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Summary 
 
The ESR’s contribution to the INTUITIVE project is to design and test a low-power sensory readout 
and electronic interface. Originally, the deliverable prescribes thinning of the chip for flexibility. 
However, we assessed it not to be necessary to thin the chips for the following reasons: a) the 
chip area is small enough such that the chip’s rigidity does not hamper it being mounted on a 
surface with a large radius of curvature (such as robotic fingertips), and b) the on-chip integrated 
sensors have a serious chance of being damaged during the thinning process.  
 
In the second reporting period, to obtain the optimum readout architecture, a comparison study 
between a frame- and a spike-based readout was evaluated, in terms of its system power 
consumption and its texture recognition accuracy. Results from this modeling have been 
published in IEEE BioCAS 2022 [1]. Guided by the results of the study, a spike-based readout was 
considered to be the optimum choice. Consequently, the design and layout of a state-of-the-art 
spike-based per-taxel CMOS-based readout integrated circuit have been performed in a 0.18µm 
CMOS process. The chip has successfully been characterized and its performance metrics have 
been measured at KU Leuven.  Furthermore, the readout chip has been post-processed at 
INTUITIVE partner Fondazione Bruno Kessler to integrate a per-taxel polyvinylidene fluoride 
(PVDF)-based piezoelectric sensor with a state-of-the-art 200µm spatial resolution, comparable 
to touch in human fingertips. A key innovation throughout this work is the integration on chip of 
a 12×16 taxel array with a per-taxel signal conditioning frontend and spiking readout combined 
with embedded neuromorphic first-order processing through Complex Receptive Fields (CRFs). 
The measurement results of this INTUITIVE e-skin readout chip have been accepted for 
publication in the 2023 Symposium on VLSI Technology and Circuits. 
 
 
 
 
 



 
1. Modelling the optimum readout solution: frame- versus spike-based 
comparison 
 

Addressing the need for a fast sensor array scan rate (1-10 kHz) required to detect fine tactile 
spatiotemporal stimuli [2], polling e-skin sensors in each array either sequentially [3][4] or in a 
column-based fashion [2][5]. The traditional readout process involves multiplexing the analog 
sensor output onto a central ADC for conversion, producing synchronous frames of tactile 
information, that are periodically transmitted for processing (see Fig. 1a). This periodic sensing 
and transmission of tactile frames, however, is power-inefficient, despite the fact that tactile 
stimuli may be sparse. Additionally, as the sensor count increases for future high-density e-skins, 
faster sensor polling rates are needed to achieve the necessary scan rate. 

In contrast to the above conventional frame-based e-skin readouts, the ESR’s research in 
INTUITIVE explores the use of neuromorphic, spike-based e-skin readout circuits. This approach 
differs from previously studied spiking e-skins where the sensor-to-spike conversion is performed 
in software [6][7][8] after ADC acquisition (see Fig. 1b). Instead, the proposed approach models 
a high-density e-skin readout with on-chip, taxel-wise sensor-to-spike conversion, leading to a 
more power-efficient design (see Fig. 1c). 
 

 

 
 

Fig.1. State-of-the-art electronic skin readout solutions can be classified in two major categories: 
(a) synchronous frame generation using a central ADC and further digital processing; (b) asynchronous 
spike generation in software followed by a neural network; and (c) on-chip, taxel-wise sensor-to-spike 

conversion connected directly to a spiking neural network. 
 



Based on the system power consumption model developed in this research, we have shown that 
a spike-based readout is a power-optimal solution for the texture-sensing e-skin chip we are 
developing, as will be discussed in further detail in the next sections. 
 
 
1.1. Taxel circuit architectures 

 
1.1.1 Conventional level-crossing sampling 

Previous research in dynamic vision sensors [9] has demonstrated that event-based sensing of 
time-sparse input signals contributes to more power-efficient readout electronics, which is 
critical when the sensor count continues to rise. Moreover, the deployment of individual taxels 
that respond independently to tactile stimuli, results in an efficient scaling between the actual 
information conveyed by the stimuli and the data transmission rate at the sensor output [10]. 
This asynchronous sampling of the signal allows the sampling of very fast transient changes on 
the tactile stimulus, common in texture scanning. Thus, straightforward Level-Crossing Sampling 
(LCS) converters [11] have been utilized for converting input signals into event-based spike trains. 
As illustrated in Fig. 2, the LCS converter generates a spike sample every time the input exceeds 
a predefined threshold away from the current value. The sequence of level crossings across 
numerous taxels is subsequently encoded as a series of taxel addresses, using an Address Event 
Representation (AER) interface. 

