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Learning classifier system for high dimensional sensorimotor data 

 

Objective:  

The aim of this deliverable is the identification of tactile interaction invariants and 

to build a classifier system based on these invariants for a high dimensional 

dataset. 

Dataset description: 

The dataset chosen for this problem is the LMT Haptic texture database recorded 

by the technical university of Munich [1]. A phantom Omni SensAble device is 

used to scan over 108 textures for recording acceleration signals. These texture 

signals are available in the form of text files stored during the recording sessions 

of 10 different people. There is other data (like images, audio) recorded during 

this process, but the texture signals (in the form of acceleration signals) suffice 

the purpose of my thesis.  

There are two types of datasets used in this classification problem. One is the 

acceleration data obtained from the accelerometers and the other is the frictional 

force obtained from a FSR sensor attached to the setup.  

Relative performance of Machine learning classifiers: 

Table 1 shows the performances of different machine learning (ML) classifiers for 

the classification of raw frictional force dataset. It can be observed that every 

classifier has a low performance and is not suitable for classifying this kind of 

haptic dataset. Similarly, it can be observed from Table 2 that the classifiers 

performed badly for a dataset which contains all three axes of raw acceleration 

signals. This is an indication that ML classifiers (Support vector, decision tree, 

random forest) are unable to perform separation of categories of textures with 

the help of raw data.  

 

 

 

 

https://zeus.lmt.ei.tum.de/downloads/texture/


Choice of classifiers: 

Several machine learning classifiers and neural network models were applied on 

the haptic dataset in consideration. Support vector, decision tree and random 

forest classifiers showed better performances in comparison to others.  

Table1: Classifier performance for raw frictional force data  

Frictional force- Raw data 
Classifiers Accuracy (%) Precision Recall F1 score 

Support vector 9.56 0.01 0.09 0.09 

Decision Tree 8.74 0.08 0.09 0.08 

Random Forest 14.10 0.13 0.14 0.13 
 

Table2: Classifier performance for 3 axis raw acceleration data 

Acceleration: 3axes - Raw data 

Classifiers Accuracy (%) Precision Recall F1 score 
Support vector 10.01 0.10 0.10 0.09 

Decision Tree 11.27 0.12 0.11 0.11 
Random Forest 20.03 0.19 0.20 0.19 

 

Classification on raw data showed poor performance on both frictional force and 

acceleration data. The raw data is insufficient for the classification of haptic data 

to identify texture labels.  

Feature extraction: 

There is a lack of domain-knowledge features for haptic signals. This motivates 

the use of audio-domain features since the signal source is a vibrating object in 

the two cases. The data is in the form of time-dependent signals which means 

audio features can be applied for the classification of haptic signals as well.  

Features most frequently used in audio processing are: Mel frequency cepstral 

coefficients (MFCC) which is quantification technique for time dependent signals, 

spectral roll-off which is a measure of right skewness of a spectrum, zero crossing 

rate which captures rhythmic features of a signal, spectral flux which is the rate of 

change of spectrum, chromograms, and pitch. 



Table 3:   Full form for feature set                                   
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Importance of feature extraction: 

Table 4 shows the classification performance of different classifiers on frictional 

force data but after feature extraction. The performance of the ML classifiers 

increased significantly, and it can be seen that the random forest classifier 

performs the best with an accuracy of 72.31%.  On the other hand, it is interesting 

to note from Table 5 that random forest classifiers performed best with a 92.50% 

accuracy, precision, recall, and F1 score. Also, the other classifiers had an above 

average accuracy for the classification of textures based on acceleration data with 

all three axes.  

This is an interesting observation because the discrimination process becomes 

better when the classification is based upon the acceleration data than frictional 

force data. So, we can conclude that acceleration signals contain better 

discriminatory characteristics when compared to the frictional force. 

It is also noted that random forest classifier consistently performed well for the 

discrimination of ten different textures.  

Table 4: Classifier performance for features of frictional force data 

Frictional force- Features 

Classifiers Accuracy (%) Precision Recall F1 score 
Support vector 65.38 0.65 0.65 0.64 
Decision Tree 56.92 0.57 0.57 0.57 

Random Forest 72.31 0.72 0.72 0.72 

 



Table 5: Classifier performance for features of 3 axis acceleration data 

Acceleration: 3 axis - features 

Classifiers Accuracy (%) Precision Recall F1 score 
Support vector 85 0.86 0.85 0.84 

Decision Tree 87.50 0.89 0.87 0.86 
Random Forest 92.50 0.93 0.92 0.92 

 

Table 6, 7 and 8 are performance tables for classification of acceleration data 

along the x, y, and z axis respectively. Acceleration recorded along the x, y, and z 

axes during scanning textures were sufficient for the discrimination of different 

textures and identification of texture category. Classification along the z axis 

acceleration data performed better than the other two axes with accuracies 

above 80%. In short, random forest classifiers also work well also in the 

classification of haptic data of x, y, and z axes separately.  

