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1 Introduction

Robotic manipulators are increasingly used in novel and unstructured environments for
strong physical interaction with the environment. For such contact-rich manipulation
tasks, it becomes critical to know the object’s geometry, mass, surface friction coefficient,
stiffness, etc. Acquiring knowledge about these properties of previously unperceived ob-
jects could help to achieve a stable and accurate manipulation [1–3] and also help to
predict the effects of various manipulation actions in advance.

The combination of tactile or ‘touch’ sensing with spatial kinesthetic information
forms the terminology of ‘haptics’ [4]. For robotic manipulators, kinesthetic informa-
tion (proprioception) provides accurate information about the manipulator’s state, i.e.,
how it is moving in space. This has been extensively researched and well defined under
forward kinematics and dynamics of serial robotic manipulators. On the contrary, tactile
perception embodies the outcome of actions taken and depends on the properties of ob-
jects engaged by the robotic manipulator. This fundamental principle has been considered
as the basis for this research work. Furthermore, obtaining an informative tactile percep-
tion requires meaningful interaction or actions, which transforms it into a challenge for
interactive perception [5]. This interactive perception problem is presented in Figure 1,
where two key research questions are explored to address the problem of the combination
of proprioception and tactile information in Deliverable 5.3: i) How to efficiently repre-
sent the object and ii) How to take action that provides meaningful sensory information.

Figure 1: Object property inference through interaction

In addition to combining proprioception with tactile sensing, we sought to combine
vision and haptic sensing to develop a generalizable robotic exploratory approach. The
importance of vision-based perception and haptics is well established in robotics. Vi-
sion is crucial to obtain a global overview and often guides haptic exploration, making
it necessary to combine complementary modalities [6, 7]. There has been overwhelm-
ing work done in the perception of objects and environments based only on vision and
cameras. However, the possible range of properties that can be observed using vision
is quite limited. In this regard, touch or tactile sensing has been considered a crucial
sensing modality that can provide a rich and diverse set of information about the object
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with which the robotic system interacts [8, 9]. However, most of the methods developed
for haptic perception are limited to passive classification or recognition problems [9]. In
addition, they employ bottom-up processing, limiting the application to known scenarios
and short-term utilization.

To approach such a challenging problem, it might be interesting to take inspiration
from research in neuroscience, where such behavior is baked into the human cognitive
system. To manipulate novel objects, humans often perceive object properties through
actions such as holding, grasping, or pushing to gain better control [10, 11]. In such in-
teractive visuo-tactile perception, active physical interactions or explorations are made to
improve object perception [5,12–14]. A key working principle of such human perception
that has been flourishing for many decades is that humans actively predict perception via
learning an internal model of the environment. This has recently been formalized under
‘Predictive Coding’ and ‘Active Inference [15, 16].

In this research project, such a ‘predictive’ framework is developed for robotic manip-
ulation systems to infer object properties through contact-rich interaction. The key aspect
of the framework will be encoding contact-rich interactions as Probabilistic Markov Mod-
els and learning the interaction model. The learned interaction model will be utilized to
infer the physical parameters like mass, the center of mass, relative friction, etc. using the
Bayesian inference scheme. The developed framework will be a step towards developing
generalizable robotic manipulation exploratory skills and will be crucial to performing
downstream robotic manipulation tasks efficiently.

2 Related Works

In this section, a brief overview of previous works is presented which addressed the prob-
lem of exploring the properties of unknown objects. Estimating the physical properties of
novel objects is a challenging problem in robotics, using either vision or tactile sensing.
Physical object properties are not salient in static or quasistatic interactions, and often
each parameter is only revealed in specific interactions, making it an interesting research
problem [17].

One of the earliest works of Atkeson et al. [18] estimated the mass and moment of
inertia of an object rigidly attached to a manipulator, using joint torques and a wrist-
mounted force-torque sensor. Similar results have also been presented in [19]. These
approaches required the object to be manually attached to the end-effector. Few works
elevated this constraint as in [20], where the authors used a custom 2-finger mechanism
to measure contact forces during planar push and in [21], the authors applied a tilt ap-
proach to measure wrenches to estimate inertial parameters. Zhao et al. [22] incorporated
friction estimation, by grasping the object and measuring the contact forces during the
sliding regime. Most of these prior estimation techniques relied on precise force or tactile
sensing, assumptions about the object geometry, or the interaction between the object and
environment, and employed specialized mechanisms, thus making it difficult for general-
ization and autonomous exploration of the object.

Some researchers attempted to overcome the limitations mentioned above by introduc-
ing interactive manipulation techniques such as grasping or pushing. In [23], the authors

3



estimated only the mass of an object by controlled push, which required prior knowledge
of the friction coefficient of the surface. Similarly, to determine the center of mass of
the object, Yao et al. [24] used tactile forces during a 3-fingered robotic grasp. To esti-
mate a wide range of physical properties of the object, Sundaralingam et al. [25] used a
factor graph approach using in-hand manipulation with precise tactile and force-torque
sensing. The approach relied on the approximation of in-hand object dynamics, known
object shape, and a marker-less tracking system. More recently, Uttayas et al. [?] esti-
mated viscoelastic properties using a filtering approach, based on an approximate spring
mass damper model. The works mentioned above employing interactive manipulation
often used an analytical formulation to model the object-robot interaction, which is often
approximate and has significant assumptions about the interactions.