 

 

Figure 2. Analog to spike conversion using a non-uniform sampling/level-crossing converter. 

A significant drawback of previously proposed LCS designs is the absence of level crossings during 
slow-moving inputs. This is because LCS converters are intended to detect signal changes, rather 
than the DC component. For time-sparse signals, the lack of level crossings results in a decreased 
signal conversion accuracy. Increasing the ADC resolution N to detect small signal changes, 
however, results in a power consumption increase with approximately a factor 22N [12]. 
Therefore, solutions, such as adding a triangular dither [13] or an adaptive threshold [14], have 
been explored to address this problem. 



 
1.1.2 Neuromorphic level-crossing sampling 

 
We presented a novel approach to addressing the issue of sampling slow tactile inputs by drawing 
on insights from neural encoding. Instead of using a step-wise decreasing threshold, as common 
LCS circuits do, we propose the use of an exponentially-decaying threshold as a more accurate 
model for biological neural encoding [15][16]. Fig. 3. compares our proposed exponentially-
decaying threshold to the common step-wise dynamics. 
 

 
 

Figure 3. The closing window level-crossing sampling in a) approximates how a leaky neuron in b) 
generates spikes. 

 
 
1.2. Power consumption analysis 
 
To compare our event-based readout techniques with the frame-based approach in a multi-
channel scenario, we have developed detailed power consumption models for the following 
readout circuits: i) spiking readout using regular LCS taxels without a closing window; ii) spiking 
readout using the proposed neuromorphic LCS taxels; and iii) a conventional frame-based 
readout with sensors multiplexed into a single ADC, with a typical figure of merit of approximately 
10fJ per conversion step. Figure 4 provides a graphical representation of these models, assuming 
a 64-taxel array, which is consistent with the size of current state-of-the-art large-area e-skins. 
For small sensor signals with high output impedance, such as the piezoelectric sensors used in 
this work, an analog front-end (AFE) with gain and signal conditioning is needed. 
 



 
 

Figure 4. Blocks considered for power consumption modelling: in contrast to the frame-based readout in 
a), where the analog front-end (AFE) circuit is shared among all sensors, the spike-based readout in b) 

does require one AFE per taxel. 

 
The power consumption analysis presented in Fig. 5 reveals important findings. Specifically, at 
low signal-to-noise ratio (SNR) (right bars in Fig. 5), the multi-channel spike-based readout is 
more power-efficient than the conventional frame-based counterpart, consistent with previous 
single-channel analysis that did not account for the AFE power consumption [12]. However, at 
high SNR (left bars in Fig. 5), the power consumption of the per-taxel AFE in spike-based readouts 
becomes dominant, rendering the spike-based solution less power-efficient compared to the 
frame-based counterpart, despite the lower transmission power resulting from the compressive 
transfer of spiking data. 

Thus, we conclude that the spike-based readout is most suitable in challenging signal acquisition 
scenarios where the input SNR is low. We maintain that this is applicable to our e-skin chip for 
texture sensing, where noisy output spikes are characteristic for the biological systems we are 



emulating, and can effectively be handled by biological and artificial spiking neural networks 
(SNNs) without much loss in the accuracy. 

 

 

Figure 5. System power consumption breakdown for spike- and frame-based readouts, 
at three different AFE noise RMS target. 

 
2. Spiking readout circuit design 
 
2.1. System architecture and taxel circuits 
 
The designed taxel readout chip (see the chip photo in Fig. 6) features 12×16 taxels with two 
spiking readout channels each (see the schematic in Fig. 7(a)): a voltage-mode level-crossing 
sampling (LCS) and a neuromorphic current-mode LCS (N-LCS) converter readout. The dual 
readout channel design allows for flexibility in the spike generation depending on the application 
(robotics, neuroprosthetics, etc.). For robotics applications, existing SNN hardware and 
algorithms have been developed more commonly for pure threshold-based spiking input 
(without adaptation). Meanwhile, for neuroprostheses, the neuron-like nature of the output 
spike generation (with adaptation) could result in more biologically-faithful spike-based tactile 
sensing. 
 



