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Ubersicht

Ziel dieser Arbeit war die Entwicklung eines schwellwertbasierten Algorithmus zur Verarbeitung
von histopathologischen Schnitten periimplantärer Membranen explantierter Kunstgelenke. Die
zur Verfügung gestellten Bilder beinhalteten sowohl Polyethylenpartikel (Abriebpartikel) als auch
CD3-positive Lymphozyten. CD3-positiven Lymphozyten waren als kleine, vorwiegend runde,
braune Bereiche erkennbar. Polyethylenpartikel kamen in verschiedenen Größen vor und waren
sichtbar als Aufhellungen im Bild. Mikropartikuläres Polyethylen hat einen Durchmesser kleiner
als 5µm und supramakropartikuläres Polyethylen Druchmesser größer als 100 µm mit einem
Maximalwert von etwa 2200µm. Macropartikuläres Polyethylen befindet sich von der Größe
zwischen diesen. Insgesamt sind 100 RGB-Bilder, die anlässlich von 52 Revisionsoperationen auf
Grund einer diagnostizierten aseptischen Lockerung des Knie- bzw Huftgelenks gewonnen worden
sind, zur Verfügung gestellt worden. Auf Grund der Schwankungen der Farbwerte und Intensitäten
sowohl zwischen verschiedenen und innerhalb einzelner Bildern, wurden zuerst mit Hilfe von
Normalisierungsverfahren (Macenko- und Reinhardnormalisierung) die Farb- und Intensitätswerte
der Polyethylenepartikel, bzw. der CD3-positiven Lymphozyten angepasst. Mit weiteren Verfahren
und einer abschließenden Blobdetektion konnten verschiedene Merkmale, welche anschließend
zur Klassfizierung der Polyethylenpartikel und der CD3-positiven Lymphozyten genutzt wurden,
extrahiert werden. Die CD3-positiven Lymphozyten wurden in die drei Klassen wenig, moderat
und hoch eingeteilt. Die makro-und supramakropolyethylen Partikel wurden gezählt und das
mikropartikuläre Polyethylen wurde in die drei Klassen wenig, moderat und hoch eingeteilt. Für
die Klassifikation wurden die drei Klassifikationsmethoden Naive Bayes, Random Forest und
Support Vector Machine genutzt. Zusätzlich wurde eine Abstandsmessung zur Bestimmung der
benachbarten CD3-positiven Zellen zu den makro-und supramakropartikulären Polyethylene, bzw.
zu den mikropartikulären Polyethylen, vorgenommen. Es wurde geklärt in wie weit die Größe der
Polyethylenpartikel einen Einfluss auf die Immunantwort hat. Als Entwicklungsumgebung wurde
PyCharm der Firma JetBrains für die Programmiersprache Python 3 genutzt.
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Abstract

Aim of this thesis was the development of an threshold-based algorithm for the segmentation of
histological slice images. The provided images contained a CD3-positive immune/inflammatory
response, which was visible as small, mostly circular, brown dots and polyethylene (PE) particles
(abrasion particles), visible as bright regions in different sizes. Micro-polyethylene (MPE)
particles have a length smaller than 5µm, macro-polyethylene (MacroPE) a size between 5µm
and 100µm and supramacro-polyethylene (SMPE) particles a length greater than 100µm and
a maximal size of 2200µm. Therefore, 100 RGB images of stain colored human tissue, which
were obtained during 52 revision surgeries on the basis of a diagnosed aseptic loosening of the
knee or hip joint, were provided. Due to the occurring varieties in color and intensity values of
the available images, stain normalization was necessary. The methods proposed by Reinhard
et al. and Macenko et al. yielded good results. With further preprocessing methods and a final
blob detection, it was possible to find the locations, numbers, areas, etc. of the CD3-positive
immune/inflammatory response and the polyethylene particles. In a next step, the CD3-positive
cells were classified into the three classes, low, moderate and high immune/inflammatory response.
The SMPE and MacroPE particles were grouped together and counted and the MPE particles were
classified into low, moderate and high. Therefore, the three supervised classification methods
naive Bayes (NB), random forest (RF) and support vector machine (SVM) were used. In addition
to the classification, a distance measure for counting the adjacent CD3-positive cells with a
maximal distance of 5µm around the MacroPE/SMPE particles and the MPE particles, were
implemented. It was clarified in how far a connection between the number of the MPE and the
occurring strength of the CD3-positive immune/inflammatory response exists. As development
environment, PyCharm from JetBrains was used for the programming language Python 3.
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Chapter 1

Introduction

In Germany, arthroplasty, especially hip and knee endoprothesis, is one of the most successful
surgical procedures. Nevertheless the lifespan of implants is limited, mostly caused by aseptic
loosening. Material abrasion seems to be an important factor of the loosening process [Hop17]. It
can impose the formation of a synovial-like interface membrane (SLIM) between the implant and
the bone and therefore result in a loosening of the implant [Hop16]. Different abrasion materials,
dependent on the used material of the sliding pair of the endoprothesis, can be found in the SLIM.
It has to be determined, how far the different sizes of polyethylene particles have an influence
on the immune response and the loosening process. Because of the high time effort for medical
experts to count every abrasion particle and CD3-positive cell manually and the associated error
susceptibility, aim of this thesis is to detect the abrasion particles, in this case the polyethylene
particles of different sizes, and the associated CD3-positive immune/inflammatory response with
a semi-automatic threshold-based algorithm.
The thesis is structured as follows:
Chapter 2 focused on the the theoretical background. First, in the medical part, the different
polyethylene particles and the CD3-positive immune/inflammatory response are introduced in
detail. After that, the technical background, i.e. the used image processing and classification
methods, is explained. In chapter 3 the theory about the used materials and methods is explained
on the basis of suitable images. Additionally, a graphical user interface (GUI) was designed
and implemented for loading single images and returning the number of CD3-positive cells, the
number of MPE and MacroPE/SMPE particles as well as the number of CD3-positive cells with a
maximal distance of 5µm around the MacroPE/SMPE particles, respectively the MPE particles,
in the image. In chapter 4 the results are shown and discussed. Last but not least, a conclusion
containing a outlook followed by a summary will be complete the work.
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Chapter 2

Related Work

In 2015, a quantifier for a similar problem, the detection of CD15-cells, has already been developed
by the company VmScope Berlin GmbH [Köl15]. A straightforward modification of this CD15-
Quantifier to a CD3-Quantifier for detecting CD3-positive cells failed. In average, only one in
four CD3-positive cells was detected. In cases of images with a low number of CD3-positive cells,
the predicted number of cells was still acceptable, but in cases of a higher number of CD3-positive
cells and corresponding cell clusters, the algorithm failed completely, as closely adjacent cells
were often summarized to one. One year later, the company VmScope developed a new algorithm
for a CD3-Quantifier with much better results in counting the number of CD3-positive cells.
Nevertheless, there were great deviations, caused by the closely adjacent cells, which were still
summarized to one cell [Hop16]. In Figure 2.1, the result of the CD3-Quantifier is shown. The
purple lines show the problematic results for cell clusters.
General since 2014, the four normalization algorithms: Reinhard et al., Macenko et al., Khan

Figure 2.1: CD13-Quantifier for a histopathological slice image [Hop16]

et al. and a histogram specification, are part of the stain normalization toolbox of Warwick
for the segmentation of eosin and hematoxylin (H&E) colored histology images [ToW15]. The
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normalization method of Macenko et al. [Mac09] was presented in 2009 for the normalization
of color and intensity variations of H&E stained slides of melanomas and nevi. Reinhard et al.
[Rei01] presented already in 2001 a normalization method, which was originally for the processing
of landscape photos. Khan et al. [Kha14] presents in 2014 a robust nonlinear mapping approach
for the normalization of histopathology images. Additional to the normalization methods the stain
normalization toolbox by Warwick contains a color deconvolution (CD) method, in which the
RGB images are separated into three channels, corresponding to the stain concentrations. Already
in 2001 a CD framework was represented by Ruifrok and Johnston [Rui01] for histopathology
image analysis. The method was used in many applications, for example the quantification of
immunohistochemical stains [Kha14].



Chapter 3

Medical Background

Material abrasion is suspected to be an important aspect for the loosening process [Hop17].
Thereby the abrasion particles promote the formation of a synovial-like-interface-membrane
(SLIM) between bone and endoprostheses. After removing the endoprosthesis of the human body
the SLIM can be prepared by immunohistochemistry. Thereby the histopathological classification
and typing of the synovialis is performed according to the particle algorithm (see Figure 3.2)
and the SLIM consensus classification (see Figure 3.1) [Hop16]. According to the consensus

Figure 3.1: SLIM consensus classification of joint prosthesis pathology [Hop17]

classification the mebrane can be divided into four types [Kre16]:

• type I = particle-induced type

• type II = infectious type

• Type III = combined type

5
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• Type IV = indifferent type

Figure 3.2: Particle algorithm [Kre16]

For this purpose, amongst other things, the concentration of the CD 3-positive immune/inflamatory
response and the abrasion particles are determined [Hop16].