Recently, data-driven and physics engine approaches are being taken to overcome
such problems. Wu et al. [26] used deep learning to learn interactions between objects
colliding in a physics engine and used the learned model to estimate the mass and friction
parameters for real object motion. Song et al. [27], [28] relied on a physics engine to
predict expected object motions during pushing and employed Bayesian optimization on
a real object motion to predict distributed mass and friction on objects. These works often
relied on the accuracy of the physics engine and are generally computationally complex.
Xu et al. [17] used only vision and deep learning to learn a representation of the mass
and friction coefficient by randomly pushing and poking objects. Mavrakis et al. [29] col-
lected large pushing trajectories (40k) in the simulation environment and learned a regres-
sion model for estimating an object’s inertial parameters during non-prehensile pushing.
However, these approaches require intensive training and do not involve strategic inter-
action. In this work, we propose an active formulation for efficient training data-driven
object-robot interaction model.

Until now, either vision or tactile were used to estimate the physical object proper-
ties. On one hand, tactile information is crucial to infer multiple object properties like
in [24, 25, 30, 31], however, it requires precise position information and prior knowledge.
On the other hand, vision-based approaches such as [17, 32] could only estimate fewer
object properties with higher error rates, but required no prior knowledge about the ob-
ject. To exploit the complementing vision and tactile sensing modalities, we propose to
utilise both. Recently, Murali et al. [33] and Lee et al. [34] have shown visuo-tactile
based approach significantly improves the performance of the robotics systems problems
like pose estimation and contact-rich manipulation.

To tackle the above-aforementioned problems and constraints for estimating or infer-
ring the physical object properties, we present the proposed approach in the following
section. We present extensive experiments to validate our approach and compare with a
non-predictive state-of-the-art method to demonstrate the advantage of using predictive
formalism.

3 Research Approach

In this section, the problem of active visuo-haptic object inference under the ‘predictive’
framework is formally introduced and an overview of the proposed research approach is
presented. Humans learn an intuitive understanding of contact-rich interactions through
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playful interaction [35, 36], and then use the learned interaction dynamics to explore and
infer the inherent properties of novel objects. In addition, they utilize both vision and hap-
tics in a complementary manner. Motivated by such exploration, in this work, we focus
on learning a key contact-rich interaction model for robotic manipulation, non-prehensile
manipulation. Non-prehensile manipulation with objects is difficult to formulate analyti-
cally due to the contact dynamics, non-linearity and discontinuous behavior. As presented
in Section 2, inspired by the recent progress in data-driven model learning, learning such
intricate models could lead to better generalization and robustness. After learning the
interaction model, we actively infer the essential properties of the previously unseen ob-
jects.

3.1 Problem Formulation
We consider the problem of estimating the state s of an unknown rigid object from vi-
sion oV and tactile observation oT using non-prehensile pushing actions a. At any given
time t, the state st = {ψt ,φ} comprises of time-varying factors: pose, ψt = {xt ,yt ,θt}
i.e. how the object is moving in the table, as well as time-invariant factors: parameters,
φ = {m,µ,CoMx,CoMy, Iz} as mass, relative friction coefficient between object and sur-
face, center of mass, inertia. The center of mass is measured w.r.t. frame attached to
the geometric center of an object and only the rotational inertia in 2D is considered, as
the interaction is restricted to motion in 2D. Observation oV

t consists of RGB-D images
of the pushing area and tactile observation oT

t consisting of 2D contact forces, contact
indicator. The contact indicator ∈ 0,1, depending on whether the robot and the object
are in contact. The pushing action at is parameterized by the contact point (cp), push
direction (pd) and velocity (v) of the push. cp consists of the 2D world coordinate of the
contact point, pd, the rotational angle of the z-axis of the robotic system aligned along a
pushing direction & v is the magnitude of push velocity by the robotic system.

Figure 2: Problem setup for visuo-tactile based active object parameter inference

We perform quasi-static pushing [37] to infer the object parameters φ which are not
directly observable either through vision or tactile sensing. The change in pose of the
object over time depends not only on how the interaction action was taken but also on the

5



Figure 3: Proposed ‘predictive processing’ framework. Part (a) presents how the internal model is utilized
to generate an expected observation which is then compared with actual observation to update the internal
model. Part (b) presents the Markov Chain Model of both learning and inference for multiple time steps.

properties. In this setting, the object state, especially the parameters of the objects, is not
directly observable. Thus, the problem falls under a partially observable Markov Decision
Process and can be encoded as a Markov chain. The key aspect of the research approach
is to address the problem via a human-inspired ‘predictive processing’ framework. After
an extensive review of the literature, the essential takeaway of such a framework which
applies to the problem at hand is learning and inferring using an internal model of the
environment in the Bayesian Inference setting, which is depicted in Figure 3. We present
a complete formulation of the proposed ‘predictive’ processing framework.

