MS2690A Signal Analyzer series

MS2690ASignal AnalyzerMS2691ASignal AnalyzerMS2692ASignal Analyzer

Product Introduction

MS2690A: 50 Hz to 6 GHz MS2691A: 50 Hz to 13.5 GHz MS2692A: 50 Hz to 26.5 GHz

Version 18.00

ANRITSU CORPORATION

For the latest information on MS2690A/MS2691A/MS2692A series, please refer to the brochure.

Key Features: Multi-functions

Spectrum Analyzer (SPA) Function

World class dynamic range

Avg. noise level: -155 dBm/Hz (2 GHz)
TOI: ≥+22 dBm
W-CDMA ACLR: -78 dBc @ 5 MHz
Superior absolute amplitude
accuracy up to 6 GHz
A dB (50 Hz to 6 CHz) twp

•±0.3 dB (50 Hz to 6 GHz) typ.

Signal Analyzer (VSA) Function

Wideband FFT analysis of 31.25 MHz •Option upgrade to 125 MHz^{*1}

*1: When bandwidth setting > 31.25 MHz Frequency setting range: 100 MHz to 6 GHz

Digitize waveforms capture function

•Multi-domain waveform analysis•Save captured waveforms as IQ data

Preselector Bypass (MS2692A option)

Bypassing preselector improves RF frequency characteristics and in-band frequency characteristics.
Supports 125 MHz^{*2} Wideband Measurements up to 26.5 GHz

*2: Require Opt.077+078

Vector Signal Generator (SG)(option)

Frequency range: 125 MHz to 6 GHz
RF Modulation bandwidth: 120 MHz
Built in BER measurement function
Built-in AWGN addition function

Key Features: Expandability and Versatility

Modular platform supports options for a variety of applications.Installing measurement software options supports modulation analysis for each communications technology

Main Unit

MS2690A (50 Hz to 6 GHz) MS2691A (50 Hz to 13.5 GHz) MS2692A (50 Hz to 26.5 GHz)

Options

Vector Signal Generator (125 MHz to 6 GHz)

Analysis Bandwidth Extension (62.5/125 MHz)

6 GHz Preamp (100 kHz to 6 GHz)

Preselector Bypass (For MS2692A) Rubidium Reference Oscillator

Measurement Software

Vector Signal Generator Options (Built-in)

5G

LTE/LTE-Advanced (FDD/TDD) W-CDMA/HSPA/HSPA Evolution GSM/EDGE/EDGE Evolution TD-SCDMA ETC/DSRC WLAN

Key Features: Compact and Light Design

All-in-one platform supporting spectrum analyzer, signal analyzer, and vector signal generator functions with small footprint for production lines and easy portability.

Basic Performance: High-Level Dynamic Range (1/2)

The world-class dynamic range (displayed avg. noise level -155 dBm/Hz @ 2 GHz, TOI +22 dBm @ 2 GHz) reduces amplifiers and filters for spurious test systems, supporting simple, low-cost testing.

Basic Performance: High-Level Dynamic Range (2/2)

Dynamic Range Comparison (Catalog Specifications)

	ΤΟΙ	Noise Floor	Max. Dynamic Range
	@ 2GHz	@ 2 GHz	@ 10 kHz RBW
MS269xA(SPA)	+22 dBm	-155 dBm	88.5 dBc
MS2683A	+12.5 dBm	-147 dBm	77 dBc
Company-A SPA	+16 dBm	-151 dBm	82 dBc

*MS269xA SPA mode specification

- Wide Dynamic Range
- ⇒ Larger RBW can be used because weak signal rarely hides in noise floor.
- ⇒ Fast measurement speed

*When RBW width is 10 times different, the sweep time is 100 times different.

Basic Performance: Excellent Accuracy up to 6-GHz (1/2)

The MS269xA offers superior total level accuracy (± 0.3 dB typ.) and modulation accuracy over a wide frequency range of 50 Hz to 6 GHz using a basic band up to 6 GHz and two calibration oscillators. It also supports superior analysis performance for applications of 5G, 4G and W-LAN at 3 GHz or higher.