3.0.1 Arthroplasty

The implantation of a knee and hip joint endoprosthesis has long been a routine intervention. They
are considered as therapy of choice as soon as the joint structure fails. In Germany, 15.7 million
endoprostheses were produced in 2012. Since 2009, this number is nearly constant (see Figure 3.3).
Permanently, new materials are developed and old materials are improved. About 200 companies
are responsible for this considerable development [Hop16]. In Figure 3.4, two exemplary artificial
endoprostheses are shown, on the left side a hip endoprosthesis with a metal-polyethylene sliding
pairing and on the right side a knee endoprosthesis. In general, different material combinations
for the sliding pairing are possible and must be weighed for each individual patient. In Figure 3.5,
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Figure 3.3: Number of hip and knee implants in Germany [Lie16]

four of those combinations are shown. For the patient, artificial endoprosthesis offers a large gain
in lost quality of life, as pain is reduced and lost mobility is restored. Often, sporting activities
can be exercised again. Unfortunately, the life expectancy of endoprotheses is limited. After
10 years, approximately 5 percent of the patients already have primary complaints, they are no
longer without pain. The cause of failure of an endoprosthesis can be multifactorial. The main
unsolved problem is the loosening of the implant from the bone [Mül15]. Basically, there are two
pathological mechanisms, which are responsible for the loosening of endoprostheses [Hop16].

Septic loosening

In the septic case, loosening is caused by early or late infections. Bacteria nest on the surface of
the endoprosthesis and the body’s defensive reaction leads to bone loss [Hop16].

Aseptic loosening

Aseptic loosening is significantly more frequent, spanning about 80 percent of the cases. At
the beginning, there is a solid connection between endoprothesis and bone, but after some time,
the bone is increasingly replaced by a loosening or periprosthetic membrane (see Figure 3.6).
This process of micro-movement causes strong pain for the patient [Hop16]. The process of
loosening can not be undone. The endoprosthesis must be removed and replaced in a surgical
procedure. After the removal of the endoprosthesis, the loosening membrane can be used for
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Figure 3.4: Left: Hip endoprosthesis with Me-PE sliding pairing; Right: Artificial knee endopros-
thesist [Hop16]

Figure 3.5: Different material combinitions for the sliding pair, from left to right: 1. metall-metall,
2. ceramics-ceramics, 3. ceramics-polyethylene, 4.metall-polyethylene [Hop16]

histopathological examination in order to clarify the cause. It is under discussion, whether a
major cause of this membrane formation is a lymphocytic reaction to abrasion particles [Hop16]
[Hop17]. Due to the size of the particles, removal of these particles via the lymphatic system is
only possible in small quantities. As a result, there are accumulations in the periprothetic soft
tissues of theses particles, which lead to a foreign body reaction. Especially T-lymphocytes are of
great importance. By characteristic marker proteins, in this case CD3-positive, it is possible to
make the cells immunohistochemistically visible [Hop16].

3.0.2 CD3-positive immune/inflammatory response

CD3 protein complexes are located on the cell surfaces of the T-lymphocytes and are generally
composed of four polypeptide chains. Phospholipidation of the CD3 complex leads to the
activation of the T-lymphocytes, provoking the CD3-positive immune/inflammatory response
[Hop16]. In Figure 3.7 the CD3-positive immune/inflammatory response is represented by the
small dark circular dots. In the context of my work, the immune/inflammatory response should
always be classified into the shown three classes, low, moderate and high.
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Figure 3.6: Aseptic loosening of a hip endoprostheses; Formation of a SLIM (blue arrow)
[Hop16]

3.0.3 Polyethylene particles

Polyethylene is mainly used for packaging and is the world’s most important thermoplastic. In
endoprothetics two different kinds of thermoplasts are used: The particularly high molecular PE
and a lower particular PE.
To get the characteristic high level of particles the molecular chains are cross-linked by radioactive
irradiation. Depending on the degree of cross-linking, different particle forms are available.
The major difference of this two kinds of PE in the endoprothesis lies in the corresponding
abrasion partciles, which are e.g. caused by mechanical friction or impact. Higher crosslinked PE

Figure 3.7: Histological images with a low, moderate and high CD3-positive immune/inflammatory
response (from left to right)
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leads mainly to small PE abrasion partciles, the majority of non-crosslinked PE are taller sized PE
particles [Hop16].
PE abrasion particles can be be separated into micro-polyethylene (MPE), macro-polyethylene
(MacroPE) and supra-macro-polyethylene (SMPE) [Kre16] with the size:

• MPE: < 5µm

• MacroPE: > 5µm up to 100µm

• SMPE: > 100µm up to 2200µm

Due to the polarization-optical properties, PE abrasian partciles are visble as white regions in the
histological images [Hop16]. In Figure 3.8 these three different kinds of PE are shown. On the

Figure 3.8: Histological image with SMPE (yellow arrow), MacroPE (red arrow) and MPE (blue
arrow)

context of this thesis SMPE and MacroPE are grouped together and distringuished from MPE,
which is divided into three classes: low, moderate and high immune/inflammatory response.

3.0.4 Processing of the tissue

A total of 100 preparations from 52 patients were used for this work. In all cases, aseptic loosen-
ing led to the removal of the implanted endoprotheses. A main condition was that no bacterial
infection is present. This was proven hisopathologically and microbiologically.
The tissue was taken during the revision surgery of the loosened endoprostheses of the synovi-
alis/SLIM. Then the tissue was sliced to a maximal thickness of 0.5 cm and buffered in formalin.
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With different color reactions and techniques, it was possible to provoke the CD3-positive im-
mune/inflammatory response and to visualize the polyethylene particles. On the one hand the
CD3-positive lymphocytes were displayed immunohistochemically. Thereby solid-colored an-
tobodies make certain cellular structures visible. The immunohistochemical presentation of
CD3 lymphocytes was done by a fully automatic staining system. Hematoxilyn was used for
counter-staining, according to Harris [Hop16], resulting in a characteristic blue color. On the
other hand, light microscopic morphological characteristics, polarizised optical properties and
enzymohistochemical characteristics in the oil red coloring and the Berliner-Blau reaction were
used for the detection of the PE particeles [Hop16] [Kre16].
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Chapter 4

Material and Methods

In the following chapter, the available materials and the theory behind the used methods will
be explained. For a better understanding, the methods will be applied on four different images
with varying color and intensity. Additionally, a brief overview on the designed and implemented
graphical user interface (GUI) for the medical team is finally given.

4.1 Material

100 images of a total of 100 prepared and colored tissue samples of 52 patients were available
for this work. A main condition was that no bacterial infection is present. This was proven
hisopathologically and microbiologically.
The 100 RGB images had a fix width of 594µm, corresponding to 2048 pixels. The most images
have a height of 1536 pixels, in some cases a smaller height was available. Some of the images
were available in ’JPEG’ format, while the most images were available in ’PNG’.
For all images the strength of the CD3-positive immune/inflammatory response, the number of
MacroPE/SMPE particles and the class of the MPE particles were available as reference. They
were labeled by a medical expert.
For training and testing, the images were separated into three groups: 60 images and a separate
set of 20 images were used for classifier training, while 20 images were used for evaluation.
As development environment, PyCharm from JetBrains was used for the programming language
Python 3. The calculations were carried out on a MacBook Air OS X Yosemite Version 10.10.5
with a 1.4 GHz Intel Core i5.

13
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4.2 Preproccessing Methods

All steps of the pattern recognition pipeline (see Figure 4.1) are necessary for the segmentation of
the histology slices. In the preproccessing step, the images were prepared in a way that information
about the PE particles and the CD3-positive cells is extracted (see Figure 4.2). In the following

yClassificationFeature ExtractionPreproccessing

Training Samples Learning

input

Figure 4.1: Pattern recognition pipeline for simple patterns [Pau98]

Feature 2

Feature 3

Feature 4

Feature 5

Feature 1

Preproccessing

Figure 4.2: Preprocessing

subsections the preproccessing methods for containing the features of the CD3-positive cells and
PE particles are presented.
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4.2.1 Normalization

Color variation in tissue appearance caused by the staining of the histological images is a major
problem for the computerized segmentation. It is not possible to choose a single threshold, which
yields good results for the segmentation of all occurring stains within but also in between the
images. Reasons for color variations are manifold. They are mostly caused by inconsistencies
in the preparation, for example due to variations in cut thickness or the concentrations of the
chemicals used for staining [Kha14]. In Figure 4.3 four exemples from the 100 received images
are displayed. Although they have been colored and prepared equally, the images contain a
high variation in color and brightness. To solve this problem, it is necessary to standardize the
histological slides. In literature, different approaches for the standard H&E staining of medical

Figure 4.3: Different histopatological images with a high variation in color and brightness

histological images can be found. Thereby hematoxylin results in a blue-purple hue and stains
colored by eosin are visible in a bright pink color. But the images received for this thesis were not
colored with the usual H&E staining, because eosin would lead to a worsening of the recognition
of the CD3-positve cells. Nevertheless, two normalization algorithms, Macenko [Mac09] and
Reinhard [Rei01] normalization, which were successful used for H&E stained images, were
evaluated and yielded good results. They will be described in detail in the following.

