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Summary 
 
The ESR’s contribution to the INTUITIVE project is to carry out an architectural study of time-
based sensor readout in CMOS for the INTUITIVE e-skin application, followed by integrated circuit 
design and layout of a low-power time-based sensor interface in CMOS. In the first reporting 
period, an extensive literature review of suitable sensor readout architectures for electronic skin 
has been conducted. Considering the dense sensor array envisioned for electronic skin, event-
driven sensor conversion techniques with some form of sampling rate reduction have been 
investigated, as they would translate in a reduction of the power consumption of the overall 
system. Furthermore, a taxel-wise readout array eliminates the need for both fast polling and 
sampling rates on an otherwise multiplexed ADC. By applying event-driven neuromorphic 
conversion, sensor data are sampled, quantized and transmitted at a sub-Nyquist rate while 
preserving the temporal information content. It is therefore no surprise that biological skin, with 
millions of years of evolution and confined to spend the least amount of energy possible, in fact 
has come to implement a similar event-driven conversion of tactile input. By mimicking how 
biology converts and processes tactile information into a hardware-efficient and power-efficient 
implementation, the derived sensor readout is estimated to consume orders of magnitude lower 
power consumption than the current state of the art of electronic skin, while maintaining 
sufficient fidelity in its sensor value encoding. In the second reporting period, the full circuit-level 
design and layout of the event-driven taxel readout circuit has been completed, as will be 
reported below. 

  



1. Existing electronic skin readout solutions 
 
The research into electronic skins so far has focused mainly on developing the tactile sensors able 
to transduce normal force [1-2], shear [3-4], among many parameters. The development of 
tactile sensors is not trivial for many reasons. One reason is, in contrast to existing biological-
inspired sensors such as artificial retinas [5] and cochleae [6], artificial skins need to interact with 
the environment it is sensing, thus making it prone to wear and tear. Secondly, current fabrication 
processes that allow sensors to have skin-like properties, such as force transduction, flexibility, 
and viscoelasticity, limit the spatial resolution achievable on the sensors. Therefore, the 
implementation of skin sensor readouts has mainly been relegated to using custom off-the-shelf 
centralized electronics with overdesigned precision and speed [1,7-8]. While this allows for quick 
measurements and characterizations of skin sensors in existing designs, the readout circuits 
suffer from large area and power consumption. Although this may be sufficient for existing skin 
sensor designs with <100 sensors and coarse spatial resolution, this becomes an issue for 
emerging large-area electronic skin with fine spatial resolution and 2-3 orders magnitude more 
sensors, as targeted in INTUITIVE. 
 
 

 
Fig.1. State-of-the-art electronic skin readout solutions can be classified in two major categories: 

(a) synchronous frame generation using a central ADC and further digital processing, and (b) 
asynchronous spike generation in software followed by a spiking neural network. 

 
 
To satisfy the fast sensor array scan rate (1-10 kHz) required to detect fine spatiotemporal tactile 
stimuli [7], skin sensors in an array are polled sequentially one by one [1,8], or column-based [7]. 
As shown in Fig. 1(a), the analog sensor output is then multiplexed into a central ADC for 
conversion, producing synchronous frames of tactile information that are periodically sent for 
processing.  
 
The periodic high rate of sensing and transmission of tactile frames despite possibly sparse tactile 
stimuli is power-inefficient. Furthermore, increasing the sensor count for future large-scale 
electronic skins result in increasingly faster sensor polling rates to satisfy the scan rate required. 
Similar to the insights developed from early implementations of artificial retinas, event-based 



sensing of sparse visual input leads to power-efficient readout electronics that scale well with the 
rising sensor count. Having individual pixels respond independently to the visual stimuli, the 
effective sensing and data transmission rate scales well with the information rate of the visual 
stimuli. 
 
The advent of using machine learning (ML) techniques in computation offers energy reduction 
over conventional digital processing [9]. Convolutional neural networks (CNN) deployed in event 
vision [10], through training, classify visual stimuli with good accuracy despite the sensors having 
large nonlinearity and mismatch. Spiking neural networks (SNN), while being a relatively newer 
development, are now slowly becoming at par with CNN classification performance [10]. SNNs 
are expected to be more power-efficient due to their sparse and asynchronous activity, scaling 
well with the sparsity of the input [11]. Similar to biological neural networks, SNNs use 
asynchronous spikes as inputs instead of synchronous frames. A sensor-to-spike encoder is 
therefore highly compatible as input to SNNs, while also being power-efficient in its sensing due 
to its event-driven nature.  
 
