

ThermoFisher SCIENTIFIC

ICP-OES - Solutions for complex matrices

16:th Nordic User Meeting on AAS, ICP-OES and ICP-MS

Presented by Mikael Axelsson ThermoFisher Scientific Nordic

The world leader in serving science

An ideal world

- An ideal sample would have little or no matrix
 - Matrix causes differences in sample transportation
 - High TDS causes blockages
 - Volatility of organics
 - Different matrix components will cause different interferences
- Ideally matrix match all samples and standards
- Instrument set up important

Thermo Scientific[™] iCAP[™] 7000 Plus Series ICP-OES

- *iCAP 7200 ICP-OES* Entry level Duo ICP, cost-effective analysis for low sample thru-put requirements
- iCAP 7400 ICP-OES Duo or Radial ICP for routine analysis requirements and mid-range sample thru-put. Duo or Radial
- *iCAP 7600 ICP-OES* Duo or Radial ICP for highest productivity and maximum sample thru-put with advanced, flexible accessory support, such as laser ablation

Selection of Sample Introduction

Aqueous

SCIENTIFIC

iCAP Duo - purged optical path

Metal concentrates

Aqua regia 10g/L metal concentrate

Axial (red) and radial (blue) performance shows no difference

Same solution with standard quartz radial view tube, axial stable and radial drift over time

300 measured samples - normalised to 100% and monitored

÷							
	Line	Observation	Avg	RSD	min	max	Δ
		ax/rad	%	%	%	%	%
	P_1774	axial	98,6	1,2	96,1	100,0	3,9
	P_1774-2	radial	100,5	0,6	98,4	101,5	3,1
	P_1782	axial	100,5	0,6	98,7	101,4	2,7
	P_1782-2	radial	102,0	0,7	100,0	103,5	3,5
	S_1820	axial	100,6	0,4	99,3	101,4	2,2
	S_1820-2	radial	100,8	0,5	99,2	102,0	2,8
	As1890	axial	99,6	0,6	97,7	101,2	3,5
	Zn2025	axial	96,5	1,9	93,1	100,1	7,0
	Zn2025-2	radial	96,8	1,7	93,9	99,9	6,0
	Cr2055	axial	100,1	0,4	99,0	101,0	2,0
	Zn2062	axial	99,0	0,9	97,2	100,9	3,7
	Zn2062-2	radial	99,0	0,6	97,4	100,1	2,7
	Fe2084	axial	98,9	1,0	97,1	100,2	3,1
	P_2136	axial	100,1	0,4	99,3	101,1	1,8
	P_2136-2	radial	100,2	0,3	99,3	100,9	1,6
	Zn2138	axial	99,2	0,5	98,1	100,2	2,1
	Zn2138-2	radial	99,9	0,3	98,5	100,5	2,1
	Fe2178	axial	100,1	0,3	98,9	100,7	1,8
	Pb2203	axial	100,9	0,6	99,8	102,2	2,4
	Ni2216	axial	101,2	0,8	99,7	102,6	2,9
	Co2286	axial	99,9	0,5	99,2	101,2	2,0
	Ni2316	axial	101,0	0,5	99,9	102,0	2,1
	Ba2335	axial	99,5	0,5	98,5	100,9	2,4
	Ba2335-2	radial	100.2	0.3	99.3	101.1	1.8

Argon Humidifier or Sheath Gas

SCIENTIFIC

- Sheath Gas improves the long term stability of instrument when running high salt applications
- Isolates the sample aerosol and prevents build up of salt crystals in the torch / Injector
- Allows users to run for longer

Sheath Gas off

Sheath Gas on

Stability 25% NaCl with and without Sheath Gas

- Combine both the D-Torch and the sheath gas for the ultimate matrix tolerance
- No special parameters
 - Coolant gas just 12 l/min
- No extended wash periods
 - Just 30 seconds
- Additional gas flow minimal
 - Just 100ml/min argon

Parameter	Setting				
Pump Tubing (Standard Pump)	Sample Tygon® orange/white				
Fump rubing (Standard Fump)	Drain Tygon [®] white/white				
Spray Chamber	Baffled cyclonic				
Nebulizer	Burgener Mira Mist				
Center Tube	2.0 mm (ceramic)				
Torch	Ceramic D-Torch				
Pump Speed	50 rpm				
Flush Pump Speed	100 rpm				
Pump Stabilization Time	10 s				
Wash Time	30 s				
Nebulizer Gas Flow	0.55 L-min ⁻¹				
Auxiliary Gas Flow	0.5 L·min ⁻¹				
Coolant Gas Flow	12 L·min ⁻¹				
Additional Gas Flow	0.1 L·min ⁻¹				
RF Power	1400 W				
Radial Viewing Height	10 mm				
Exposure Time	UV 15 s, Vis 15 s				

Excellent recoveries and performance

- Calibration standards prepared in 25% NaCl
- 25% NaCl samples analyzed for an extended period
- Excellent spike recoveries

