3280-10F

AC CLAMP METER

Instruction Manual

EN
July 2021 Revised edition 1
3280H961-01 $21-07 \mathrm{H}$

—【O
 www.hioki.com/

Flexible sensors can be connected to or disconnected from Iive conductors when using appropriate protective insulation. insulated conductors suited to the voltage of the condutor under measurement
\perp Grounding \qquad DC (direct current) $\sim{ }_{\text {current }}^{\mathrm{AC}}$ (alternating

Measurement categories

This instrument's current measurement part conforms to the safet conforms to the safety requirements for CAT II 600 V CAT II 300 V measuring instruments.

! D DANGER

Measuring a location with a higher category number than the measurement category indicated on this device may result in a serious accident such as electric shock.
Q To avoid electric shock, do not touch the portion beyond the protective barrier during use. Never apply voltage to the test leads when the resistance and continuity functions are selected.
(! Doing so may damage the instrument and result in bodily injury. To avoid electrical accidents, remove power from the circuit before measuring.

〔WARNING

- To avoid electric shock, short circuits and damage to the instrument, disconnect the test leads from the measurement object before switching the rotary switch. To prevent electric shock, when measuring the voltage of a power line use a test lead that satisfies the following criteria:
- Conforms to safety standards IEC61010 or EN61010 - Of measurement category III or IV
- Its rated voltage is higher than the voltage to be measured - The optional test leads for this instrument conform to the safety standard EN61010. Use a test lead in accordance with its defined measurement category and rated voltage.
Installing the instrument in inappropriate locations may
cause a malfunction of instrument or may give rise to an
accident. Avoid the following locations:
- Exposed to direct sunlight or high temperature
- Exposed to corrosive or combustible gases
- Exposed to a strong electromagnetic field or

Q electrostatic charge

- Near induction heating systems (such as high-frequency induction heating systems and IH cooking equipment)
- Susceptible to vibration
- Exposed to water, oil, chemicals, or solvents
- Exposed to high humidity or condensation
- Exposed to high quantities of dust particles

! WARNING

Since there is a risk of electric shock, check that the insulation on the test lead and flexible sensor (optional) are neither ripped nor torn, and no metal conductor inside the wire are exposed before using the instrument. If damaged, replace them with those specified by our company.

- To prevent a short circuit accident, be sure to use the test leads with the sleeves attached when performing measurements in the CAT III measurement category. If the sleeves are inadvertently removed during measurement, stop the measurement.
(! - With regard to the electricity supply, there are risks of electric shock, heat generation, fire, and arc flash due to short circuits. If persons unfamiliar with electricity measuring instrument are to use the instrument, another person familiar with such instruments must supervise operations.
This instrument is measured on a live line. To prevent electric shock, use appropriate protective insulation and adhere to applicable laws and regulations.
Handle and dispose of batteries in accordance with local regulations.

! CAUTION

Do not place foreign objects between the jaw tips (or flexible loop couplings) or insert foreign objects into the

- gaps of the jaws (or flexible loop couplings). Doing so may worsen the performances of the sensor or interfere with clamping action.
Poor performance or damage from battery leakage could result. Observe the cautions listed below
- Do not use batteries after their recommended expiry date
(! - Do not allow weak batteries to remain in the instrument. - Replace batteries only with the specified type.
- Remove the batteries from the instrument if it is to be stored for a long time.

- The \mathbf{B} indicator lights up when the remaining battery capacity is low. In this case, the instrument's reliability is

 not guaranteed. Replace the battery immediately. To avoid battery depletion, turn the rotary switch OFF after use (the auto power save feature consumes a small amount of current)
Inspection Before Measurement

Verify that the instrument operates normally to ensure that no damage occurred during storage or shipping. If you find any damage, contact your authorized Hioki distributor or reseller.

- If damage is suspected, check the section below before contacting your authorized Hioki distributor or reseller.
(1) Check that the test lead is not broken.

Replace with the specified L9208 Test Lead
(2) Check that the resistance measurement and continuity test operates normally.
Have the instrument repaired by the your authorized Hiok distributor or reseller. The instrument may have been subject to or continuity testing.
(3) Check that the battery voltage is not low. Check that the battery
Replace the batteries.