 
Figure 6. Photo of the INTUITIVE e-skin readout chip consisting of 12x16 taxels with state-of-the-art 200-
µm spatial resolution. Each sensor is connected to two spiking readout channels. Throught the Address 

Event Representation (AER) interface, the output spikes are encoded into asynchronous bursts of 
individual taxel addresses to form a spike train. 

 
The per-taxel piezoelectric sensor charge output is converted to a voltage input for the LCS 
channel, while an extra voltage-to-current (V-I) stage is used to generate current inputs for the 
N-LCS. The voltage input then goes into two window comparators to detect bipolar level 
crossings, as seen in Fig. 2. Meanwhile, the N-LCS outputs unipolar spikes through a delta 
modulator. The N-LCS operates in the current-mode domain, since ultra-low power, synaptic-like 
current-mode low-pass filters can be designed with minimal circuit complexity. The N-LCS's 
output spikes are integrated through two low-pass filters (with fast and slow time constants), 
forming an exponentially decaying threshold for spiking, just like in biological spike encoding.  
 
The per-taxel signal conditioning circuit contains a charge amplifier with configurable charge gain 
and sub-1Hz high-pass corner frequency, and a low-area, tunable V-I converter for the N-LCS 
channel. To achieve low power consumption, the analog circuits are biased in the subthreshold 
region with VDD=1V, along with the taxel digital blocks and the AER interface. The encoding 
parameters (for LCS & N-LCS), such as the spiking threshold and the decay time constant, can be 
configured from off-chip, allowing for software-based flexibility on the spike generation. A chip 
micrograph of the dual-channel per-taxel spiking readout layout with 200 x 200 μm2 area is 
shown in Fig. 7b. 
  
 



 

 

 
 

Figure 7. (a) The per-taxel readout circuitry consists of a signal conditioning front-end with configurable 
closed-loop gain, an ultra-low-current voltage-to-current converter for the N-LCS channel, a voltage-

mode level-crossing sampling (LCS) channel, and a neuromorphic current-mode LCS channel. The level 
crossings are transmitted to the on-chip AER interface through a per-taxel digital logic circuit. 

(b) The dual readout channel layout is shown, occupying 200 x 200 µm2 per taxel, the smallest compared 
to the the state of the art. 

 
3. Sensor deposition 

 
3.1. Wafer post-processing 

 



A 12x16 piezoelectric sensor array has been integrated directly on top of the CMOS readout chip, 
resulting in a 1:1 sensor-to-spiking readout ratio, which is a first in e-skin designs. The wafer-
based post-processing step has been performed at Fondazione Bruno Kessler (FBK). The sensor 
cross-section, including the input PMOS of the per-taxel readout, is shown in Fig. 8a. The chip 
micrograph of the post-processed chip is shown in Fig. 8b, clearly showing the patterned Au + 
PVDF layer on top of the CMOS chip.  
 

 
a) 

 
b) 
 

Figure 8. Wafer-based sensor post-processing: a) cross-sectional description of the CMOS + sensor stack; 
b) chip micrograph showing the taxels of the post-processed readout chip 

 
To form the bottom electrode of an individual sensor, which connects to the per-taxel readout, 
a pad consisting of an un-passivated 75x75-μm2 sheet of CMOS top metal is instantiated. A PVDF 
solution of PVDF-TrFE (Piezotech FC20) was spin-coated on a 73 x 67.5-mm2 piece of the 8” wafer. 



The top electrode (Au) is deposited through sputtering and is then patterned. The patterned Au 
top electrode also serves as a mask during PVDF patterning through dry etching. The top 
electrode is connected to the CMOS chip by manually dropping a small conductive epoxy ball on 
the intersection of the left-most edge of the top electrode and a pad array (Fig. 9). This is a clever 
approach to connecting the top electrode without a) wirebonding a pad directly to the top 
electrode, and b) adding another via or patterned metal layer that increases the number of masks 
and processing steps. To de-risk the sensor post-processing to be performed on the readout chips 
from the 8” wafers, sensor test structures were first developed on FBK 6” wafers. 
 

 

Figure 9. To connect the top electrode to a known potential for sensor biasing, a setup is proposed 
wherein the intersection of a group of pads and the edge of the top electrode can be connected 
electrically with a conductive epoxy. The image depicts wirebonding on the test structure chips 

from 6” wafers. 