3.2 Bayesian Inference
In Bayesian inference settings, the knowledge about the current state of the object st is
represented with a distribution conditioned on previous actions a1:t and observations o1:t .
This distribution is denoted as bel(st)

bel(st) = p(st |o1:t ,a1:t) (1)

To compute the belief, the Bayes rule has to be employed for inferring the state

p(st |o1:t ,a1:t) =
p(ot |st ,o1:t−1,a1:t)p(st |o1:t−1,a1:t)

p(ot |o1:t−1,a1:t)
(2)

However, the denominator in Eq.2 is intractable to compute, as it requires a distribution
over all possible observations which is not possible to know beforehand.
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Various approaches exist to perform such Bayesian inference tractably, such as Vari-
ational Inference, Recursive Bayesian Filters, and Expectation-Maximization [38]. In
addition, learning the internal model (process and observation) is often not part of the
inference formulation. Learning and possessing an internal generative model of the com-
plete world like the human brain is too complex, and on top of it performing inference
on it. The active inference or variational autoencoder-based approach presented by [16],
overcomes such a challenge. However, as presented in Section 2, the application of the
high-dimensional and continuous domain of object property inference is quite limited.

One potential approach to such a scenario is to employ Recursive Bayesian Filters.
Recursive Bayesian filters are a popular class of algorithms that enables the computation
of this distribution in cases where the observations follow Markov assumptions and are
conditionally independent. Kalman Filters are a popular choice and are optimal for linear
systems. Additionally, recent work [39] demonstrated that under the Gaussian assump-
tion, the Active Inference optimization of the Free Energy principle is the same as that of
Kalman-optimal filtering.

bel(st) = p(st |o1:t ,a1:t) = η p(ot |st ,at)bel(st) (3)

bel(st) =
∫

p(st |st−1,at−1)bel(st−1)dst−1 (4)

Two key aspects of such a Bayesian Filter is the representation of the internal model as
separated into two components - the forward model or process model of the state in form
of p(st |st−1,at−1) which captures the evolution of the internal states and an observation
model relating the states to the observations p(ot |st) which relates how the observation
relates to the internal states. In addition, both have associated noise models that reflect the
stochasticity of the underlying system and determine how much trust the filter places in
the process and observation models. To have a seamless connection of Recursive Bayesian
Filtering to the Active Inference formulation a variational outlook is presented.

From Eq.2.

p(st |o1:t ,a1:t) =
p(ot ,st |o1:t−1,a1:t)

p(ot |o1:t−1,a1:t)
(5)

Taking log on both sides and re-arranging-

−ln(p(ot |o1:t−1,a1:t) = ln(p(st |o1:t ,a1:t))

−ln(p(ot ,st |o1:t−1,a1:t) (6)

Adding approximate variational distribution q(st)∼ p(st |o1:t ,a1:t)

−ln(p(ot |o1:t−1,a1:t) = ln(p(st |o1:t ,a1:t))

−ln(p(ot ,st |o1:t−1,a1:t)+ ln(q(st))− ln(q(st)) (7)

Integrating and simplifying results in

−ln(p(ot |o1:t−1,a1:t) = F−DKL(q(st)||p(st |o1:t ,a1:t)) (8)

where F is the free energy term or evidence lower bound.

F = Eq(st)[ln(q(st))− ln(p(ot ,st |o1:t−1,a1:t))] (9)
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In recent works [40], researchers have attempted to perform state estimation via Stochas-
tic Gradient descent on the Free Energy Term F , w.r.t sufficient statistics of the state distri-
bution. However, under the Gaussian setting as ours q(st)∼N(st ; µst ,Σst ) and mean-field
approximation, the gradient descent objective is results are same optimization function as
that of Kalman Filter as stated above.

The Free Energy formulation is extended to infer actions under the active inference
scheme. Consider future time steps t = τ, ..τ +T . An expected free energy term is in-
troduced wherein the variational distribution is conditioned on future actions sequences
π = aτ:τ+T and a biased distribution p̃(.) is introduced to encode preference over future
goal states or observations. The Expected Free Energy (EFE) G for a sequence of action
π at each time step is given by-

Gτ(π) = Eq(sτ |π)[ln(q(sτ |π)− ln(p̃(oτ ,sτ |π)] (10)

This can be further approximated and decomposed as-

Gτ(π)≈−Eq(sτ |π)[ln(p̃(oτ)]

−Eq(sτ |π)[ln(q(sτ ,oτ |π)− ln(q(sτ |π)] (11)

The Expected Free Energy is a central quantity in the theory of active inference. It is the
quantity that all active inference agents are mandated to minimize through action, and
its decomposition into extrinsic and epistemic value terms provides a way to exploit and
explore effectively. In the problem of the project, the epistemic value can be utilized for
driving active learning and active exploration to infer the unknown parameters which is
presented in the following section.

3.3 Active Differentiable Filters
We employ the Kalman filtering approach for recursive Bayesian filtering. For our prob-
lem, we employ a data-driven approach to learn the process and observation model along
with the respective noise models, end-to-end using a differentiable filter. Recently, dif-
ferentiable filters that integrate Bayesian Filtering with deep learning [41–44] were pro-
posed. The authors have also shown that this approach performs better compared to the
standard deep-learning approach in handling real world noise and in [45] showed the
strength of such an approach for a variety of tasks like visual optometry, visual object
tracking, etc.