Macenko Normalization

This section handles the normalization method proposed by Macenko et al., which was used in
[Mac09] on H&E slides of melanomas and nevi. In the main normalization step, it maps the cal-
culated stain concentration matrix of the source image to the calculated stain concentration matrix
of a target image using a linear per-channel normalization method. In the stain normalization
toolbox of Warwick [ToW15], it is possible to choose different target images. In the scope of this
thesis, the same target images was set the whole set of data, as it was desirable to obtain data with
the same color and intensity.
In the following, each step of the Macenko normalization will be discussed. In case of a selectable
target images steps 1 to 5 must be also done for the target image.
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Figure 4.4: Macenko normalized histopatological images with a high color and intensity variation

• Step 1:

The RGB image is converted to optical density space (OD):

IOD = � log10(IRGB), (4.1)

where IRGB stands for the RGB color vector containing the three channels normalized to [0, 1]
and IOD for the resulting RGB image in OD space. The transformation to the OD space makes a
linear separation of colored stains (normally colored by the hematoxilyn and the eosin) possible.
As a result, a linear combination of stains leads to a linear combination of OD intensity values.

• Step 2:

The intensity values below a threshold � were set to 0, as they are assumed to have not been
colored by eosin or hematoxilyn and therefore do not contain a stain. According to Macenko et al.
� = 0.15 yields the most robust results.

• Step 3:

The stain separation matrix with columns corresponding to the stain vectors is calculated. The
two largest eigenvalues of IOD are determined using singular valued decomposition (SVD):

OD = V S (4.2)

S = V �1OD, (4.3)

Where V and S are the matrices of the stain vectors. Corresponding to the eigenvalues, a plane is
spanned in these directions. Now, the data is projected onto the plane and, after that, normalized
to unit length. Then the angle of each point to the first SVD direction is then calculated. The
resulting output are the optimal stain vectors in OD space.

• Step 4:
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The stain concentrations for each channel in OD space are separated from the above calculated
optimal stain vectors with the help of a color deconvolution (see more in Chapter 4.2.2 page 19)

• Step 5:

The robust extremes of the stain concentration for each channel are calculated with the use of the
99th percentile and the (100� ↵)th percentile of the vectorized stain concentration. Empirically
↵ = 1 leads to robust extremes, but because of noise a robust result can be only reached by
↵ = 0.99.

• Step 6:

The main linear per-channel normalization based on the above calculated pseudo-maximum
corresponding to ↵ takes place. The source image values are mapped to match the target image
values.

• Step 7:

In the last step, the RGB image is reconstructed. The output is the normalized RGB image
[Mac09] [Kha14]. In Figure 4.5, the chosen target image, which is part of the color stain toolbox

Figure 4.5: Chosen target image for Macenko Normalization [ToW15]

of Warwick, is shown. It contains the typical stain color concentrations for a H&E colored image.
As already mentioned above, in this thesis, only this target image was used for all images. In
Figure 4.4, the four different images from Figure 4.3 are normalized by Macenko et al. [Mac09].
There are less variations in color and brightness within the images. The CD3-positive cells are
visible as red dots, the PE particles are clearly visible as bright regions and the background is
colored more or less purple. Nevertheless a small variation in color and intensity persists. This
could be due to excessive noise (e.g. saturated pixels). Also the target image was provided by the
toolbox and not chosen for the aplication specifically, as no target images were available [Mac09]
[Kha14].
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Reinhard Normalization

In 2001 Reinhard et al. [Rei01] proposed a linear color correction method, where the standard
deviation and mean of the three channels of the original image are matched to the corresponding
channels of the target image. It is a simple and fast normalization algorithm, which was originally
used for landscape images. Before the main matching is done, both images are converted from
RGB to LAB colorspace [Rei01]. It has been already implied to digital histology images colored
with the typical H&E staining [Mag09]. In the toolbox of Warwick, it is possible to choose
different target images for the mapping. To minimize the computational effort, the means and
standard deviations of the used target image are only calculated once and then added to the
algorithm as fixed parameters. For calculating the parameters of the target image, step 1 and 2 had
to be carried out for the target image. In the following, each step of the Reinhard normalization
will be discussed:

• Step 1:

The RGB color space of the image is converted to Lab colorspace.

• Step 2:

The means and standard deviations of each channel of the image are calculated.

• Step 3:

The main normalization takes place. For each channel, the original color values are subtracted
from the means of the source image. After this, the calculated value is divided by the standard
deviation of the source image and multiplied with the standard deviation of the target image. At
last, the mean of the target image is added. In the equations (4.4), (4.5) and (4.6), the normalization
steps for the three channels of the Lab space are represented.

Lnorm =

Lsource � µL
source

�2
L
source

�2
L
target

+ µL
target

(4.4)

Anorm =

Asource � µA
source

�2
A

source

�2
A

target

+ µA
target

(4.5)

Bnorm =

Bsource � µB
source

�2
B

source

�2
B

target

+ µB
target

(4.6)
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Lnorm, Anorm and Bnorm are the normalized channels of the source image, Lsource, Asource and
Bsource are the channels of the orignal image in Lab color space, µL, µA and µB are the means of
the channels and �2

L, �2
A and �2

B are the standard deviations for the channels.

• Step 4:

The normalized image is converted back from Lab colorspace to RGB colorspace. In Figure 4.6,
the four images from Figure 4.3 are normalized with the help of this normalization method. The
differences in color and brightness have disappeared. The CD3-positive cells are clearly visible as
brown dots. The PE particles are colored bright, but also some areas of the background have a
bright color. Especially in the third image from right side, the background has big bright areas. In

Figure 4.6: Reinhard normalized histopatological images

Figure 4.7, the used target image for the Reinhard normalization is shown. This image was used
in [Mag09] for images of colorectal carcinoma stained with antibodies against CD34 [Kha14]
[Mag09] [Rei01].

Figure 4.7: Chosen target image for Reinhard normalization [Mag09]

4.2.2 Color Deconvolution

Color deconvolution (CD) can be used to separate a RGB image into three channels. Thereby the
channels represent the actual color of the stains [Kha14]. In the following, the two main steps of
the CD will be discussed.

• Step 1:
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First the RGB colorspace  is transformed to a new colorspace  ̂ corresponding to the Lambert-
Beers law [Kha14]:

 = exp(�S ) (4.7)

 ̂ = S�1
(� log ) (4.8)

with S defining the stain vectors [Kha14]

S =

0

B@
s̄r1 s̄g1 s̄b1

s̄r2 s̄g2 s̄b2

s̄r3 s̄g3 s̄b3

1

CA , (4.9)

where s̄ri, s̄gi, s̄bi stands for the normalized red, green and blue i-th normalized channel. After
that, with the help of the stain matrix M, the concentrations of each stains are determined by
dividing the reshaped image yOD in OD color space by the stain matrix:

C =

yOD

M
(4.10)

• Step 2:

In the second step, the pseudo-color stain images for each channel are determined. Therefore again
the stain matrix is used together with the in step 1 calculated deconvolved image for calculating
the color for each stain.

CH1 = I0 · exp(C1 · (�M )) (4.11)

CH2 = I0 · exp(C2 · (�M )) (4.12)

CH3 = I0 · exp(C3 · (�M )) (4.13)

CH1, CH2 and CH3 represent the three deconvolved channels and I0 is a variable with a fix
value of I0 = 255. In the general case of H&E colored stains, the first channel CH1 stands for the
haematoxylin stains, the second channel CH2 for the eosin colored stains and the third channel
CH3 for the background. C1, C2 and C3 stand for the three channels of the deconvolved image
C in step 1. In the case of H&E staining, the background channel has to be white if the CD
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was successful. For finding both PE particles and CD3-positive cells, CD was used. In case of
extracting PE particles, the stain matrix:

M =

 
0.644211 0.716556 0.266844

0.092789 0.954111 0.283111

!
(4.14)

was used, for finding CD3-postive cells the stain matrix:

M =

 
0.3169 0.5971 0.7213

0.6361 0.7035 0.3509

!
(4.15)

was used.
Both these stain matrices were extracted out of the target images. In Figure 4.8 the CD into the

Figure 4.8: Color deconvolution of Macenko normalized images

three channels is shown for the Macenko normalized examples from Figure 4.4. Thereby channel
1 of the deconvolved images is presented in the top, the second deconvolved channel in the middle
and the third deconvolved channel on the bottom. In this special case of stain coloring, a part of
the CD3-positive immune response is visible in all three channels. In case of the first channel
the CD3-positive cells are dark yellow to yellow on yellow background. In this channel, it is
not possible to detect CD3-cells for all images. In case of the second channel the CD3-positive
cells are dark pink on a pink background, in many cases it seemes to be possible to detect most
of the CD3-positive cells, but nevertheless Reinhard et al. allows a much better detection of
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the CD3-positive cells (see Figure 4.10). In the third channel, the CD3-positive cells are bright
dots, but also the PE is visible as white regions. In this channel, it is not possible to detect the
CD3-positive cells.
For the detection of the PE particles, Macenko normalization followed by a CD yields good results.
Therefore, a good segmentation of PE particles can be obtained by catching the second channel.
Thereby nearly all PE particles, especially the MPE particles, are visible as bright areas on a pink
background. When the visibility of the particles is compared with the images without CD (Figure
4.9), it is clear that particles can be detected better. Nevertheless, in some cases, the images are
very noisy. In this cases, some parts of the background are colored white in addition to the PE
particles. It is then advisable to take directly the Macenko normalized images without CD for
thresholding.
For example in Figure 4.8 in the middle, the rightmost image is noisy, the PE particles become
blurred with the background and as a consequence, the mean value is very high. In Figure 4.9 the

Figure 4.9: Color Deconvolution of the orginal images

CD of the orginal images without normalization is displayed. The fist channel, which normally
represents the background varies a lot, in all four images it contains information about the PE
particles (white areas) and the CD3-positive immune response (dark yellow dots). In the right
case, it even represents only the CD3-positve cells as strong yellow colored dots, which should
be only the case in the second channel. The second channel presents the information about the
CD3-positive cells as pink dots, only in the right case, the dots are somewhat weaker in the
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color, but nevertheless visible. In the third channel most of the PE particles are visible as white
areas. Compared with the visibility of PE particles in the second channel of the normalized color
deconvolved image it has worse results. In Figure 4.10, the CD into three channels of the Reinhard

Figure 4.10: Color Deconvolution of Reinhard normalized images [Kha14]

et al. normalized images is shown. The first and the third channel do not need to be considered
further, because both channels neither provide meaningful information about the CD3-positive
cells nor about PE particles. However, in the second channel, the CD3-psotive cells stand out
clearly as dark brown dots from the bright background. PE particles are also presented in the
second channel. Because of the confusion danger with salt noise and upcoming white regions
of the CD, the detection of the PE particles with the Reinhard normalization yields a number of
MacroPE/SMPE and MPE that is to high.
All in all, CD of the Macenko normalized images is quite important for finding the PE particles,
which sometimes disappeared in the CD without normalization [Kha14].