Element and wavelength (nm)	R²	Measured spike concentration (µg∙L-¹)	Recovery (%)	MDL (µg∙L⁻¹)
AI 167.079	0.9997	497.2	97.2	4.1
Ba 455.403	1.0000	499.9	99.9	0.9
Co 228.616	0.9999	500.6	100.6	10.6
Cr 205.560	0.9999	500.5	100.5	4.5
Cu 324.754	0.9999	501.7	101.7	13.0
Fe 238.204	0.9995	503.2	103.6	8.8
Mg 279.553	0.9999	501.0	101.0	0.5
Mn 257.610	0.9999	501.1	101.1	1.7
Ni 221.647	0.9999	500.8	100.8	8.0
Sr 216.596	0.9999	501.3	101.3	10.2
Zn 202.548	1.0000	499.9	99.9	2.0

Stability and Robustness

Figure 4. Results obtained for the 10 hour stability analysis (wavelengths > 230 nm).

Figure 5. Results obtained for the 10 hour stability analysis (wavelengths < 230 nm).

Application notes

- Greater robustness for extend periods of time
- Minimal sample preparation less or no dilution of samples

Selection of Sample Introduction

Organics

Isomist XR

Analysis of Naphtha with IsoMist XR

- IsoMist XR
 - Temperature range -25 °C to +80 °C
 - 8h stability measurement without temperature control

 8h stability measurement controlled at -20°C

By increasing the temperature it is possible to reduce the viscosity of samples and therefore to enhance signals in ICP-OES measurements (Figure 7).

Content of oil in sample

Average relative intensities for 1 mg·kg⁻¹ aluminum at wavelength 167.079 nm, with pre-set temperatures at 20°C (left) and 60°C (right), depending on the content of oil in PremiSolv.

How a process can look like

Sewage process monitoring – 2 stages

Continuous control of elements in water online

1 blank, 2 calibration standards, 1 QC sample and 1 optional sample space for any emergency case

Feed sample analysis

custom-made racks with 2 overflow basins for water, continuously collected at 2 different stages

- Algae growth
- Internal standard
- Pump tube wear
- Particles in sample
- Rinse station flow

Qtegra Labbook to run samples online for over 24 hours

Use long Exposure Time + long Wash and Uptake Time + numbers of readings to get required work time

Carlos and C	ELC.	Entrantingent room	International States	e el monte	And Distances in Street, or other				
Suteriary	6	Table 1	TH TO READ	1.1	PAPerson 112	A CONTRACTOR	A DECEMBER OF	ra Jaron Tria	TH Sundate
CAP OES	E STORE	Dark.	0	- 3	- D	Cannerb.		sip	Bath
Method Parameters	21112	Sid-Abrement 1	0	3	D .	«Connert»		570	Sk5-Abreaser 1
a Analytee	Come:	Std-Advanceser 2	0	3	0	<pre>cprometb</pre>		5TD	Sab-Advancer 2
Co Pleasure Plates	Calling	National Interview	19	- 3		(Convert)	8	95	QC Stridewaser 3
Contraction Parameters	£3002	Kanal 2	10	. 5	10	(Convert)	*	UNINO-IN	Contract March 201
- CF Intelligent Cattalia and Purpe	CORE	Kanal 3	0	5	10	«Convert»	×	UNKNOWN	
28 Obsection Connection	12000	Hanai 2	0	5	- 10	«Cumment»		UNKNOHN	
Constants	0	Ranal 1	0	5		Connerty	×	UNINOUS	
Rf. Dates	Come:	Kanal 2	0	- 5		Cannetty	× .	UNKNOWN	
The Control Control	12111	Karal 1	0	. 8	13	Comments	*	UNKNOWN	Stora ora
151.53	1000	Kelsteleiei	0	3	-0	(Caranant)	*	90	QC IIId-libraraw 3
		terre 1		10	11	1 of assessed		Conception of the	Provide States
	-	East.	0		- 14	d'annesi .		100	Red.
	-	Red officerson 7		-3-	1	d'annesis.		1455	Bet internet 1
	-	But Abarran 1	9	-2-	- M	Carrier	*	100	Data Discourses 7
	Mark	Service a	9		-	- Annual		100	CC Did In which 3
		Read S.	0	-2-	<u>.</u>	2		1000000-00	Mr. Old-VEHILLER 3
	-						1	Transferrer	
	Sec. 1	Kanal 1	0		- Q	Commento		UNKAUWA	
	Sector 2	April 2	0	- 1	Q.	ConterD	×.	UNKNOWA	
000	Color B	Karal 1	0	- 5		Connerth	×	UNKNOVN	A CONTRACTOR OF A
386 samples	2.31	Kontraffelandard	0	3	0	Contesto		96	QC Shit-Abreature 3

in 1 days 3 hours 49 minutes

- It is possible to analyse challenging sample types by ICP-OES
- Careful optimisation of the method parameters are required to get the best possible performance
- Selection of the appropriate sample introduction components is essential
- ICP-OES can be used for online sample analysis for real time trace element measurements.

