP-OES and ICP-MS are well comparable → reliable sample preparation procedure
- ► Low standard deviations for the 6 samples → 0.5 g of sample are sufficient to achieve representative results.
- Digestion time reduction from typically 6-8 hours to < 90 minutes</p>
- Time for 2-step procedure less than 120 min incl. handling

Run Data - 2-Step Procedure

Pre-reaction

2nd step 4635 463.6 2nd Digestion of 0.6 g Fuel Oil 46 250 200 [par] 150 °C], Pre a 100 50 20:00 00:00 10:00 30:00 40:00 50 Runtime [min]

Multiwave PRO – Summary

- ► Highest temperatures (300 °C) → lowest interferences during measurement
- Complete digestions of demanding samples
- Closed vessel digestion: No losses of volatiles & minimized risk of contamination
- Fast sample preparation method
- Minimized reagent consumption
- Full reaction control for highly reactive samples