In our problem, the data-driven models within a differentiable filter capture the com-
plex and stochastic object-robot internal interaction model during non-prehensile pushing.
In addition, based on the current action (proprioception) and the previous state, it can pre-
dict tactile information, thus fulfilling the primary objective of Deliverable 5.3. Further,
as the pose of the object is intricately dependent on the parameters, a straightforward com-
bined (joint) filtering for pose and parameter does not perform well. Therefore, we utilize
a dual filter design, exploiting the dependency among the states for consistent filtering and
inferring the parameters of the object. In addition, learning such models and also infer-
ence is often data-intensive. To make the framework more viable for real-life scenarios,
it is crucial to incorporate active learning and inference schemes, therefore motivated by
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Figure 4: Our proposed framework (ADDF) for visuo-tactile based active object exploration using non-
prehensile manipulation. Part a) presents the overall framework and part b) presents an expanded view of
the dual differentiable filter block.

Eq.11, active action selection is formulated under such a differentiable filter setting. The
proposed Active Differentiable Filter-based approach was recently implemented and was
accepted for publication at the IEEE International Conference on Intelligent Robots
& Systems 2023 [46]. Our proposed approach is presented in the Figure 4. It comprises
a novel dual differentiable filter for parameter and pose estimation along with data-driven
models. The action selection for the push affordance is performed by computing the N
step information gain term, making it an active dual differentiable filter (ADDF). Firstly,
the robotic system learns the data-driven models used within the differentiable filter. Af-
ter learning, we perform inference on novel and unknown objects to estimate their pa-
rameters, without prior information about the novel object. In the following sections, we
explain the various components of the framework.

3.3.1 Dual Differentiable Filter

We derive our dual filter based on differentiable UKF [45, 47]. For the dual filter for-
mulation, we explicitly represent the state st by the joint distribution of ψt and φt , via
Multivariate Gaussian distribution:

bel(ψt ,φt)∼N(ψt ,φt |µt ,Σt) (12)

with statistics µt ∈ R8 and Σt ∈ R8x8 as

µt =

(
µψt

µφt

)
, Σt =

(
Σψt Σψtφt

Σφtψt
Σφt

)
. (13)

The dual filter as shown in Figure 4(b) follows, the structure of a Kalman Filter with a
prediction step and an update step, with key novelty explained in this section.
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Prediction Step

In prediction step, the next step is the joint belief given the previous belief and the actions.
The object parameters are real physical quantities with some physical constraints (for, e.g.
m,µ > 0). However, simply constraining the sigma points χUT in the UKF approach does
not preserve the true variance of the Gaussian distribution [48]. Therefore, we perform
constrained Monte Carlo sigma point sampling to preserve the physical constraints and
the Gaussian variance. We employ a differentiable sampling method [49] to sample C
sigma points in the joint distribution bel(ψt−1,φt−1) instead of using standard Unscented
Transform points:

χ
[i]
t−1 = µt−1 + ε

[i]
√

Σt−1 (14)

where, i ∈ 1..C and χt−1 = [χψt−1,χφt−1] ∈RCx8 with an associated weight w[i]
t = 1/C and

ε [i]∼N(0,1). We set C = 100 for all our experiments. The sigma points are filtered on the
basis of whether they satisfy the physical constraints and passed through the data-driven
models. However, the invalid sigma points are also retained and reintroduced to preserve
the uncertainty of the distribution. This is visually illustrated and explained in Figure 5.

Figure 5: Constrained Monte Carlo sampling

Shape-Action Encoder: During pushing, it is important to take into account the local
geometry of the object and the action. Few previous works [32, 50] have shown that such
an approach improves the prediction of the action effect in form of tactile prediction. We
encode the action along with the local geometry of the object at the point of contact to
improve the predictions of the action effect via ShapeActionEncoderNet.

ShapeActionEncoderNet: This comprises 3-layer CNN layers followed by 2 layers
of feed-forward neural network. For each sigma point sampled from the current belief, an
expected segmentation mask Ŝt is generated by transforming the initial segmentation S0
based on the pose information χψt−1 . This represents the current geometry of the object at
the point of action. Next, a 2D representation of the action - action map Mt is generated.
This is done by representing a 2D Gaussian distribution based on the action affordance
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at = (cp, pd,v) in the image frame. A 2D Gaussian can be generated by the following
equations, along the push direction pd and centered at the contact point in the image
frame (cpi f ).

px =
(

pixelx
pixely

)
,K =

(
cos2(pd)

2v2 + sin2(pd)
2

sin(2pd)
4v2 − sin(2pd)

4
sin(2pd)

4v2 − sin(2pd)
4

sin2(pd)
2v2 + cos2(pd)

2

)

Mt = e(−
1
2 (px−cpi f )K(px−cpi f )

T ) (15)

By this approach, we avoid generating complex object shape predictions for an intri-
cate visual perspective, and the action maps serve as an attention mechanism to aid in
learning interaction of the shape with action. A visualization of the action maps is pre-
sented in Figure 6.