 
The thick passivation layers of the wafer could present an issue when aiming to deposit a 250-
nm layer of PVDF, possibly resulting in large variations in the sensor thickness. To improve the 
PVDF thickness uniformity, an 8” wafer has undergone a chemo-mechanical polishing (CMP) step, 
with the aim of reducing the passivation step. The CMP step, however, proved to be damaging 
to also the chip top metal (Fig. 10b). Therefore, the targeted passivation thickness reduction was 
not achieved. The resulting change in the passivation step profile (Fig. 10c & 10d) is revealed 
through mechanical profilometry (Fig. 10a). 

 



 
Figure 10. a) A mechanical profilometer is scanned across the chip electrodes to characterize the 

passivation step profile post-CMP; b) the CMP procedure etched parts of the Al electrodes as well, 
resulting in an incomplete etching of the passivation layers. The passivation profile of the scanned area 

in a) at c) pre-CMP and d) post-CMP. 

 
 
4. Chip packaging and test measurement set-up 
 
4.1. Chip wire bonding 
 
A key consideration in the chip wire bonding (electrical connection of the chip to off-chip circuits 
through the packaging PCB) is to make them more robust to external mechanical forces during 
texture scanning or any other form of force contact. This is accomplished by reducing the heights 
of the Al bond pads that connect the chip to the PCB pads (Fig. 11a). To do this, an 800-μm cavity 
is cut out of the packaging PCB, which is the same thickness as the chips. This allows for the top 
surfaces of both the chip and the PCB to align, allowing for shorted Al bondwires and lower 
bondwire heights. The packaged PCB is shown in Fig. 11b. 

 



 
a) 

 
b) 

Figure 11. a) To reduce the chip bondwires for increased robustness during mechanical contact, the area 
where the chip is to be bonded to the package PCB is milled by 0.8 mm (same chip thickness). b) Image 
showing the actual readout chip bonded on the package PCB. The chip contains 100 pads in total: 52 

(optional external AER interface), VDDPST-5V (2), VDD-1.8V (2), AVDD-1V (2), LCVDD-1V (1), DVDD-1V 
(2), GND (5), AER interface (12) , serial interface (4), current biasing (1), voltage biasing (2), spike 

generation parameters (8), analog output for debug (2),  calibration (2), digital configuration bits (2), 
and poling mode enable (1). 

 
4.2. Test measurement setup 
 
To facilitate chip measurements and characterization, a PCB test board (Fig. 12) has been 
designed and fabricated. The test board consists of internal power generation derived from a 5V 
supply (1.8 V & 1 V output), internal voltage, and current bias generation for both circuit biasing 



and spiking parameter configuration. Output spikes are recorded by an Arduino MEGA2560 off-
chip through the AER interface headers. An optional off-chip AER interface and control is also 
possible by disabling the internal AER blocks. A 16-channel voltage DAC is used to apply input to 
the readout chip, emulating the sensor charge response, appropriately scaled to reflect the 
sensor capacitance and readout open-loop gain. 
 

 

Figure 12. Photo showing the test measurement setup. 

 
5. Chip measurements 
 
5.1. Texture scan 

 
In this section, we simulate a texture scan with the readout chip and measure the chip’s response 
through its output spikes. Due to the lack of publicly-available multi-sensor tactile-based texture 
datasets, we developed a technique to emulate sensor signal generation during a multi-sensor 
texture scan (see Fig. 13). To model the piezoelectric sensor array response when scanning a 
texture, a 12x16 array of time-series texture signals is generated from texture images [17]. The 
voltage signals, scaled to reflect the sensor charge output, are then fed as input to 16 channels 
of the chip (limited by the chip bond pads available for connection). The output spikes coming 
from the on-chip AER interface are then recorded off-chip. The spike addresses are then 



sequentially re-mapped such that it mimics how an actual tactile stimulus encounters the chip’s 
12×16 taxels. An example spatiotemporal depiction of the output spikes is shown in Fig. 13. The 
generated texture spike dataset is available online at: tinyurl.com/kyltexture. 
 