4.2.3 Thresholding

After the image normalization and CD, it is possible to threshold the images with a simple
binary threshold to contain the PE particles and CD3-positive cells as white regions on a black
background.
Therefore, for finding the PE particles, the second channel of the color deconvoled grayscaled
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Figure 4.11: Top: Binary thresholding of the second channel of the Macenko normalized color
deconvoled images for finding the PE particles; Botton: Binary thresholding of the second channel
of the Reinhard normalized color deconvoled images for finding the CD3-positive cells

Macenko normalized image is thresholded with a fix threshold of 242.
As a result, the PE particles were colored white. Unfortunately, in some cases, the Macenko
normalization followed by a CD failed. In this cases, after thresholding in addition to the PE
particles, big parts of the background were colored white in the binary image. To solve this
problem, in cases of a high mean value and a high number of detected PE, the gray-scaled
Macenko normalized images are instead used for binary thresholding with a fix threshold of 230.
The threshold is chosen smaller, because in the case of normalization without color deconvolution,
the PE particles still vary in intensity values.
The CD3-positive immune/inflammatory response can also be detected by a fixed binary threshold
of 100 on the second channel of the color deconvolved Reinhard normalized image followed by
taking the inverse of the binary image. To determine the appearing noise and small dots, which
cannot be CD3-positve cells due to their size, a median filter was used. In Figure 4.11, the results of
the binary thresholding for the PE particles (top) and for the CD3-positive immune/inflammatory
response are shown. The PE particles as well as the CD3-psotive cells are now visible as white
regions on a black background.

4.2.4 Morphological operations

Because of small black holes within and cracks inbetween some larger PE particles, it is necessary
to use morphological operations. In 1964, mathematical morphology was developed by Georges
Matheron and Jean Serra [Ron06]. As basic idea structure elements, i.e. small binary images
with a simple predefined shape, are used to probe a binary image. Therefore, different shaped
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structure elements are possible depending on how the shape of the white areas of the binary image
should be changed. Before the mophological operation is applied on the image the basic and most
important operations, Erosion, Opening, Dilation and Closing,
will be explained briefly.
The morphological erosion of an image A 2 Z2 by the structure element B is defined as [Gho14]:

A B = {z | (B)z ✓ A} (4.16)

The morphological erosion minimizes the relation to every pixel in its neighborhood of every
pixel. In contrast, the morphological dilation is defined as [Gho14]:

A�B = {z | (B̂)z \A 6= ;} (4.17)

where B̂ denotes the symmetric of B. A dilation minimizes the value of each pixel in relation to
its neighboring pixels.
As a consequence, dilation enlarges bright regions and shrinks dark regions.
The morphological opening is a combination of a erosion followed by a dilation. Therefore an
opening is defined as [Dou92]:

A �B = (A B)�BT . (4.18)

It removes small bright spots and connects small dark cracks.
The morphological closing is defined as [Dou92]:

A •B = (A�B) BT . (4.19)

It is a dilation followed by an erosion. Closing makes it possible to remove small dark dots, which
are smaller than the white particle, as well as to connect small bright cracks.
For removing the salt noise and the small holes, as well as continue SMPE/MacroPE particles,
which lie very close to each other, a morphological closing, followed by a small median filter, was
used. With the help of a cross-shaped kernel as structure element of a fixed size of (27,27), it was
possible to close small black occurring holes and to continue PE particles, which are very close
to each other. As the name already said, the form of the cross-shaped kernel corresponds to the
shape of a cross (see Figure 4.12). In Figure 4.13, in the top a morphological closing, followed by
a median filter is used to connect PE particles from the example images in the top from Figure
4.11. The particles are very close to each other and noise is present. After morphological closing,
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Figure 4.12: Structure element

the noise is reduced and the particles are separated. A median filter with a size of two yielded
good results. In case of finding the CD3-positive cells (see images in the bottom from Figure
4.11) morphological operations were not necessary. To reduce the white noise a median filter with
a size of ten achieved good results [Tea] [Gho14] [Dou92].

Figure 4.13: Top: Closing followed by a small median filter for finding PE particles; Bottom:
Median filter for reducing white noise for finding CD3-positive cells

4.2.5 Blob detection

Blob detection algorithms are used for finding regions of interest, called blobs, which are similar
in brightness, shape or color in an image. The most common methods for finding blobs are based
on convolution [Tea17b] [Lin98] [Low04].
For finding the features of PE particles, a simple contour finding method was used. For finding
the features of the CD3-positive immune/inflammatory response, a circular blob detection method,
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the difference of Gaussian (DoG), has achieved good results. DoG is an efficient implementation
of the Laplacian of Gaussian (LoG) approach, where two Gaussian blurred images L(x,y, k�)

and L(x,y, �) are subtracted from each other [Low04]:

DoG(x,y, �) = L(x,y, k�)�L(x,y, �) (4.20)

DoG(x,y, �) is the difference of Gaussian, L(x,y, �) is the image I(x,y) convolved with a
Gaussian G(x,y, �) [Low04]

L(x,y, �) = G(x,y, �) ⇤ I(x,y) (4.21)

and L(x,y, k�) the image I(x,y) convolved with the Gaussian G(x,y, k�) [Low04]

L(x,y, k�) = G(x,y, k�) ⇤ I(x,y), (4.22)

where ⇤ denotes two-dimensional convolution. This is done with increasing standard deviations,
the corresponding differences are stacked up in a cube. In the case of implementation blobs,
are assumed to be white areas on a black background. As output, the number of blobs and the
corresponding radii and coordinates of the midpoints of the blobs in the image are returned
[Tea17b] [Lin98] [Low04]. For finding the contours, the areas, the coordinates of the center of
mass and the numbers of the PE particles of the binary image, a simple contour finding method
is used. Thereby the points, which corresponds to the contour are defined as a curve that fits all
continues points of the boundary of each blob. Again, in case of implementation, the blobs, which
correspond to the PE particles, are assumed to be white on a black background [Vis17] [Tea17a].
In Figure 4.14, the blob detection for the PE particles and the CD3-positive cells for the four
images are shown. In the top, the PE particles are contoured red in the bottom the CD3-positive
cells are marked in yellow. Nearly all of the CD3-positive cells are detected and marked. From
left to right 31, 136, 20 and 229 CD3-positive cells were counted. Just in the cases of overlapping
CD3-positive cells sometimes two or more cells are counted as one. The PE particles, especially
the MacroPE and SMPE particles, are also more or less detected well. From left to right a total
of 134, 61, 33 and 31 PE particles were counted. For the rightmost image this count is surly to
small, not all PE particles were detected. For this image, the CD failed and therefore, instead of
the second channel of the deconvolved image the Macenko normalized image was thresholded,
which results in a worse detected number of PE particles.
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Figure 4.14: Top: Blob detection for finding PE particles; Bottom: Circular blob detection of the
CD3-positive cells

4.2.6 Preprocessing Pipeline

For a better understanding, the most important steps of the image preprocessing of the histopatho-
logical slides are shown in Figure 4.15. For finding the CD3-positive cells it is necessary to

Macenko N. CD Thresholding MorphOp

Reinhard N. CD Thresholding MedianF Blobdetec.

Blobdetec. Output:
Number
Areas
Contours
Perimeter

Output:
Number
Midpoints
Area

Figure 4.15: Preprocessing Pipeline

normalize the images and to deconvolve them into three channels. After that the gray-scaled
second channel of the deconvolved image is used for thresholding. After the binary image is
inverted and a circular blob detection method is applied the information about location, total area
and number of CD3-positive cells per image is available.
To contain the features of PE particles, similar steps must be implemented. First, the images have



4.3. CLASSIFICATION METHODS 29

to be normalized. After that the images are color deconvolved. After that, the corresponding
second gray-scaled channel is thresholded. With morphological operations, it is possible to reduce
noise and to continue adjacent PE particles.
With a final simple blob detection the searched information, areas, perimeters, contours and the
numbers of PE particles, could be obtained.