Maintenance/Inspection

Cleaning

Measurements are degraded by dirt on the mating surfaces of the jaw (or flexible loop coupling), so keep the surfaces clean by gently wiping with a soft, dry cloth.
To clean the device, wipe it gently with a soft cloth moistened with water or mild detergent.
Wipe the LCD display gently with a soft, dry cloth.
Insert/Replace Batteries
Necessary tool: Phillips screwdriver and CR2032 Coin-shaped lithium battery

Do not turn the adjustment screw inside the battery case. Doing so will cause the instrument to report abnormal measured values.

Functions

Display will automatically turn off if the instrument is not used for 30 min . (Auto power-saving function)
To resume instrument operation in the previous state, select the "OFF" position with the rotary switch and then move the switch to the desired function.
To cancel auto power-saving function

1. Select the desired function with the rotary switch while holding 1. Select the desire
2. The LCD display will change from [APS] to [OFF], and the auto power-saving function will be disabled
3. Setting the rotary switch to "OFF" and then reselecting the
desired function will enable the auto power-saving function.

Automatically sets the measurement range to the most appropriate range (Auto-range function)
Displays [AUTO]
To set the measurement range arbitrarily (Manual-range function) 1. Select the desired function with the rotary switch while holding

2. Press $\underset{\sim}{\Omega \rightarrow \bar{\circ}}$ key to switch the range.
(Can set the range as desired, except during continuity testing.) Indication when input exceeds the measurement range Overflow indication)
Displays [-OF] or [OF]

Parts Names

Model 3280-10F AC Clamp Meter

Measurement Methods

AC Current Measurement [$\sim N n_{i n}^{\circ}$]

Measuring with Model CT6280

[리

Specifications

Accuracy
We define measurement tolerances in terms of rdg. (reading) and dgt. (digit) values, with the following meanings

rdg. (reading or displayed value)	The value currently being measured and indicated on the measuring instrument.
dgt. (resolution)	The smallest displayable unit on a digital measuring instrument, i.e., the input value that causes the digital display to show a "1" as the least-significant digit.

Basic Specifications

Maximum input • Jaw (3280-10F)
current $\quad 2000$ A AC continuous (45 Hz to 66 Hz)
Flexible loop
(3280-10F+CT6280)
4200 AAC continuous (50 Hz to 60 Hz) \qquad
Maximum input $600 \mathrm{VAC} / \mathrm{DC}$ and $3 \times 10^{6} \mathrm{~V} \cdot \mathrm{~Hz}$ or less (ACV/DCV)
voltage $600 \mathrm{VAC} / \mathrm{DC}$ and $3 \times 10^{6} \mathrm{~V} \cdot \mathrm{~Hz}$ or less (ACV/DCV)

Overload	$600 \mathrm{~V} \mathrm{AC/DC}(\mathrm{ACV} / \mathrm{DCV} / \Omega /$ continuity $)$

$\frac{\text { protection }}{\text { Maximum - Jaw, CT6280 }}$
$\begin{array}{ll}\text { rated voltage } & \quad \mathrm{Jaw}, \mathrm{C} \mathrm{AC} \text { (Measurement category III), } \\ & 300 \mathrm{VAC}\end{array}$
$\begin{array}{ll}\text { to earth } & 300 \mathrm{VAC} \text { (Measurement category IV), } \\ \text { till }\end{array}$
(Anticipated transient overvoltage: 6000 V)