Table 6: Classifier performance for features of x-axis acceleration data 

Acceleration: x-axis - Features 
Classifiers Accuracy (%) Precision Recall F1 score 
Support vector 85 0.91 0.85 0.85 

Decision Tree 67.50 0.67 0.675 0.64 
Random Forest 87 0.92 0.87 0.88 

 

Table 7: Classifier performance for features of y-axis acceleration data 

Acceleration: y-axis - Features 
Classifiers Accuracy (%) Precision Recall F1 score 

Support vector 75 0.71 0.75 0.75 

Decision Tree 65 0.73 0.65 0.63 

Random Forest 80 0.82 0.8 0.81 

 

 

 

 



Table 8: Classifier performance for features of z-axis acceleration data 

Acceleration: z-axis - Features 

Classifiers Accuracy (%) Precision Recall F1 score 
Support vector 85 0.88 0.85 0.84 

Decision Tree 67.50 0.74 0.67 0.68 
Random Forest 92.50 0.98 0.92 0.94 

 

Table 4-8 shows that the performance of classifiers was boosted when features 

were given as input instead of the raw data itself. This clearly suggests the 

importance of features in the classification of haptic data from scanning over 

texture surfaces. 

 

Figure 1: Feature plot of Random Forest    Figure 2: Feature plot of Random Forest 

on x, y, z axes (acceleration)       `on x-axis (acceleration)  

 

 

Figure 3: Feature plot of Random Forest   Figure 4: Feature plot of Random Forest  

 on y-axis (acceleration)      on z-axis (acceleration)  

 

 

 



 

Invariance in classification: 

The significance of features can be assessed with the help of classification 

accuracy decreased with the removal of a feature. The GINI importance or mean 

decrease in impurity is used to evaluate the feature importance in a classification 

process. This will give the feature with the decrease of which the classification 

performance will drop.  

From Figure 1, it can be observed that if the classification process drops the 

feature 11 (which is MFCC2, the 2nd coefficient in Mel frequency cepstrum), the 

accuracy of the classifier also drops. In other words, the feature 11 has the 

highest feature importance and helps in the classification of acceleration signals 

obtained from textures. This can be observed in every case of classifications as 

seen in Figures 1-4.  

Table 9 shows how the absence of a feature (which is MFCC2) drastically reduces 

the performance of random forest classifiers from 97.50% to 67.50%. Figure 5 

suggests that the MFCCs were sufficient for the classification of texture signals as 

the classifier gave a good performance even after other audio-domain features 

like pitch, energy were removed. Table 9 also suggests the possible removal of 

MFCCs. 

In the end, better performing classifiers portray better feature importance plots. 

It is safer to say that there is a constant feature which is assisting in the 

discrimination of different texture surfaces. This is the invariant which 

consistently helps in the classification of haptic data.  

 

Figure 5: Feature plot of Random Forest on 3 axes 

 (acceleration) with all 13 MFCCs   



   

 

Figure 6: Feature plot of Random Forest on 3 axes  Figure 7: Feature plot of Random forest on 3 

axes(acceleration with MFCC-2 dropped   axes(acceleration) with no MFCCs 

 

Table 9: Classifier performance for different feature set of 3-axis acceleration 

data 

Classifiers Feature set Accuracy (%) Precision Recall F1 score 

Random Forest MFCC 1-13 97.50 0.98 0.97 0.97 
Random Forest MFCC2 dropped 84.50 0.87 0.83 0.83 
Random Forest Without MFCCs 77.50 0.88 0.77 0.78 

 

Table 10: Full form of feature set in table 5 and 6 
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Table 11: Full form of feature set in table 7 
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However, this invariance might be limited to this category of haptic data. That is, 

texture surfaces can possess Mel frequency cepstral coefficient 2 as the most 

important feature of discrimination and other MFCCs to support the classification 

process for an appreciable performance. 

Shortcomings of the dataset:  

The dataset selected for the classification is from the LMT database which was 

recorded by scanning over the texture surface. This is not sufficient enough to 

train a classifier if a prediction model has to be developed in future. The 

classification model needs to see a larger number of training data with many trials 

for a single texture surface. Hence, the next step will be to record texture surface 

information (acceleration signals) with different texture surfaces and a larger 

number of trials on a single texture surface. This data collection process is already 

in progress and is developed along with another ESR Alexis Devillard from 

Imperial College London. The data collection will include videos of texture 

surfaces with varying illumination, acceleration data and audio in later stages if 

useful for further processing.  

Further investigation: 

The Machine learning classifiers performed well for the classification of haptic 

data and give a feature which efficiently classifies acceleration signals. However, 

this remains to be verified and cross-checked with another method. Currently, I 

am working on autoencoders. Raw data fed into autoencoders will be able to 

generate encoded data. When feature extraction is applied over encoded data 

and original data for comparison, the invariancy/constancy in the dataset appears 

during this comparison. The encoded and original features are comparable and 

share similar features which indicates the preservation of constant characteristics 

before and after encoding.  
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