ProcessNet: The data-driven process model for predicting the change in pose of the
object is approximated via 3 layer feed-forward neural network given prior joint sigma
points and the shape-action encoding enct . In addition, we also employ the learnt het-
eroscedastic process noise model.

encat ←− ShapeActionEncoderNet([Ŝt ,Mt ]) (16)
χψt

,Qt ←− ProcessNet(χt−1,encat ) (17)

χφt
= χφt−1 (18)

where, Qt ∈ RCx3 is the heteroscedastic diagonal covariance noise for time-varying pose.
The predicted next step sigma points χ t , along with the process noise Qt are utilized to
compute the expected Gaussian belief bel(ψt ,φt) as

χ
[i]
ψt = χ

[i]
ψt + ε

[i]
√

Q[i]
t (19)

µ t =
C

∑
i=0

w[i]
t χ t (20)

Σt =
C

∑
i=0

w[i]
t (χ

[i]
t −µ t)(χ

[i]
t −µ t)

T (21)

where, i ∈ 1..C and χ t = [χψt
,χφt

]

Update Step

We recompute the constrained Monte-Carlo sigma point χ
′
φt

sampling on the predicted
belief bel(ψt ,φt) to incorporate the noise from the process. The dual filter employs a
separate update of parameter belief similar to the parameter update presented in [51] and
the conditional pose belief update based on the UKF update [47]. For updating the joint
belief, we require an observation model to predict the observation sigma points Zt that
must account for visual and tactile observations. To reduce the complexity of predicting
raw RGB-D images, we split the observation model into two components, tactile and
visual models. A VisNet network acts as a synthetic sensor generating the current noisy
2D pose information x,y,θ from the current RGB-D images at each time. The VisNet
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comprises of first 10 layers of VGG-19 [52] pre-trained on ImageNet followed by 3 layers
of feed-forward network. For the tactile counterpart, a 4 layers of feed-forward network
TacNet is utilized to predict the contact force information (tactile). In addition, a two-layer
network ObsNoiseNet is also used to generate heteroscedastic and diagonal observation
noise.

Z
V
t = χ

′
ψt
Z

T
t ←− TacNet(χ

′
t ,encat ) (22)

zV
t ←−VisNet(oV

t ),z
T
t = oT

t (23)

Rt ←− ObsNoiseNet(zV
t ,z

T
t ) (24)

Parameter Update We update the weights based on the likelihood of the observation
sigma points Zt = [Z

T
t ,Z

V
t ] in the observation distribution ∼N(.|zt ,Qt)

w[ j]
t = w[ j]

t e(−
1
2 (Z

[ j]
t −zt)R−1(Z

[ j]
t −zt)

T ) (25)

where j ∈ 1..C. The updated parameter belief bel(φt) is recomputed via a Gaussian
Smooth Kernel [51] method after normalizing the updated weights.

µφt =
C

∑
i=0

w[i]
t χ

′
φt

; m[i]
φt
= aχ

′
φt
+(1−a)µφt (26)

Σφt = h2
C

∑
i=0

w[i]
t m[i]

φt
−µφt (27)

where a and h =
√

1−a2 are shrinkage values of the kernels that are user-defined and set
to 0.01, and m are the kernel locations.

Pose Update We make use of the dependence of the pose on the parameters to com-
pute the conditional pose distribution bel(ψt |φt)∼N(ψt |µψt |φt ,Σψt |φt ) using Multivariate
Gaussian Theorem [53].

µψt |φt = ψt +Σψtφt Σ
−1
φ
(φt−µφt ) (28)

Σψt |φt = Σψt −Σψtφt Σ
−1
φt

Σφtψt (29)

For conditional pose update, standard Unscented Kalman Filter (UKF) is employed
on the predicted conditional pose distribution bel(ψt |φt = µφt ) using Eq.29. The µφt of
the updated parameter belief is utilised with predicted pose sigma points χ

UT
ψt

to obtain

the predicted observation sigma points Z
′
t . The UKF update equations are skipped for

brevity. After the conditional pose update, the posterior joint is computed as:

bel(ψt ,φt) = bel(ψt |φt)bel(φt) (30)

Note, the cross-covariance matrices Σψtφt ,Σφtψt are not updated through the dual update
step and are kept constant.
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3.3.2 Active Actions

The push action affordance is given by the tuple at = (cp, pd,v). The possible contact
point cp and the normal angle cn at the contact point are geometrically calculated from
the initial 2D segmentation S0 as illustrated in Figure 6.

Monte-Carlo Sampling of push affordance: We generate M push affordances, a[i]t ,
i ∈ 1..M, from the possible points of contact points and contact normal by sampling a
contact point and generating the pd[i] = cn[i]+ δ ;δ ∼ R(−5,5) (deg). The velocity v is
fixed for all cases taking into account the quasi-static assumption.

N-step Information Gain: To make the framework more sample-efficient for real robot
scenarios, we employ active action selection by formulating an N-step information gain
criteria under the filtering setting based on the formulation of Eq.11. We recursively
use the prediction step of the dual differentiable filter without the update step to compute
the expected Information Gain for both model learning and object parameter inference for
each sampled non-prehensile pushing action π [i] = ai

τ0:τN
over N−step in future τ = τ0..τN

IGN(π
[i])≈−Ep(ψτN ,φτN |π

[i])[ln(bel
[i]
(ψτN ,φτN )

− ln(bel
[i]
(ψτ0,φτ0)] (31)

where, bel
[i]
(ψτN ,φτN ) is the hypothetical predictive joint distribution after N-step by tak-

ing action π [i] without taking account the actual observation. For our case, the expectation
is computed as KL-Divergence form for which the closed form solution exists for Multi-
variate Gaussian distributions [54].