4.3 Classification Methods

After the preproccessing methods have been completed, it is necessary to extract suitable features
(see section 5.1) as next step of the pattern recognition pipeline. The third step of the pattern
recognition pipeline is the classification (see Figure 4.1). In frame of this thesis different supervised
classifiers were used. The naive Bayes (NB) classifier, the support vector machine (SVM), the
random forest (RF) and at least a variation of the nearest neighbor (NN) classifier will be presented
in the following subsections.

4.3.1 Naive Bayes classifier

The NB classifier is an often used and simple classification algorithm with a mostly good perfor-
mance. Similar to the Bayesian classifier it decides for the class according to the decision rule
[Nö15]

y⇤ = argmax

y
p(y|x) (4.23)

but with the simplification assumption of the independence between the features, which implies
[Nö15]

p(x|y) =
dY

i=1

p(xi|y) (4.24)

and results in the decision rule of Naive Bayes [Nö15]:

y⇤ = argmax

y
p(y|x) = argmax

y
p(y)

dY

i=1

p(xi|y) (4.25)

where y represents the class number, x the feature vector, p(y) the prior probability of class y,
p(x|y) the joint probability function and p(y|x) the class conditional density [Bis06] [Nö15].
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4.3.2 Support vector machines

A support vector machine is a linear classifier for separating classes with the help of points to the
line for each class. The decision boundary is defined as an affine function [Nö15]:

f(x) = ↵T x+ ↵0 (4.26)

where x is any point and the normal vector n of the hyperplane is defined as [Nö15]:

n =

↵

k↵k2
(4.27)

Two different forms of SVM are available, hard margin SVM with the optimization problem:
maximize [Nö15]

1

k↵k2
(4.28)

subject to
8i : yi · (↵Txi + ↵0 � 1 (4.29)

and soft margin SVM with the convex optimization problem
minimize [Nö15]

1

2

k↵k22 + µ
X

i
⇠i (4.30)

subject to
8i : �(yi · (↵Txi + ↵0)� 1 + ⇠i)  0 (4.31)

8i : �⇠i  0, (4.32)

where y is the class number for all class labels i, ⇠ is the slack variable and µ a weighting factor.
In case of a hard margin problem, the classes are linearly separable. In case of the soft margin
problem outliers exists and the classes are no longer linearly separable. In the following, because
of occurring outliers, the soft margin SVM was used [Bis06] [Nö15].

4.3.3 Random Forest

Random forests is a fast supervised classification method, which consists of many weak learners.
With the help of a decision tree, a general mapping for predicting the classes of a test set can be
learned with the help of a labeled training set. Therefore, the parameters of the weak learners are
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optimized at each split node j with [Cri13]:

✓j = argmax

✓
j

2T
j

I(Sj,✓) (4.33)

where Sj is the training set and ✓ is the split parameter. The optimization function I for the
classification can be described as [Cri13]:

I(Sj,✓) = H(Sj)�
X

i2{L,R}

|Si
j|

|Sj|
H(Si

j) (4.34)

where H(S) is the entropy [Cri13]:

H(S) = �
X

c2C

p(c) log p(c) (4.35)

where p(c) is the normalized histogram of labels corresponding to the points in S of the training-set
for each node and i is the indexing of the two child nodes [Cri13].

4.3.4 Nearest Neighbor Classifier

In addition to the classification of the different PE particles and the strength of the MPE particles
as well as the strength of the CD3-positive immune/inflammatory response a NN classifier is used
for calculating the number of CD3-positive cells in a fix Euclidean distance of maximal 5µm
around the MacroPE/SMPE and the MPE particles, respectively.
Because of the different shapes of the PE particles, it is not suitable to use the midpoints or the
center of mass of the MacroPE/SMPE particles, instead the contours of theses particles were used.
In case of the CD3-positive cells, because of the circular structure, the midpoints could be used
(see also Figure 4.16). In Algorithm 1, the pseudocode is shown. As input the algorithm needs the
contours of each MacroPE/SMPE particle per image (contours), the midpoints of all CD3-positive
cells per image (XCD3) and optionally the chosen distance (distance) between CD3-positive cells
and MacroPE/SMPE particles. Normally the distance is initialized with distance = 17.24, which
corresponds to a distance of 5µm in pixels. As output, the NN algorithm returns the number of
CD3-positive cells around the maximal Euclidean distance of 5µm to all MacroPE/SMPE and to
all MPE particles per image.
Therefore, first of all, the number and distance vectors, which will later contain all distances
between one CD3-positive cell and the contour points of one MacroPE/SMPE for all CD3-positive
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PE

CD3

Figure 4.16: Distance Measure: blue object represents a PE particle, yellow object: represents one
CD3-positive cell; the black line represents the minimal calculated distance between the contour
of the PE particle and the midpoint of the CD3-positive cell

cells and for all MacroPE/SMPE particles, are initialized.
In the next step the distances are calculated with the help of the L2 norm and, after that, sorted
according to the size, in which the smallest value stands in the first place.
A following ’if state’ checkes whether the smallest calculated distance is smaller than the prede-
termined distance of 5µm. If it is true, the number of the CD3-positive cells, which are next to a
MacroPE/SMPE particle is counted up by one [Bis06] [Nö15].

Algorithm 1 Nearest Neighbor Classfier
1: function num = NEARESTNEIGBOR(contour, XCD3, distance = 17.24)
2: num 0 initialize number of adjacent cells with 0
3: dist empty(len(contour)) initialize empty distance vector
4: for i 0, length(XCD3) do

5: for j  0, length(contour) do

6: dist[j] = NormL2(contour[j]�XCD3[i]) Calculate Euclidean Distance
7: end for

8: end for

9: Sort dist
10: if dist[0] < distance then num = num+ 1

11: end if

12: end function

4.4 Additional

For an easy handling, a simple graphical user interface (GUI) was designed and implemented with
the above presented algorithms (see Figure 4.17). As input a histology image can be loaded via
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the top right button ’Datei auswählen’. The two formats ’PNG’ and ’JPEG’ are supported. After a
image was chosen, the program can be started by pressing the bottom right button ’Start’. The

Figure 4.17: Graphical User Interface

program counts the number of MPE particles, MacroPE/SMPE particles and CD3-positive cells.
Additionally the number of adjacent CD3-positive cells around the MacroPE/SMPE particles and
MPE particles, respectively, are determined.
If the image contains no MacroPE/SMPE, or MPE particles, the distance measurement returns the
remark that no MacroPE/SMPE, respectively MPE particles, are available. In addition to that, the
chosen image appears with the colored marked particles and cells (see 4.18). The PE particles are
colored blue and the CD3-positive cells are marked with yellow circles. For a better understanding
for users without knowledge in this medical field, short explanations of characteristic features
about the MacroPE/SMPE, MPE and CD3-postive cells are available. To obtain these information,
the cursor of the mouse has to point to the text ’CD3-positive Lymphozyten’, ’mikropartikuläres
Polyethylen’, or ’makro/supramakropartikuläres Polyethylen’.
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Figure 4.18: Graphical User Interface with the evaluation for a single image



Chapter 5

Results and Discussion

In the following chapter, the results that were achieved with the methods presented in 4.2 will be
discussed. Fist, all of the suitable features obtained with the preprocessing steps will be shown. In
the next step, the different classifiers introduced in chapter 2 will be used for classification of the
particles and associated immune response: MPE particles were separated into low, moderate and
high. CD3-postive cells were separated into low, moderate and high immune/inflammatory re-
sponse and PE particles have to be divided into MPE and MacroPE/SMPE. After that, the obtained
results about the relationships between MPE particles and CD3-positive immune/inflammatory
response will be discussed.

5.1 Features

After the preprocessing of the 100 histopathological images, suitable features have been extracted.
Therefore, the information gained from blob detection methods introduced in 4.2.5 were used.

5.1.1 Features of CD3-positive immune/inflammatory response

It was found out that for separating the CD3-positive immune/inflammatory response in the three
classes, low, moderate and high, the absolute number and the total area share of these cells per
image, are suitable (see Figure 5.1).
In Figure 5.2, the normalized numbers and areas of CD3-positive cells for the 60 training images,
the 20 validation images and the 20 images for testing are shown from left to right. According
to the predetermined ground truth data, the red dots correspond to a low, the blue ones for a
moderate and the green dots for a high CD3-positive immune/inflammatory response. Therefore,

35
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CD3-positive

low moderate highClasses:

Features: number
area

Figure 5.1: Features of CD3-positive immune/inflammatory response

every dot represents exactly one image. According to the expectations, the dots which are labeled

Figure 5.2: Left: CD3 features for training-set; middle: CD3 features for validation-set; right:
CD3 features for all test datat

with a low CD3-positive immune/inflammatory response lie mostly in the upper left corner of the
graph. A small number of CD3-positive cells combined with a small total area share per image
represents a low immune/inflammatory response. The dots labeled with a moderate response lie
mostly in the middle of the graph. A moderate immune/inflammatory response is presented at
an average number and total area share of the CD3-positive cells per image. The green dots are
mostly separated in the upper right corner. Consequently, a high immune/inflammatory response
is available for a high number and total area share of CD3-positive cells per image.
In the presented 100 images, the class with a high CD3-positive immune/inflammatory response
is under-determined, as e.g.validation images only contain one element of this class. Overall,
the classes are unequally distributed, class ’low’ is most represented with 53 counts, followed
by class ’moderate’ with 30 counts. Class ’high’ is only represented in 17 images. Furthermore,
it is noticeable that in some cases, one class lies on the edge at another class or two classes are
partially overlapping.
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Polyethylene
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area