Existing spike encoders (see Fig. 1(b)) are mostly implemented in software by post-processing 
uniform rate-quantized sensor values into spikes. Thus, real-time spike conversion of sensor 
values from a dense array today is hardware-inefficient -- relying on a single ADC with 
overdesigned precision, sequentially polling sensor values at a high rate. Therefore, while the 
resulting spike rate is low (10-100 Hz), the ADC sampling rate is still high (1-100 kHz), despite 
having sparse tactile stimuli as input. The sensor readout developed and proposed in the 
INTUITIVE project implements sensor-to-spike encoding directly and efficiently in hardware, 
eliminating the required software processing and the unnecessarily high input sampling rate.  
 
 

2. Proposed event-driven e-skin readout architecture 
 

 
 

Fig.2. Proposed event-driven sensor readout architecture with spatial compression. 

 
The proposed sensor readout (Fig. 2) mimics biology in both its sensor conversion and data 
processing. In mammalian skins, touch is communicated to the nervous system and eventually to 
the brain by way of asynchronous spikes – pulse trains with temporal patterns that code the input 
sensor signal. The brain then processes incoming spikes through a power-efficient, asynchronous, 



and densely connected spiking neural network (SNN). State-of-the-art SNNs implemented on chip 
(in other applications) have been demonstrated to perform computation at orders of magnitude 
lower power consumption [9] than conventional digital processing. Thus, in the proposed sensor 
readout, continuous-time tactile sensor values are encoded into asynchronous, discrete-time 
spikes that are then transmitted to a spiking neural network for tactile stimulus classification. 
Furthermore, taxel-based event-driven readout converts information only from sensors whose 
values have changed. This reduces the sensing and transmission rates for sparse stimuli, while 
maintaining a high sampling rate capability during fast-changing inputs.  
 
A POSFET-based piezoelectric force sensor array is chosen as taxel sensor because of its sub-
millimeter spatial resolution [1] and its compatibility as an integration step with standard CMOS 
wafers. This production can be done at wafer level by the group of Prof. Leandro Lorenzelli at the 
Fondazione Bruno Kessler (FBK) in the INTUITIVE project. Current sensor fabrication techniques, 
bound by the distance between two neighboring piezo sensors, sets the minimum possible taxel 

area to 200 m x 200 m, as shown in Fig. 3. Assuming a 2 mm x 2 mm sensing area, this translates 
to 100 sensors in total. While the sensor density is only half that of human fingertips and 10 times 
that of palms, the density would still be the highest reported in literature.  
 

 
Fig.3. A 2x2 subset of the sensor array highlighting the taxel dimensions and spacing. 

 
 
The individual readout channel must have a very low area and needs to be smaller than the taxel.  
However, since the readout output is processed through an SNN and is not reconstructed post 
spike conversion for conventional digital processing, the required sensor encoding precision is 
reduced. This allows for using simpler sensor readout circuits with reduced area and power 
consumption. 
 
By mimicking biological skins, the proposed sensor readout is capable of both temporal and 
spatial compression. Temporal compression provides sub-Nyquist sampling and reduced data 
transmission rates due to its event-driven nature. Spike encoders implemented fully in hardware 



are inherently event driven. At the same time, spatial compression is achieved by mimicking the 
skin’s complex receptive fields (CRFs). Random spatial sampling and compression of multiple 
sensor inputs to a single spike train result in a reduced overall data transmission rate and 
increased robustness to wear and tear. This will now be explained in more detail. 
 

2.1. Temporal compression 
 
Spike encoders such as in [5] offer temporal compression of sensor information, where - instead 
of in Nyquist-rate conversion - the sensor value is only converted during level crossings (i.e. 
information rate conversion). 
 
Typical hardware-implemented spike encoders such as the one used in artificial retina [5] 
generate either a bipolar spike (ON or OFF) if the change in the sensor value exceeds a certain 
threshold. Other spike encoders use a similar approach but differ on how the threshold is 
generated, either tracked through a moving baseline following the previous level crossing [12-
13] or a baseline generated from average values of past inputs with a certain moving time 
window [12].  
 