Pre-Selector

At high band, standard spectrum analyzers use a pre-selector to clean images. It is extremely difficult to stabilize the amplitude and frequency characteristics of the pre-selector, which is a notorious cause of degraded level accuracy and modulation precision in measurement devices. The throughput range of frequencies for the pre-selector also limits analytical bandwidths.

Basic Performance: Excellent Accuracy up to 6-GHz (1/2)

Excellent Frequency Characteristics In Analysis Bandwidth

The Signal Analyzer Extra Band Cal function using the built-in oscillator for calibration supports analysis bandwidth calibration at the set frequency.

The excellent in-band frequency characteristics support wideband modulation analysis with less error.

Frequency range of Extra Band Cal function:

Span \leq 31.25 MHz (Standard): 30 MHz to 6 GHz Span > 31.25 MHz (Opt.077/078): 100 MHz to 6 GHz

Basic Performance: Supports 125 MHz Wideband Measurements up to 26.5 GHz (1/2)

Wide bandwidth FFT Analysis

Not only can it capture wideband signals but FFT technology supports multifunction signal analyses in both the time and frequency domains.

	Bandwidth	Sampling rate	ADC resolution
Standard	31.25 MHz max.	50 MHz max.	16 bits
Analysis Bandwidth Extension to 62.5 MHz option (Opt.077*1)	62.5 MHz max.	100 MHz max.	14 bits
Analysis Bandwidth Extension to 125 MHz option (Opt.078 ^{*1,*2})	125 MHz max.	200 MHz max.	14 bits

*1: The MS269xA-177/178 cannot be retrofitted to the MS269xA already fitted with the MS269xA-004/104 Wideband Analysis Hardware option (discontinued). *2: MS269xA-078 requires MS269xA-077.

Frequency setting range	Bandwidth setting ≤ 31.25 MHz	Bandwidth setting > 31.25 MHz
MS2690A/91A/92A (Standard)	Main-frame upper limit frequency	
+MS269xA-077/078	Main-frame upper limit frequency	100 MHz to 6 GHz
MS2692A+MS2692A-077/078 +MS2692A-067 ^{*3}	Main-frame upper limit frequency	100 MHz to 26.5 GHz

*3: Microwave Preselecter Bypass. Can be installed in MS2692A. Cannot install simultaneously with MS2692A-003/008.

Basic Performance: Supports 125 MHz Wideband Measurements up to 26.5 GHz (2/2)

MS2692A-067^{*1} Microwave Preselector Bypass (For MS2692A)

Bypassing the preselector used for the microwave band improves RF frequency characteristics and in-band frequency characteristics.

*1: Can be installed in MS2692A. Cannot install simultaneously with MS2692A-003/008.

Preselector bypass Frequency Range: 6 GHz to 26.5 GHz

(When the preselector option is set to On, the image response elimination filter is bypassed. Therefore, this function is not appropriate for spurious measurement to receive the image response.)

MS2692A with the microwave preselector bypass supports signal analyzer measurement functions up to 26.5 GHz. Supports wideband analysis with high frequencies for satellite

Provided by customer

Basic Performance: High-Speed Modulation Analysis

High-Speed Modulation Analysis

The MS269xA with improved DSP technology and high-speed CPU offers about 20 times faster modulation analyses, such as CDMA and OFDM, than conventional Anritsu products. It shortens tact times on production lines and supports efficient analysis of next-generation systems.

Basic Performance: External Interfaces

Versatile External Interfaces as Standard

The MS269xA includes Gigabit Ethernet, USB2.0 and GPIB as standard interfaces for remote control.

Moreover, it can transfer large amounts of VSA digitized data at high speed over Gigabit Ethernet to an external PC.

Digitize: Wideband and High Accuracy Waveform Capture (1/2)

Captures wideband waveforms up to 125 MHz with accuracy of ±0.3 dB typ.