Classes: MacroPE/SMPE MPE

Figure 5.3: Features of PE particles

5.1.2 Features of PE particles

As features for separating the PE particles in MPE and MacroPE/SMPE, the perimeters and the
total area occupied by PE particles per image were chosen as suitable features. For classifying
the MPE particles into the three classes ’low’, ’moderate’ and ’high’ it turned out that the
number and the area of MPE particles per image are suitable. Because of the small amount of
MacroPE/SMPE and the known number of them per image the pure numbers are used (see Figure
5.3). Because there exists no further information about whether a particle in the image is a MPE
or a MacroPE/SMPE and only the information about the total number of MacroPE/SMPE and the
classes about the MPE per image are available the following simplifying assumptions were made:
1. The 219 particles with the tallest perimeters of the training-set are MacroPE/SMPE particles
2. The 112 particles with the tallest perimeters of the validation-set are MacroPE/SMPE particles
3. The 39 particles with the tallest perimeters of the test-set are MacroPE/SMPE particles
These numbers corresponds to the known whole numbers of MacroPE/SMPE of the training-, test-
and validation-images.
In Figure 5.4, the perimeters and areas of occupied PE particles in the data sets are shown for the
training-, validation- and test-images (from left to right), split into MacroPE/SMPE (green dots)
and MPE (red dots). In Figure 5.5, the PE particles in relation to their area and their perimeters
are shown, but this time only for two single images. The image on the right side contains MPE
(bottom left corner) as well as MacroPE/SMPE (middle). The image on the left side only contains
MPE particles, which lie in the bottom left corner due their small sizes of perimeter and area.
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Figure 5.4: Left: PE features for trainingsset; middle: PE features for validationset; right: PE
features for testset

After a separation of the PE particles into MacroPE/SMPE and MPE for all single images, the

Figure 5.5: PE particle distribution for the features area and perimeter for two images

predicted number and total area of MPE per image are used as features for the classification of
MPE into the three classes low, moderate and high (see Figure 5.6). The blue dots represent the
class low MPE, the red ones the class moderate MPE and the green dots again the class high MPE.
As it was to be expected from the analysis of the available data, the most cases the blue dots are
located in the upper left corner, the red dots are located in the middle and the green dots are located
in the upper right corner. In the cases of the validation- and test-set (see middle and right image in
Figure 5.6), this classification is mostly successful, just some outliers are visible. In case of the
training-images, presented in the left image in Figure 5.6), more outliers are present. Especially
in the upper-left corner a mixture of all classes are occurring. For this phenomena two reasons are
possible. Either, in some case, a certain number of MPE was not detected in the preprocessing
steps or some MPE particles are not visible due to low image quality and compression effects
introduced by lossy image codecs like ’JPEG’.
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Figure 5.6: MPE features for training-, validation- and test-set (from left to right)

5.2 Classification

In this section, different supervised classification approaches are used on the features introduced
in 5.1. They are used to separated the PE particles into MacroPE/SMPE and MPE, to separate
MPE into low, moderate and high and to separate the CD3-positive cells into a low, moderate and
high immune/inflammatory response (see Figure 5.3 and Figure 5.1).

5.2.1 Classification of CD3-positive immune/inflammatory response with

Naive Bayes

Although the features of the CD3-positive immune/inflammatory response lie more or less on
a diagonal and it can be thereby assumed that both features are correlated, a NB classifier as
introduced in section 4.3.1 yielded reasonable results.
In Figure 5.7, the decision for the used NB classifier are shown for the data-sets. In the cases of

Figure 5.7: NB decision boundaries in the training, validation and test data sets (from left to right)

the training- and test-sets, most of the immune response are classified right. A point in the bottom
left side of the graph will be associated to class 0, a point in the middle of the graph belongs to
class 1 and therefore a point in the upper right sight will be classified as class 2.
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Because of the unequal distributions of labeled classes in case of the validation-set, class three is
not be detected anymore, as the prior probability of this class was almost zero. Therefore, training
with the validation-set only yielded good results for class 0 and 1.
But nevertheless, an accuracy of 70 % could be obtained with the validation data. With a training
with the extracted features from the 60 images of the training-set an accuracy of 80 % can be
reached.
In Table 5.1, the confusion matrix for the training of the NB classifier with the features of the 20
images of the validation-set is shown.
In most cases, the classes are classified right, but especially in cases of a ground truth class 2 the
classification fails, as expected from the decision lines shown in Figure 5.7. Additionally, some
points corresponding to class 1 are predicted as class 0. The reason of this failure is due to the
increase a-priori probabilities caused by the unequal class distribution in the validation set. The
class 0 occurs most frequently and therefore by training the probabilities for this class affiliations
are chosen to high. In Table 5.2 the confusion matrix for the training of the NB classifier with the

truth:
predicted: Class 0 Class 1 Class 2

Class 0 10 0 0
Class 1 3 3 0
Class 2 1 2 1

Table 5.1: NB confusion matrix for training with the validation data set

extracted features of the 60 training-images are shown. Class 2 is now classified correctly in more
cases. In comparision with the results of the confusion matrix shown in Table 5.1, the predicted

truth:
predicted: Class 0 Class 1 Class 2

Class 0 10 0 0
Class 1 3 3 0
Class 2 1 0 3

Table 5.2: NB confusion matrix for training with the training data set

classes are chosen similar, with the only difference of a better performance of the predicted class
2, due to a higher represented of class 2 in the training-set, this class is chosen correct in nearly
all cases.
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5.2.2 Classification of CD3-positive immune/inflammatory response with

Support Vector Machines

The classification of the CD3-positive immune/inflammatory response with a SVM also yields
acceptable results. With both the training and the validation data sets, an accuracy of 70 % could
be reached. In Figure 5.8, again, the decision domains for the training-, validation- and test-set

Figure 5.8: SVM decision boundaries in the training, validation and test data sets (from left to
right)

are shown (from left to right). For the training-set it looks quite good, the three classes 0, 1
and 2 are equally separated. In comparison with the decisions made by the NB classifier for
the training-set it looks equal good or even tend to be somewhat better. The decision for the
validation-set looks similar, too. Class 0 and 1 are well separated, but the decision for class 2
is worse. However, the decision boundaries based on the test-set are much worse than for the
NB classifier. In Table 5.3, the confusion matrix for the classifier training by the features of the
validation-set is shown. It is identical to the confusion matrix for the NB classifier. Class 1 is
chosen to often and class 2 to rarely. In the two confusion matrices shown in Table 5.3 and Table

truth:
predicted: Class 0 Class 1 Class 2

Class 0 10 0 0
Class 1 3 3 0
Class 2 1 2 1

Table 5.3: SVM confusion matrix for training with the validation data set

5.4, the predicted class numbers and ground truth numbers for the training and validation data
sets are shown. As expected, in case of the validation-set, class 2 is not detected anymore. In case
of the training-set, a similar distribution as with NB classifier can be reached. In Table 5.4, the
confusion matrix is shown for the SVM classifier training with the features of the training data
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truth:
predicted: Class 0 Class 1 Class 2

Class 0 10 0 0
Class 1 4 2 0
Class 2 1 1 2

Table 5.4: SVM confusion matrix for the training with the training data set

set. Class 2 is chosen well, nevertheless class 1 is chosen to often. In comparision with the NB
confusion matrix it performance a little bit worser.

5.2.3 Classification of CD3-positive immune/inflammatory response with

Random Forest

A classification of the CD3-positive cells with a RF classifier leads to good results with an accuracy
of 80 %, for the training and 70 % for the validation data set. Nevertheless, with a look at the
decision lines for the feature vectors of the training-set (shown in the left of Figure 5.9) it is visible
that the decision domain for class 1 is separated. In case of the validation-set (shown in the middle
of Figure 5.9) the class decision are suitable, despite the low a-priori probability for class 2. In

Figure 5.9: RF confusion matrix for the training with the validation data set

truth:
predicted: Class 0 Class 1 Class 2

Class 0 10 0 0
Class 1 3 3 0
Class 2 1 2 1

Table 5.5: RF confusion matrix for the training with the training data set

Table 5.9, the confusion matrix for a training with the available data of the validation-set is shown.
The classes are chosen correctly, but, similar to the corresponding confusion matrices for NB and
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SVM, class 2 is chosen too rarely and class 0 too often.
In Table 5.6, the confusion matrix for a training with the available data of the training-set is
shown. The classes are mostly chosen correctly, only class 0 is chosen too often. All in all, it

truth:
predicted: Class 0 Class 1 Class 2

Class 0 10 0 0
Class 1 3 3 0
Class 2 1 0 3

Table 5.6: RF confusion matrix for the training with the validation data set

can be said, that all classifiers perform similar, NB and RF reach a little bit better accuracy of
80% instead of 70 % by training with the features of the 60 training-images. But nevertheless a
equal distribution of the classes would be desirable and leads to better results for all classifiers,
especially for training with the features of the the validation-set.