IGN(π
[i])≈ DKL[N

[i](ψτN ,φτN |µτN
,ΣτN )||N

[i](ψτ0,φτ0 |µτ0
,Στ0)]

π
∗ = argmaxπ iIGN(π

[i]) (32)

Figure 6: Visualization of Action Sampling from initial observation
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Figure 7: MIT Push Dataset Setup [55]. Part a) presents the data collection setup. Part b) presents the
various objects in the dataset

4 Experiments

In this section, we explain the experiment setup and the results obtained from the proposed
method, which is hereby referred to as VT-ADDF (Visuo-Tactile Active Dual Differen-
tiable Filter). The closest state-of-the-art work to ours which dealt with the estimation of
object parameters using robotic pushing was that of [29] and have taken it as the baseline.
The baseline work utilised feature extraction using object pose, actions, and contact force
information and a Multi-Output Regression Random Forest for data-driven regression
modelling, which falls into non-predicitve approach. We re-implemented the baseline ap-
proach to the best of our capability and validated the published results on the MIT Push
Dataset.

In addition, we performed extensive ablation studies 1) exploring the efficiency of the
active approach vs random and uniform actions for learning and inference, 2) employ-
ing only vision for parameter estimation under the dual filtering setup (termed at V-DDF
Visual-Dual Differentiable Filtering). For this, the TacNet was removed and the obser-
vations were reduced to only RGB-D. The rest of the framework and dual filtering setup
with the active actions remained the same. 3) Study of dual filtering approach compared
to joint filtering (termed as VT-JDF). In this, instead of performing separate parameter
and pose updates, only a single UKF update equation was used [45].

4.1 Experimental Setups
We tested our approach and compared the baseline on 3 experimental setups.

4.1.1 Dataset - MIT Push Dataset

We utilized the MIT Push dataset, a state-of-the-art robotic pushing dataset [56] with 44
different objects, as shown in Figure 7. The dataset contains tactile, synthetic RGB-D,
pose and parameter information. The objects were of 11 different shapes with varying
mass, inertia, and 4 different surfaces - Abs, Delrin, Plywood, and Rubber-sheet were
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Figure 8: Simulation Setup-Sim Robotac. Part a) presents the PyBullet scene of the setup. Part b) presents
the object set (825) objects used for the experiments.

Table 1: Parameter range for simulation setup

Property Range of values
Mass (kg) [0.2, 0.5, 0.8, 1.2]
µ [0.35, 0.5, 0.7]
COMx (m) [-0.02, -0.015, 0, 0.015, 0.02]
COMy (m) [-0.02, -0.01, 0, 0.02, 0.03]
Iz (g.m2) [0.5, 0.9, 1.15, 1.5]
Shapes 11 (Figure 8 )

present. The center of mass of each object was slightly varied w.r.t. its geometric center.
The dataset has almost 10,000 pushes for each object; however, we selected a partial sub-
set of pushes with no acceleration and velocity of 30 mm/s in a total of 3750 pushes. As
this was a pre-recorded dataset, we only present estimation with uniform actions rather
than active actions. We selected this setup to validate the baseline results, as well as show-
case that our proposed visuo-tactile dual differentiable filter can be utilized for different
robotic environments.

4.1.2 Simulation Setup - Sim Robotac

We designed a simulation setup in PyBullet [57] to evaluate extensively our proposed ap-
proach as shown in Figure 8. In addition, it is possible to have a large set of objects with
variations in physical parameters in the simulation, which is often difficult real robotic
setup. The setup consisted of a simulated Robotiq gripper mounted on UR5 with a sim-
ulated tactile sensor attached to one of the finger pads. A synthetic RGB-D sensor was
placed on top of the pushing area to simulate a visual sensor. In the simulation setup,
825 different objects were designed according to the parameters presented in Table 1. We
used the simulation setup to perform extensive ablation studies, the results of which are
presented in the following section.
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Figure 9: Robotic Setup - Real Robotac. Part a) presents the robotic setup. Part b) presents an overview of
the configurable objects. Part c) presents the novel objects selected to test

4.1.3 Robotic Setup - Real Robotac

The robotic setup consists of Universal Robots (UR5) augmented with Robotiq two-finger
Gripper and a Panda robotic manipulator as shown in Figure 9. The tactile sensor [58]
is attached to the outer surface of the finger of the grippers on the Robotiq Gripper and
an Azure DK RGB-D camera is rigidly attached to the Panda Gripper. The maximum
allowed speed for the UR5 was 25 mm/s for safety constraints. The ground truth values
of were collected using the motion capture system - Optitrack [59], whereas the ground
truth values of the object parameters were computed from a CAD model of the objects.
To obtain real objects with varying parameters, we designed configurable objects by 3D
printing 4 shapes and adding additional weights at a precise location in the objects, chang-
ing their mass, center of mass, and inertia value. In addition, we utilized three different
frictional surfaces, plywood, paper, and resin sheet, to vary the relative friction coefficient
between the object and the pushing surfaces. In total, we had 48 different objects after all
possible configurations. Furthermore, we have 4 novel daily objects as shown in Figure
9(c), which were not used in training and were kept only for testing. The objects had
contrasting parameters (high mass of the paint box (Object 1), high friction of sugar cube
box (Object 4) and the plywood surface, as well as shifted COM in cheese (Object 2) and
weight box (Object 3).