- Voltage measurement terminal

600 V AC (Measurement category II),
300 V AC (Measurement category III)
(Anticipated transient overvoltage: 4000 V)

AC measurement method	Average value measurement RMS method
Display update	
rate	

General Specifications

Operating Indoors, pollution degree 2,
environment altitude up to 2000 m (6562 ft)
Operating - Temperature;
temperature $\quad-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}\left(-13.0^{\circ} \mathrm{F}\right.$ to $\left.149.0^{\circ} \mathrm{F}\right)$
and humidity $\quad\left(40 \mathrm{M} \Omega\right.$ range: up to $40^{\circ} \mathrm{C}$) Humidity (no condensation):
Less than $40^{\circ} \mathrm{C}\left(104.0^{\circ} \mathrm{F}\right)$: 80% RH or less At least $40^{\circ} \mathrm{C}\left(104.0^{\circ} \mathrm{F}\right)$ but less than $45^{\circ} \mathrm{C}\left(113.0^{\circ} \mathrm{F}\right)$:
60% RH or less $60 \% \mathrm{RH}$ or less
50% RH or $\left(113.0^{\circ} \mathrm{F}\right)$ but less than $50^{\circ} \mathrm{C}\left(122.0^{\circ} \mathrm{F}\right)$: At least $50^{\circ} \mathrm{C}(12$
$40 \% \mathrm{RH}$ or less $\left(122.0^{\circ} \mathrm{F}\right)$ but less than $55^{\circ} \mathrm{C}\left(131.0^{\circ} \mathrm{F}\right)$: At least $55^{\circ} \mathrm{C}$ (
$30 \% \mathrm{RH}$ or less $\left(0^{\circ} \mathrm{F}\right)$ but less than $60^{\circ} \mathrm{C}\left(140.0^{\circ} \mathrm{F}\right)$: At least $60^{\circ} \mathrm{C}\left(140.0^{\circ} \mathrm{F}\right)$ but less than $65^{\circ} \mathrm{C}\left(149.0^{\circ} \mathrm{F}\right)$: $25 \% \mathrm{RH}$ or less
$\begin{array}{ll}\begin{array}{l}\text { Storage } \\ \text { temperature }\end{array} & -25^{\circ} \mathrm{C} \text { to } 65^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F} \text { to } 149^{\circ} \mathrm{F}\right),\end{array}$
temperature $\quad 80 \%$ RH or less (no condensation)
Dust
Dust
and water
resistance
Drop-proof
functionality 1 m on concrete
Standards Safety: EN61010
Power supply CR2032 Coin-shaped lithium battery $\times 1(3 \mathrm{~V}$ DC)
Maximum rated power: 15 mVA
Continuous Approx. 120 hours
Dimensions $\cdot 3280-10 \mathrm{~F}$. Approx $57 \mathrm{~W} \times 175 \mathrm{H} \times 16 \mathrm{Dmm}$ 3280-10F: Approx. $57 \mathrm{~W} \times 175 \mathrm{H} \times 16 \mathrm{D}$ m
CT6280: Approx. $42 \mathrm{~W} \times 65 \mathrm{H} \times 18 \mathrm{Dmm}$
($1.65^{\prime \prime} \mathrm{W} \times 2.56^{\prime \prime} \mathrm{H} \times 0.71^{\prime \prime} \mathrm{D}$)
(excluaing the flexible loop and output

(including battery)
Product 3280. Approx. 77 g (2.5 oz)
warranty period ${ }^{\text {3280-10F, CT6280: } 3 \text { years }}$
Accessories •9398 Carrying Case
(C0205 Carrying Case when CT6280 is attached) - L9208 Test lead

- CR2032 Coin-shaped lithium battery

Options - CT6280 AC Flexible Current Sensor
(Attachment is included)
9209 Test Leads Holde
L4933 Contact Pin Set
(Can be connected to the tip of the L9208, which
L4934 Small Alligator Clip Se
(Can be connected to the tip of the L9208, which comes with the instrument.

CALIFORNIA, USA ONL

This product contains a CR Coin Lithium Battery which
contains Perchlorate Material - special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate

Function Specifications

Display
Maximum count: 4199 counts
Battery indicator $\quad \mathrm{B}$ mark lights up at $2.3 \mathrm{~V} \pm 0.15 \mathrm{~V}$ or less

Accuracy Specifications

Conditions of guaranteed accuracy

- Guaranteed accuracy period: 1 year
(Number of jaw and flexible loop open/close cycles: 10,000 or less) - Guaranteed accuracy period after adjustment made by Hioki:

1 year

- Temperature and humidity for guaranteed accuracy: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$\left(73.0^{\circ} \mathrm{F} \pm 9.0^{\circ} \mathrm{F}\right.$), $80 \% \mathrm{RH}$ or less
Temperature characteristic: Measurement accuracy $\times 0.11^{\circ} \mathrm{C}$ added (excluding $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