In [14], a unipolar spike encoder based on the Simplified Response Model (SRM) [15] of a neuron 
is conceptualized. In the SRM interpretation of neuronal encoding, the neuron is modelled as a 
series of linear filters with feedback. As shown in Fig. 4, this resembles a level-crossing data 
converter with the threshold derived from the low-pass-filtered output spikes. Instead of a 
constant threshold in-between level crossing, the threshold is an exponentially decaying value 
mimicking the neuron’s refractory response and spike-induced membrane voltage change [16]. 
As far as we know, this proposed spike encoder has not yet been implemented and validated 
experimentally on-chip. It will therefore be designed and implemented as part of the INTUITIVE 
project activities. 
 
 

 
Fig.4. Simplified Response Model (SRM) interpretation of the neuron firing for e-skin implementation. 

 



 
 
2.2. Spatial compression  
 

 
Fig.5. Mimicking the complex receptive fields (CRFs) (a) in the sensor readout using heminodes (b). 

 
The biological skin offers a form of spatial compression of sensor information through complex 
receptive fields (CRFs), as shown in Fig. 5(a). CRFs are formed by random innervation of multiple 
mechanoreceptors by a single afferent [17-18], therefore multiple sensor information is 
compressed into a single spike train. It has been theorized that the CRFs allow for first order 
encoding of tactile stimulus [17], that is, spike trains generated by first-order neurons already 
reflect the tactile stimulus information such that the spike trains allow sufficient discriminability 
across different stimuli. 
 
In this work, CRFs are mimicked by implementing heminodes, as shown in Fig 5(b). In biological 
skins, heminodes are areas of sensor value aggregation and spike generation [19]. Since the 
POSFET output value is a current, addition of multiple sensor values is done by routing individual 
POSFET currents to the heminode input current mirror by way of configurable switches. 

 

  



3. Circuit implementation of the event-driven taxel readout 
 

3.1. Taxel-to-spike conversion circuit 
 

 

 
Fig.6. Taxel to spike readout circuit. 

 
 
Once the readout architecture defined, as described above, the circuit implementation has been 
started as part of the INTUITIVE project. This work has resulted in a prototype chip 
implementation for feasibility demonstration. In our work, a neuron-like spike encoder with 
exponentially decaying threshold is being explored. The spike encoder is based on the SRM-based 
model of neuronal encoding. As shown in Fig. 6, through negative feedback, the difference 
between the input and the effective threshold is quantized by a comparator, producing an 
impulse output that mimics spikes. Since an output spike is only generated when the input and 
the effective threshold is within a certain fixed value, the spike encoder is event-driven, and level-
crossing based [20]. The effective threshold can be seen as a low-pass-filtered version of the 
output spike train. 
 
As mentioned, nature’s way of encoding environmental stimuli has been refined and optimized 
through evolution to maintain sufficient encoding fidelity while consuming the lowest energy 
possible. As such, we see that analogy-to-digital conversion techniques developed without 
biomimicry in mind are, in fact, already prevalent in nature. For instance, the exponentially 
decaying reconstruction filter output can be thought of as a dither-adding mechanism similar to 
[21], increasing the sampling rate for slowly varying signals. In addition, the decaying filter can 
be thought of as a neuron-like equivalent of adaptive level crossing [22] where the threshold 
starts out large and then progressively decreases. 



 
3.1.1. Current-based operation 
 
The sensor readout uses current-based operation to do the sensor transduction, the current 
subtraction in the negative feedback, and consequently, the level-crossing detection. One reason 
is because the POSFET sensor used in the taxels translates force transduction into a voltage 
output across the piezoelectric layer [1]. This piezoelectric layer usually requires a high input 
impedance interface which is typically implemented using a single MOS transistor. Therefore, 
assuming a small voltage swing at the gate input of the MOS transistor, an equivalent output 
current swing is then provided. Current subtraction to implement the negative feedback is then 
easily done through current mirrors. Another reason is because the reconstruction filter, when 
implemented with a current output, requires simple circuits with low bias currents. Furthermore, 
the addition of multiple sensor outputs in implementing the CRFs is easily done by way of current 
mirrors. The routing of currents on-chip is less sensitive to the parasitic resistance in the metal 
wirings, allowing for long routing traces as required for flexibility in the CRF configurations. 
 
3.1.2. Reconstruction filter 
 
In actual biological neurons, the reconstruction waveform or the effective threshold for spiking 
is often modelled as the sum of both the dynamic threshold and the spike after-potential 
[Gerstner]. Both the dynamic threshold and the spike after-potentials are modelled with multiple 
exponentially decaying kernels with different time constants, ranging from tens to hundreds of 
milliseconds [16]. For small area, the reconstruction filter in the proposed readout has only one 
exponentially decaying time constant. 
 