4.2 Results

4.2.1 Learning - DDF Training

For training the networks used in the differentiable filter, we used a weighted combination
of negative log-likelihood loss LNLL of the ground pose and parameter w.r.t. belief and
mean squared error loss LMSE of contact forces and synthetic pose. Iterative training was
performed using the Adam optimizer until the loss converged.
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Figure 10: Learning results of the ablation studies in Sim-Robotac setup. Part (a) presents comparitive
performance learning stability of VT-ADDF vs V-DDF vs VT-JDF. Part (b) presents the learning efficiency
of different push action selection methods - Uniform, Active, Random

For the MIT Push data set, the time horizon was tH = 10s with a sampling rate of
10Hz. We divided the 3750 trajectories into 90% for training and 10% for inference. For
the Sim-Robotac set-up, the time horizon was tH = 15s with a sampling rate of 10Hz.
90% of 825 objects were used for training and 10% for testing, cross-validated 5 times.
We performed an ablation study using a uniform, random and active approach to take the
action from the set of M-push affordances to train the filter. In addition, we also explored
how much N- step lookahead is suitable. We chose N as 20% (= 3 secs), 50% (= 7.5
secs) and 70% (= 10.5) of the time horizon as future look-ahead steps for ablation study
on active actions. We present the results of the ablation study in Figure 10 (b), for the
efficiency of learning. In addition, we also present the validation loss plots to highlight
the stability and learning performance of the proposed approach (VT-ADDF) compared
to using only vision (V-DDF) and utilizing a joint differentiable filter (VT-JDF) in Figure
10 (a). For the Real-Robotac setup, the time horizon was tH = 10s, with a sampling rate
of 5 Hz and an active approach with 50% N step look-ahead (= 5 seconds) selected to
train the dual differentiable filters. 90% of the 48 configurable 3D printed objects were
used for training and 10% for testing.

4.2.2 Parameter Inference

For parameter inference of unknown (test) objects, we executed multiple push actions.
At the end of each, the posterior belief of object parameters was utilised to initialize the
belief for the next push. We present the results of the parameters m,µ,CoMx,CoMy, Iz in-
ference for the ablation study in Sim-Robotac setup in Table. 2. For parameter inference,
the N-step lookahead was selected as 50% of time horizon tH for both Sim-Robotac and
Real-Robotac setups. In addition, Figure 11 presents a closer look at the filtering action
of the different ablation approaches and parameter inference convergence in the Sim-
RoboTac setup. Further, the comparative parameter estimation results of the proposed
approach (VT-ADDF) compared to the baseline work of [29] are presented in Table.3.
We present separate estimation results for the novel objects which were not utilised for
training, to evaluate the generalisation of the proposed approach compared to the base-
line. As the range of values of different parameters like mass, friction co-efficient and
inertia are different and the values often close to 0 (for the center of mass) we employ
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Figure 11: Inference result during the filtering step presented after each push action.

a normalised root mean square NRMSE [29] as metric to evaluate the performance over
different parameters which is the root mean squared error divided by the range of values
(ψmax−ψmin) of each parameters in the setups. Lower value, signifies better estimation.

Table 2: Inference result of NRMSE values of different parameters in the ablation study in Sim-Robotac
setup

mass µ comx comy Iz Overall
VT-JDF 0.33 ± 0.08 0.19 ± 0.08 0.12 ± 0.04 0.22 ± 0.08 0.16 ± 0.08 0.20 ± 0.07
V-DDF 0.28±0.11 0.31±0.06 0.25±0.08 0.35±0.12 0.18±0.05 0.27±0.09
VT-ADDF 0.21±0.09 0.14±0.04 0.09±0.04 0.13±0.04 0.15±0.03 0.14±0.05
VT-DDF (Uniform) 0.20±0.06 0.16±0.06 0.13±0.03 0.12±0.03 0.12±0.06 0.15±0.05
VT-DDF (Random) 0.19±0.13 0.15±0.06 0.11±0.04 0.13±0.03 0.14±0.08 0.14±0.07

Table 3: Parameter Inference result of NRMSE value for proposed approach VT-ADDF compared to base-
line work of [29] in various setups

mass mu comx comy Iz
Experimental Setup Baseline VT-ADDF Baseline VT-ADDF Baseline VT-ADDF Baseline VT-ADDF Baseline VT-ADDF
MIT Push Dataset 0.11±0.1 0.19±0.02 0.18±0.04 0.17±0.02 0.13±0.06 0.10±0.04 0.12±0.09 0.09±0.07 0.17±0.02 0.16±0.01
Sim Robotac 0.14±0.06 0.21±0.09 0.16±0.06 0.14±0.04 0.18±0.12 0.09±0.04 0.14±0.15 0.13±0.04 0.20±0.11 0.15±0.03
Real Robotac (RR) 0.25±0.12 0.22±0.09 0.14±0.03 0.19±0.06 0.12±0.08 0.10±0.01 0.20±0.1 0.11±0.07 0.16±0.05 0.09±0.01
RR Novel Objects 0.29±0.09 0.20±0.05 0.21±0.03 0.18±0.06 0.17±0.09 0.11±0.05 0.22±0.05 0.12±0.05 0.22±0.10 0.15±0.08

4.3 Discussion
In this work, we proposed a novel visuo-tactile-based active object parameter inference
with a dual differentiable filter. The results of the learning ablation study show that active
actions significantly improve the efficiency of the sample by around 20% (push actions)
compared to uniform actions and have a lower variance than random action selection as
presented in Figure 10(b). Moreover, it is shown that the dual filtering approach has more
stable learning than the joint filter as presented in Figure 10(a). This demonstrates the
efficacy of our proposed novel dual differentiable filtering approach compared to a joint
differentiable filter method. Furthermore, our experimental results show that, by using
only vision, the network fails to reduce the loss and tends to overfit. This is expected, as
parameter estimation is difficult only via vision and has high error rates, leading to higher
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Figure 12: Extended range of objects with challenging parameter inference.

loss values.