5.2.4 Classification of PE particles with Naive Bayes

For separating the PE particles into the two classes MacroPE/SMPE and MPE, a NB classifier
was used. Therefore the calculated areas and perimeters of all PE particles of the whole training-
set, and the validation data set respectively, were used for fitting the classifier with the aimed
information about the class correspondences taken of the assumptions made in 5.1.2. In Figure
5.10 the decisions chosen with the NB classifier for the training-, validation- and test-set are
shown from left to right. After the training, the classifier is evaluated based on the predicted

Figure 5.10: NB decision boundaries in the training, validation and test data sets (from left to
right)

numbers of MacroPE/SMPE particles for each test image.
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Based on the training data set it was possible to count the number of MacroPE/SMPE with an
accuracy of 55 %. A standard deviation of 1 leads to an accuracy of even 90 %, increasing the
standard deviation to 2 leads to an increased accuracy of 95 %. Based on the validation data set
it was possible to count the number of MacroPE/SMPE with a similar, but little better, accuracy
of 60 % were possible. Increasing the standard deviation to 1 leads to an accuracy of 85 %. A
standard deviation of 2 leads to an accuracy of 95 %.
In Figure 5.11, the groundtruth number of MacroPE/SMPE versus the predicted number of
MacroPE/SMPE are shown. On the left side, the classifier is trained with the training data set and
on the right side with the validation data set.

Figure 5.11: Groundtruth number of MacroPE/SMPE particles of Testdata versus predicted
number of MacroPE/SMPE for training (left side) and validation data set (right side) with NB

5.2.5 Classification of MPE particles with Naive Bayes

For the classification of the MPE particles, the numbers of MPE particles and the total area of
MPE per image were used. With both the training and validation data sets, the NB classifier
achieved an accuracy of 80 %.
In Figure 5.12, the decision domains of the NB classifier are shown for the training-, validation-
and test-set (from left to right). In all three cases, the decision domains corresponds mostly to
the data. In Table 5.8 and Table 5.7, the confusion matrices for training with the training and
validation data set are shown. In both cases, a similar distribution is given. All three classes were
mostly predicted correctly, just in a few cases, class 1 was missclassified.
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Figure 5.12: NB decision boundaries in the training, validation and test data sets (from left to
right)

truth:
predicted: Class 0 Class 1 Class 2

Class 0 7 0 0
Class 1 2 7 2
Class 2 0 0 2

Table 5.7: RF confusion matrix for the training with the validation data set

5.2.6 Classification of MPE particles with Support Vector Machine

If a SVM used for classifying MPE particles into the three classes an accuracy of 80 % was
obtained for training with both the training and the validation data sets. Nevertheless, with a
look at Figure 5.13 stands out that the decision domains are not representative of the data. In
Table 5.10 and 5.9, the confusion matrices for training with the training and validation data sets
are shown. As expected in case of the training with the training data set class 2 is not predicted
anymore. The high accuracy was just obtained with the high number of correctly classified points
of class 0 and class 1.

truth:
predicted: Class 0 Class 1 Class 2

Class 0 6 1 0
Class 1 1 8 2
Class 2 0 0 2

Table 5.8: RF confusion matrix for the training with the training data set



46 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.13: SVM decision boundaries in the training, validation and test data sets (from left to
right)

truth:
predicted: Class 0 Class 1 Class 2

Class 0 7 0 0
Class 1 2 7 2
Class 2 0 0 2

Table 5.9: SVM confusion matrix for the training with the validation data set

5.2.7 Classification of MPE particles with Random Forest

The classification of MPE particles with a RF classifiers yielded an accuracy of 65 % for the
training with the features of the training-set and an accuracy of 80 % for training with the data of
the validation-set. In Figure 5.14, the decision domains are shown for the training-, validation- and
test-set (from left to right). Compared with the decision made with a SVM, the classes are better
chosen, but the class domains are separated. In Table 5.11 and 5.12, the confusion matrices are
shown. In case of training with the validation data set the classes are mostly correctly classified.
In case of training with the training data set the classes were often falsely predicted. Class 2 is
chosen to rarely and class 0 and class 1 is chosen too often.

All in all similar accuracies were received with the above presented classifiers. Nevertheless
with a look at the decisions made by the classifiers NB could convince with the best results.

truth:
predicted: Class 0 Class 1 Class 2

Class 0 6 1 0
Class 1 1 10 0
Class 2 0 2 0

Table 5.10: SVM confusion matrix for the training with the training data set
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Figure 5.14: RF decision boundaries in the training, validation and test data sets (from left to
right)

truth:
predicted: Class 0 Class 1 Class 2

Class 0 7 0 0
Class 1 2 7 2
Class 2 0 0 2

Table 5.11: RF confusion matrix for the training with the validation data set

5.3 Relationships between PE particles and CD3-positive im-

mune/inflammatory response

In the following, it will be discussed in how far PE particles and especially the number of MPE
particles, affect the strength of the occurring CD3-positive immune/inflammatory response.
First of all, the class numbers of the MPE particles per image are compared with the occurring
strength of the CD3-positive immune response. In Figure 5.15, the three class numbers of the
classes low, moderate and high immune/inflammatory response and the three class numbers (low,
moderate and high) of the occurring strength of the MPE particles are compared. In 50 % the
ground truth class numbers are equal, in 43 % the class numbers have a standard deviation of one
and in the remaining 7 % the class numbers have a standard deviation of two.
If the MPE particles are not correlated to the CD3-positive immune/inflammatory response, a

truth:
predicted: Class 0 Class 1 Class 2

Class 0 5 2 0
Class 1 3 7 1
Class 2 0 1 1

Table 5.12: RF confusion matrix for the training with the training data set
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much lower accuracy of about 33 %, corresponding to a random decision with three options,
would be the case. Because of the higher accuracy of 50 %, a correlation between MPE particles
and the occurring immune response can be assumed. In the next step the number of MPE particles

Figure 5.15: Relationship between MPE class numbers and CD3-positive class numbers for all
images

and CD3-positive cells were compared. If a correlation exists, the number of CD3-positive cells
should increase with the strength of the MPE particles. Therefore the MPE particles are sorted
according to their size. In Figure 5.16 the graphical result for the training-, validation- and test-sets
are shown separately. The blue lines correspond to the number of MPE particles, the red lines
represent the number of CD3-positive cells. In order to recognize the course of the red line better,
the results of a moving average filter of the number of the CD3-positive cells are included and
presented as green line. In all three cases, the immune/inflammatory response is very noisy. The
smoothed line of the moving average filter increases with the number of MPE particles first, but
falls again in the last quarter. Generally, it is difficult to gather a tendency about the behavior
of the CD3-positive cells due to the strong fluctuations. If the available data of the number of
MPE particles and CD3-positive cells are mapped together in one image (see Figure 5.3) a similar
behavior like in 5.16 occurs. For the left half of the graph, the CD3-positive cells seemed to
correlate to the MPE particles. But with a look at the right side of the graph, the opposite occurs.
The immune response is declining, the data should is not correlated anymore. It could be possible



5.3. RELATIONSHIPS BETWEEN PE PARTICLES AND CD3-POSITIVE
IMMUNE/INFLAMMATORY RESPONSE

49

Figure 5.16: Relationship between MPE particles and CD3-positive cells for the training-,
validation- and test-data

that, with a certain number of MPE, a saturation occurs. But, to be able to make precise statements,
it is desirable to have more data.

In a third step the adjacent CD3-positive cells around the MPE particles and around the

Figure 5.17: Relationship between MPE particles and CD3-positive cells for all Images

MacroPE/SMPE particles are counted for the test data set. In nearly all of the case CD3-positive
cells, although a high or moderate CD3-positive immune/inflammatory response exists, were
located around the MacroPE/SMPE. However, significantly more often CD3-positive cells were
located next to MPE particles. In case of the test data set just one of the CD3-positive cells was
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located next to the MacroPE/SMPE. In comparison to that, 31 CD3-positive cells were located
around the MPE particles.



Chapter 6

Conclusion

Although the popular stain normalization methods are proven and successfully tested for the
typically H&E stained colored images, it was possible to apply two of them, Macenko normal-
ization and Reinhard normalization, to histological slice images, which were not colored with
the typically H&E staining. Macenko normalization, followed by CD was suitable for the most
images to improve the visibility of the available PE particles.
It could be also shown, that, with the Reinhard normalization, occurring variations in intensity
and color within and in between the provided images disappeared completely. After a further CD
it was possible to catch the CD3-positive cells with a fix threshold for all images.
With the assumption of a circular structure of the CD3-positive cells, it was possible to find
them with the help of a circular blob detection method based on the difference of Gaussian,
although they were overlapping. That is a strong improvement to available CD3-positive detection
algorithms. Up to now, it was not possible to detect overlapping CD3-positive cells correctly (see
CD3-Quantifier 2).
In Figure 6.1 the result of the preprocessing steps of the CD3-positive immune/inflammatory
response is shown for a part of an image. The overlapping cells, e.g. in the upper left corner, were
detected as single cells. Also good visible in the image is the advantage of the normalization and
color deconvolution before thresholding. Thereby the dark occurring regions in the image, which
are not CD3-positive cells, are not falsely detected as CD3-positive cells. Just with threshold
method based on gray values this would be problematic. For the classification of the PE particles in
MPE and MacroPE/SMPE, as well as the classification of the MPE particles and the CD3-positive
cells into the three classes low, moderate and high, different supervised classification methods
were tried. In all cases the simple classification method Naive Bayes receives the best results.
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Figure 6.1: Circular blob detection of CD3-positive cells