 

 
 

Fig.7. Generation of the effective threshold current through a subthreshold PMOS transistor. 

 



Similar to silicon neurons [23], the exponentially decaying kernel seen in membrane filters is 
implemented with log-domain subthreshold circuits. One reason is that the small subthreshold 
currents yield biologically plausible time constants without using very large capacitors. Secondly, 
the exponential dependence of the transistor current on the gate-source voltage allows easy 
multiplication and division of currents, which is important to establish an additive increase on 
the reconstruction filter output during output spikes. 
 
As shown in Fig. 7, the effective threshold current is generated by a reconstruction filter through 
a subthreshold PMOS transistor. Due to the exponential dependence of the PMOS output current 
on the gate overdrive, a simple linearly varying gate voltage would provide an exponentially 
decaying output current. This is implemented by injecting a DC current into a capacitor (pushing 
the gate voltage closer to the supply). The additive increase on the threshold during an output 
spike is implemented by discharging the capacitor (pushing the gate voltage closer to GND) with 
an impulse current, or practically, a pulse current with a very small pulse width. The consequent 
decrease on the capacitor voltage is proportional to both the current magnitude and the pulse 
width. To make sure that the consequent jumps on the output current are additive in nature, the 
pulse current Ipulse is scaled by the output current IX. 
 
The POSFET output current minus the reconstruction filter output is then compared with a fixed 
threshold using a simple 2-transistor current comparator (see Fig. 6) like the pixel circuits in event 
cameras [5]. 
 
 

3.2. Heminode circuit and routing 
 
As shown in Fig. 8, CRFs are implemented on-chip by way of heminodes. The combination of 
multiple sensor values is possible by routing the currents to either a heminode or a local taxel 
circuit. This is done by way of digitally configurable analog multiplexers. Heminodes consist of 
the same circuits as seen in a taxel circuit (Fig. 6) but they experience a larger signal swing.  
 
Flexibility in the heminode configuration will be implemented in the prototype chip 
implementation using a digitally controlled switching network (see Fig. 8). 
 



 
 

Fig. 8. Heminode configuration and routing. 
 
 
 

4. Chip prototype 
 
The design and layout of the prototype chip implementation has been completed for tapeout in 

March 2022. The chip is set to be fabricated in a 0.18-m TSMC CMOS process. Since wafers are 
required for sensor deposition, wafers rather than individual dies had to be ordered. Delivery of 
the wafers is expected sometime between June to August 2022. The wafers will then be sent for 
sensor deposition at Fondazione Bruno Kessler (FBK) and chip thinning at the University of 
Glasgow (UoG). Electrical testing and characterization of the chip is then planned afterwards in 
the IC measurement facilities at KU Leuven. Mechanical e-skin testing is planned to be conducted 
at different sites, including KU Leuven, FBK, and UoG. 
 
As planned, the readout is a taxel-wise, event-based sensing system with spikes as outputs. The 
spikes are to be read and processed by a spiking neural network. The readout achieves a state-

of-the-art density of 200-m sensing spatial resolution enabled by a) dense piezoelectric sensor 
array deposition compatible with CMOS technology, and b) area-efficient taxel circuits. 
 
 



 
 

Fig. 9. Chip prototype 
 
 

The chip prototype, shown in Fig. 9, contains a taxel-wise readout of 12x16 piezoelectric sensors. 
The output spikes of the sensors are read asynchronously by a digital interface, called Address 
Event Representation (AER). The spikes, encoded into an equivalent 8-bit address (4-bit row and 
4-bit column addresses) are then transmitted off-chip. Since the interface from the sensor to the 
receiver is asynchronous, request (REQ) and acknowledge (ACK) handshaking is used. By using an 
AER interface, the chip is compatible with existing spiking neural net (SNN) hardware for 
classification of the taxel input. 
 
As shown in Fig. 8 above, spatial compression similar to the heminode function is possible by 
allowing programmability of the sensor to neuron connections. Such connection can be 
programmed through the digitally configurable registers indicated in Fig. 9. The registers are then 
used to control the analog multiplexers that connect the sensor to the neurons. 
 
A PTAT temperature sensor is also included on-chip to add extra information about the tactile 
stimulus to be classified. Programmable bias generators are also included on-chip, allowing for a 
fine control of the spike encoding parameters on the prototype. 
 
In the next reporting period, the measurement setup will be prepared, and the fabricated and 
postprocessed chip samples will be measured, both electrically and in terms of e-skin 
performance. 
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