The results obtained from the parameter inference show that our proposed approach
performs consistently on different experimental setups, MIT Push Dataset, Sim-Robotac
and Real-Robotac, compared to baseline work of [29], which fails to generalize for novel
objects in real robotic setup. Moreover, the limitation of providing ground-truth pose in-
formation in the baseline approach is elevated by our proposed ADDF approach during
the inference step. Furthermore, the ablation study shows that active actions have a bet-
ter estimation of parameters compared to uniform and with lower variance than random
actions with the same number of push actions. Compared to using only vision, the visuo-
tactile dual differentiable approach performs much better, especially in parameters like
the center of mass prediction, as well as being more stable and accurate than the joint
filtering approach. Through the different setups, we also show that the proposed visual-
tactile-based dual differentiable filter for parameter inference is agnostic to robotic setups
as long as sufficient visual and tactile information is present.

From the limitations, our proposed ADDF requires separate training of VisNet with
MSE loss to obtain pose information for novel objects which are visually quite different
from the training set. Instead of using RGB-D as visual observations and a 2D pose
estimation network, it will be viable to use point clouds and avoid the requirement of
using pose estimation altogether or use recent one-shot pose estimation approaches. In
addition, it will be interesting to avoid the requirement of having ground truth states and
parameter values during training, as well as to develop a framework which can discover
physical object representations.

5 Future Work and Improvement

In the above approach, we considered the state estimation of rigid objects with uniform
physical properties. However, various daily objects can have non-uniform properties (e.g.
hammer) or can be articulated (e.g. doors, drawers). We propose an extension of the
method to estimate the parameters of a more diverse range of objects, uniform, non-
uniform, and articulated, as shown in Figure 12.
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Figure 13: Graph generation of an illustrative articulated object with 2 links. The edges has capability to
discriminate between cause and effect depending how the robot is interacting with the object. Node captures
the states, whereas the edges captures interaction forces

.

In order to handle such diverse objects, we propose to use Graph Networks [60] which
provides a strong inductive bias to capture the complex interaction dynamics, which is
difficult to capture by standard feedforward networks. In addition, as the state-space di-
mension increases, it becomes difficult for feed-forward networks to generalize well. In
contrast, Graph Networks utilize the same structure and the fully connected network to
predict states through the multiple message transmission mechanism [60]. Figure 13 il-
lustrates how the interaction between the robot and an articulated object is represented by
a graph with nodes and features. Furthermore, Figure 14 shows how multi-messaging is
used to update the node and edge features. The edge effect (marked by a red arrow) that
returns to the robot is utilized for tactile prediction. The initial results show that such a
representation is quite efficient in generalizing compared to the previous approach.

Finally, with the addition of Graph Networks, improved shape perception and the
addition of 3D projective transformations [61], the updated framework of Active visuo-
tactile rigid object property inference is presented in Figure 15 which is inspired from
human like ‘predictive’ top-down processing.

This is ongoing work as of 5th December 2023 (deliverable submission) and will be
submitted to the Transactions in Robotics (TRO) by January 15th 2024.
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Figure 14: Graph Propagation to predict the next step state (process model). It utlises multiple message
passing (I-IV) unlike single pass of feed-forward networks. The node and edge functions fe, fn are approx-
imated by fully connected networks

Figure 15: Proposed improved framework on Active Differentiable Filter approach for object property
inference

6 Conclusion

In this research project, part of INTUITIVE, we investigated the combination of vision,
tactile, and proprioception for robotic manipulators. We proposed a novel active dual dif-
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ferentiable filtering approach to address the problem, which draws inspiration from the
predictive processing abilities found in humans. To demonstrate the capability of the pro-
posed approach, we selected the problem of estimating the properties of rigid objects via
non-prehensile pushing. The filter represents the object state systematically into time-
varying and time-invariant factors and takes into account the current state of the object,
action (proprioception) of the robot to predict the next state of the object as well as ex-
pected visual and tactile observation. The proposed differentiable filter first learns an
object interaction model using known objects, which is then used to infer novel objects
under differentiable filter settings. We present a novel formulation of active action selec-
tion with the differentiable filter as one of the key contributions. The generalizability of
the framework makes it suitable for real robotic applications and opens the possibility of
exploring the approach for other interaction techniques for object parameter estimation
such as grasping, prehensile pulling, etc. In addition, we presented ongoing work using
Graph Networks as inductive bias within the differentiable filtering setting, which pro-
vides capability to be used as a general purpose perception framework for downstream
manipulation tasks.
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