 

Figure 13. Methodology to simulate an ideal texture scan to generate the texture spiking dataset 

 

 

Figure 14. Vibration in the flutter frequency range is used as input for the chip 

5.2. Flutter frequency classification 
 
Humans have been known to be very sensitive to low-frequency vibration (i.e. flutter) [18]. In this 
section, we prove that our e-skin readout chip is equally adept at perceiving and classifying flutter 
vibrations by subjecting the e-skin readout chip to low-frequency sinusoidal inputs (0.5 to 15 Hz). 
To demonstrate amplitude invariance, we used two different signal amplitudes. The output 



spikes for a 10-Hz flutter frequency input are shown in Fig. 14. The generated texture spike 
dataset is available online at: tinyurl.com/flutter6. 
 
 
5.3. Measured power consumption 
 
The chip’s power consumption has been characterized at two conditions, as summarized in Table 
I : 1) in standby mode (no events), and 2) at a moderate event rate of 62500 events/second. The 
chip consumes very low power in standby mode, and is dominated by the leakage of the digital 
output buffers for the AER interface. For proper interfacing, the 1-V output of the internal AER 
interface is first level-shifted to 1.8V and then to 5V for compatibility with common commercial 
I/O interfaces. The per-taxel power consumption, dominated by the signal conditioning frontend 
power consumption, is not dependent on the event rate. The scalability of the chip’s power 
consumption on the event rate highlights the benefits of the event-driven nature of the sensor 
acquisition that we have proposed in this research. 
 

Table I. INTUITIVE e-skin readout chip’s measured power consumption. 

 
 
5.4. Comparison to state-of-the-art 
 
Compared to prior e-skin results (see Table II), this work achieves around 100-7000X reduction 
in the system power consumption and more than 5 orders of magnitude reduction in the per-
taxel power consumption, while enhancing the spatial resolution by 5X and doubling the sensor 
count. The per-taxel sensor frontend design achieves state-of-the-art performance in the charge 
resolution (270X reduction), area (10X smaller), and power consumption (> 30X lower), while 
having the most (192) channels integrated on chip (see Table III). Lastly, the system achieves a 
state-of-the-art classification accuracy despite using a small SNN network without preprocessing, 
a low equivalent spike encoding resolution (3 to 4 bits), and a low data rate (< 2.2 kHz). 
 



Table II. Comparison to state-of-the-art e-skins with tactile stimuli classification. 

 
 

Table III. Comparison to state-of-the-art PVDF-based signal conditioning frontends 

 
 

6. Conclusion 
 
In conclusion, this research has compared frame-based and spike-based readout solutions for 
electronic skin (e-skin) tactile sensors. The traditional frame-based readout involves multiplexing 
the analog sensor output onto a central ADC, resulting in a periodic transmission of tactile frames, 
which is power-inefficient. In contrast, the spike-based readout utilizes neuromorphic, on-chip, 
taxel-wise sensor-to-spike conversion, leading to a more power-efficient design. The research 
has developed power consumption models and has analyzed the power efficiency of both 
approaches. The findings indicate that spike-based readout is more power-efficient than frame-
based readout at low signal-to-noise ratios, making it suitable for signal acquisition scenarios with 
low input SNR. The proposed spike-based readout solution is most applicable to e-skin chips for 
texture sensing, where noisy output spikes can effectively be handled by artificial spiking neural 
networks without significant loss in accuracy. 



 
This work is the first demonstration on chip of end-to-end e-skin sensor-to-spike encoding with 
embedded CRF processing at fingertip-mimicking high taxel density. The e-skin taxel readout chip 
has been implemented in a 0.18-μm CMOS technology. It achieves the highest reported spatial 
resolution of 200 μm, comparable to human fingertips. A key innovation is the integration on 
chip of a 12×16 taxel array with a per-taxel signal conditioning frontend and spiking readout 
combined with embedded neuromorphic first-order processing through Complex Receptive 
Fields (CRFs). Experimental results have shown that spiking neural network (SNN)-based 
classification of the chip’s spatiotemporal spiking output for input tactile stimuli such as texture 
and flutter frequency, achieves excellent accuracies up to 97.1% and 99.2% of classification 
accuracy, respectively. Note that this is despite using only a small 256-neuron SNN classifier, a 
low equivalent spike encoding resolution of 3-4 bits, a sub-Nyquist 2.2-kHz population spiking 
rate, and a state-of-the-art per-taxel (12.33 nW) and per-system (75 μW -5 mW) power 
consumption. 
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