All in all it can be summarized that the segmentation of the CD3-positive cells and the PE
particles yielded mostly good results, nevertheless in few cases it was not possible to catch all
MPE particles (see 4.2.2). For a more accurate segmentation it could be helpfully to use a target
image, which is exactly provided for this special case of stain coloring.
The thesis, that the strength of the CD3-positive immune/inflammatory response increases with
the number of occurring MPE particles could not be completely proven. Indeed with the help of
the available data of 100 images it could be shown, that in 50 images the class number of the MPE
particles corresponds to the class number of the occurring CD3-positive immune/inflammatory
response, but nevertheless, with a comparison of the number of MPE to the number of CD3-
positive cells it turned out, that the CD3-positive immune response increases with increasing MPE
but false again from a certain point (see 5.3). Hopefully, with the help of the implemented GUI,
the medical team can evaluate more images with a low time effort and reinforce the thesis.
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Summary

Aim of the thesis was the implementation of an automatic threshold based algorithm for the seg-
mentation of histological slice images to reduce the time effort for the medical team required by a
manual evaluation. The goal was to find a relationship between the aseptic loosening of hip and
knee endoprothesis and the occurring abrasion particles by establishing a relation between occur-
ring micro-polyethylene (MPE) particles and the associated CD3-positive immune/inflammatory
response response. A classifier for a similar problem had already been developed in 2015, however
it failed at overlapping CD3-positive cells.
Generally, material abrasion is suspected to be an important aspect for the loosening process of
endoprothesis. The abrasion particles promote a formation of a synovial-like-interface-membrane
(SLIM) between bone and endoprostheses, which leads to a loosening. About 5 % of the patients
already experience primary complaints after 10 years. The endoprotheses have to be removed and
replaced in a surgical procedure. Therefore it is of high importance to find the reasons for this
failure in order to avoid such a surgical intervention which can be associated with considerable
risks. In frame of this work, the polyethylene (PE) abrasion particles and the CD3-positive
immune/inflammatory response was to be considered. In endoprothetics, two different kinds
of PE are used. A high molecular PE and lower particular PE. Higher cross-linked PE leads to
mainly MPE particles and non-crosslinked PE to taller sized macro- and supramacro-polyethylene
(MacroPE/SMPE). CD3-positive cells are considered as a measure for the occurring immune
response. With different color reactions and techniques, it is possible to provoke the occurring
CD3-positive cells and PE particles in the SLIM. PE particles are visible as bright regions and
CD3-positive cells as small brown circular dots. A total of 100 images of 100 preparations of 52
patients were provided for this work. For the segmentation of the PE particles and CD3-positive
cells, all steps of the pattern recognition pipeline for simple patterns were mandatory. In a first
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step, different preprocessing methods had to applied to obtain the specific information about the
PE particles and the CD3-positive cells. In a further step the extracted features of the PE particles
and the CD3-positive cells were used for the classification. Because of variations in color and
brightness within and inbetween the images, in a first step the images were normalized. It turned
out that the two stain normalization algorithms by Macenko et al. and Reinhard et al. were suit-
able, although the images were not colored with the typically H&E staining. Both normalization
methods are part of the stain normalization toolbox of Warwick. For a better visibility of the PE
particles, Macenko normalization was used. With a linear per-channel normalization, it maps
the calculated stain concentration matrix of the source image in optical density space to that of
a target image. As a result, the images are more or less colored in an equal purple color and
the PE particles are bright. With the linear normalization of Reinhard et al., it was possible to
improve the visibility of the CD3-positive cells. The mean and standard deviations of the source
images were mapped in LAB color space for each channel to the mean and standard deviations of
the target image. As a result the color and intensity variation of the images disappeared and the
CD3-positive cells were visible as brown dots. With a subsequent color deconvolution (CD) of
the normalized images into three channels, corresponding to the stain saturation, the PE particles,
especially the MPE particles, and the CD3-positive cells were clearly visible in most cases. Just
in a few cases, in addition to the PE particles, some parts of the background were also visible
as bright regions. With a simple binary thresholding, it was possible to catch the PE particles
and the CD3-positive cells. In both cases a fixed threshold were suitable. As a result, the PE
particles and the CD3-positive cells were visible as white regions on a black background. After
that, the pictures where further preprocessed by eliminating white noise with a simple median
filter and concluding holes between particles by morphological closing. After this step, it was
possible to use a simple blob detection method for finding the contour, the area, the perimeters
and the numbers of PE particles. For finding the midpoints, the number and the total area of the
CD3-positive cells, a fast circular blob detection method based on the difference of Gaussian was
used. With the assumption that CD3-positive cells had to be circular, it was possible to catch
singular CD3-positive cells of overlapping CD3-positive cells and clusters. The extracted features,
containing information about PE particles and CD3-positive cells, were used for training and
evaluating the three different supervised classifiers naive Bayes (NB), support vector machine
(SVM) and random forest (RF). NB is an often used simple classification algorithm with a mostly
good performance. It is similar to a Bayesian classifier but with the simplification assumption of
the independence between features. SVM is a linear classifier for separating the different classes
with the help of the closest points of each class. RF is a method relying on the combination
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of many weak learners. In addition to these three classifiers, a nearest neighbor classifier was
implemented for counting the numbers of CD3-positive cells adjacent to the MacroPE/SMPE
and MPE particles. For an easy handling, the methods introduced above were included into a
graphical user interface (GUI) for counting the number of CD3-positive cells, MacroPE/SMPE and
MPE particles and for calculating the number of adjacent cells to the MPE and MacroPE/SMPE
particles.
In general it turned out that the two features total number of CD3-positive cells and number of
CD3-positive cells per image were suitable for separating the immune/inflammatory response into
the three classes low, moderate and high. For separating the PE particles into MacroPE/SMPE and
MPE, the perimeters and areas of each particle per image were suitable. In a further classification,
the MPE particles were separated into the three classes low, moderate and high with the help of the
number and the total area of MPE per image. For the classification, the available information about
the 100 images was separated into three data sets: 60 images for training, 20 images for validation,
and 20 images for testing. The classification problem of the CD3-positive immune/inflammatory
response with NB and RF achieved an accuracy of 80 % for training with the training data set and
an accuracy of 70 % for the validation data set. Using SVM, a similar but slightly worse accuracy
of 70 % could be obtained with both the training and the validation data sets. With a look at the
decision domain, it becomes obvious that the NB classifier separated the classes with the best
performance. For separating the PE particles into MacroPE/SMPE and MPE and counting the
MacroPE/SMPE particles per image, a NB classifier were used. Based on the training data set the
number of MacroPE/SMPE particles could be achieved with an accuracy of 55 %. A standard
deviation of 1 increased the accuracy to 90 %. Based on the validation data set, the number
of MacroPE/SMPE particles were predicted with an accuracy of 60 %, an increasing standard
deviation of 1 led to an accuracy of 85 %. In both cases a standard deviation of 2 led to an accuracy
of 95 %.The classification of the MPE particles with NB and SVM led to a similar accuracy of
80 % for both the training with the training and validation data set. RF achieved an equal accuracy
of 80 % for training with the validation data set, but a worse accuracy of 65 % for the training
with the training data set. All in all, with a look at the decision domains, it turned out that NB
had the best performance. To proof the thesis, whether an increasing number of MPE particles
correlates to the strength of the CD3-positive immune/inflammatory response in a first step the
class numbers of the MPE particles and CD3-positive cells were compared. In 50 % of the cases
the class numbers were equal, which implies correlation, as, in case of a random decision, a much
lower accuracy of about 33 % would be the case. In addition CD3-positive cells were located
around MPE in a significantly higher frequency than around MacroPE/SMPE. Nevertheless, the
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immune/inflammatory response increases with increasing MPE but false again from a certain point.
To make precise statements about the relationship between MPE particles and the CD3-positive
cells it is desirable to have more data. Hopefully, the thesis can be reinforced with a low time
effort for the medical team by evaluating more images with the help of the implemented graphical
user interface.
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[Lie16] Thoralf Randolph Liebs. Eprd-jahresbericht 2015, 2016.

[Lin98] Tony Lindeberg. Feature detection with automatic scale selection. International journal
of computer vision, 30(2):79–116, 1998.

[Low04] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[Mac09] Marc Macenko, Marc Niethammer, JS Marron, David Borland, John T Woosley, Xiao-
jun Guan, Charles Schmitt, and Nancy E Thomas. A method for normalizing histology
slides for quantitative analysis. In Biomedical Imaging: From Nano to Macro, 2009.
ISBI’09. IEEE International Symposium on, pages 1107–1110. IEEE, 2009.

[Mag09] Derek Magee, Darren Treanor, Doreen Crellin, Mike Shires, Katherine Smith, Kevin
Mohee, and Philip Quirke. Colour normalisation in digital histopathology images. In
Proc Optical Tissue Image analysis in Microscopy, Histopathology and Endoscopy
(MICCAI Workshop), volume 100. Daniel Elson, 2009.

[Mül15] M Müller, G Wassilew, and C Perka. Diagnostik und behandlung von abrieberkrankun-
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