AC Current - Jaw

Range Accuracy range Accuracy
42.00A $\quad 4.00 \mathrm{~A}$ 41.09A $50 \mathrm{~Hz} \leq \mathrm{f} \leq 60 \mathrm{~Hz}$
$42.00 \mathrm{~A} \quad 4.00 \mathrm{~A}$ to 41.99 A
$420.0 \mathrm{~A} \quad 40.0 \mathrm{~A}$ to $419.9 \mathrm{~A} \quad \pm 1.5 \%$ rdg. $\pm 5 \mathrm{dgt}$.
$1000 \mathrm{~A} \quad 100 \mathrm{~A}$ to 1000 A
AC Current - Flexible loop
Range Accuracy range $50 \mathrm{~Hz} \leq 1 \leq$
420.0 A 40.0 A to 419.9 A $\pm 30 \%$ rd

4200 A 400 A to 4199 A (includes accuracy of CT6280 AC
Flexible Current Sensor: $\pm 1.0 \%$ rdg.)
*1: Includes accuracy of CT6280 AC Flexible Current Sensor: $\pm 1.0 \%$ rdg.
2. Accuracy is not defined for currents of 1000 A or more or currents of $5 \times 10^{5} \mathrm{~A} \cdot \mathrm{~Hz}$ or more.
AC Voltage

Range	Accuracy range	Accuracy				Input impedance						
		$\begin{aligned} & 45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \\ & \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 66 \mathrm{~Hz}<\mathrm{f} \leq \\ & 500 \mathrm{~Hz} \end{aligned}$								
4.200 V	0.400 V to 4.199 V	$\begin{aligned} & \pm 1.8 \% \text { rdg. } \\ & \pm 7 \text { dgt. } \end{aligned}$		$\begin{aligned} & \pm 2.3 \% \text { rdg. } \\ & \pm 8 \text { dgt. } \end{aligned}$		$11 \mathrm{M} \Omega \pm 5 \%$						
42.00 V	4.00 V to 41.99 V											
420.0 V	40.0 V to 419.9 V			10 M ¢ $\pm 5 \%$								
600 V	400 V to 600 V											
DC Voltage												
Range	Accuracy range		Accuracy		Input impedance							
420.0 mV	40.0 mV to 419.9 mV		$\pm 2.5 \% \text { rdg. }$$\pm 5 \mathrm{dgt} .$		$100 \mathrm{M} \Omega$ or more							
4.200 V	0.400 V to 4.199 V		$\begin{aligned} & \pm 1.0 \% \text { rdg. } \\ & \pm 3 \text { dgt. } \end{aligned}$		11 M 』 $\pm 5 \%$							
42.00 V	4.00 V to 41.99 V						10 M ת $\pm 5 \%$					
420.0 V	40.0 V to 419.9											
600 V	400 V to 600 V											
Resistance												
Range	Accuracy range		Accuracy			Open circuit voltage						
420.0 ת	40.0Ω to 419.9Ω		$\pm 2.0 \%$ rdg. $\pm 4 \mathrm{dgt}$.			$\begin{aligned} & 3.4 \mathrm{~V} \text { or } \\ & \text { less } \end{aligned}$						
$4.200 \mathrm{k} \Omega$	$0.400 \mathrm{k} \Omega$ to $4.199 \mathrm{k} \Omega$											
$42.00 \mathrm{k} \Omega$												
$420.0 \mathrm{k} \Omega$	$40.0 \mathrm{k} \Omega$ to $419.9 \mathrm{k} \Omega$											
$4.200 \mathrm{M} \Omega$	0.400 $\mathrm{M} \Omega$ to $4.199 \mathrm{M} \Omega$		$\pm 5.0 \%$ rdg. ± 4 dgt.									
$42.00 \mathrm{M} \Omega$			$\pm 10.0 \%$ rdg.$\pm 4 \mathrm{dgt}$.									
Continuity Check												
Range	Accuracy		Threshold of buzzer sound			Open circuit voltage						
420.0Ω	$\pm 2.0 \%$ rdg. ± 4 dgt.		$\begin{aligned} & 50 \Omega \pm 40 \Omega \text { or } \\ & \text { less } \end{aligned}$			V V or less						