The MS269xA Digitize function with opt.077/078 support sampling with maximum resolution of 200 Msps/14 bit (standard: resolution of 50 Msps/16 bit). Based on the excellent level accuracy and wide dynamic range of the MS269xA, a signal with an FFT analysis bandwidth of up to 125 MHz can be captured with a level accuracy of ± 0.3 dB (typ.).

	Bandwidth	Sampling rate	ADC resolution
Standard	31.25 MHz max.	50 MHz max. (20 ns)	16 bits
Opt.077*1	62.5 MHz max.	100 MHz max. (10 ns)	14 bits
Opt.077*1+078*1,*2	125 MHz max.	200 MHz max. (5 ns)	14 bits

*1: The MS269xA-177/178 cannot be retrofitted to the MS269xA already fitted with the MS269xA-004/104 Wideband Analysis Hardware option (discontinued). *2: MS269xA-078 requires MS269xA-077.

The "Analysis bandwidth \times Analysis time" signal is held in internal memory and saved to hard disk. Up to 100 Msamples of data can be saved to memory for one measurement.

•Frequency Span

1 kHz to 31.25 MHz 1 kHz to 62.5 MHz (Opt-077) 1 kHz to 125 MHz (Opt-077+078)

Sampling Rate

2 kHz to 50 MHz 2 kHz to 100 MHz (Opt-077) 2 kHz to 200 MHz (Opt-077+078) (Automatic frequency span setting)

•Attenuator: 0 to 60 dB

•Trigger: Video / Wide IF Video / External / SG Marker

Span	Sampling Rate	Capture Time	Max. Sampling Data
1 kHz	2 kHz	2000 s	4 M
2.5 kHz	5 kHz	2000 s	10 M
5 kHz	10 kHz	2000 s	20 M
10 kHz	20 kHz	2000 s	40 M
25 kHz	50 kHz	2000 s	100 M
50 kHz	100 kHz	1000 s	100 M
100 kHz	200 kHz	500 s	100 M
250 kHz	500 kHz	200 s	100 M
500 kHz	1 MHz	100 s	100 M
1 MHz	2 MHz	50 s	100 M
2.5 MHz	5 MHz	20 s	100 M
5 MHz	10 MHz	10 s	100 M
10 MHz	20 MHz	5 s	100 M
25 MHz	50 MHz	2 s	100 M
31.25 MHz	50 MHz	2 s	100 M
50 MHz	100 MHz	500 ms	50 M
62.5 MHz	100 MHz	500 ms	50 M
100 MHz	200 MHz	500 ms	100 M
125 MHz	200 MHz	500 ms	100 M

Digitize: Calibration-Free Waveform Capture

No need for calibration block at analysis tool side

Normally, error calibration is required at signal analysis due to amplitude/phase errors generated by passage of the RF signal through the down converter.

The MS269xA has built-in amplitude/phase calibration circuits to automatically calibrate internal error.

Captured waveform data are saved to the built-in hard disk and can also be output to an external PC via 1000BASE-T.

Digitize: Expansion Digitize Function

The MS269xA can seamlessly capture up to 4 hours of signals in the 20 MHz band max. to monitor every instantaneous fault and signal fluctuation. It is useful for observing long-term DUT performance in a changing environment (temperature, humidity, external vibration, etc.) and troubleshooting faults by monitoring the radio-wave environment of base stations with poor performance.

VSA Function: Multi-domain Analysis of Captured Signals

Display captured waveforms in various domains

Frequency vs. Time

Displays waveform of wideband SPAN up to 125 MHz without interruption The Power vs. Time trace displays a graph with amplitude on the y-axis and time on the x-axis to confirm changes in power with time of measured signals.

Phase vs. Time

Monitors time fluctuations of phase to check sudden phase shift

Spectrogram

CCDF/APD

Displays spectrum variations with time; useful for understanding waveform transients because supports visual monitoring of frequency and level time variations

Supports wideband CCDF analysis up to 125 MHz and ideal for evaluating power amps for wideband communication systems

VSA Function: Continuous monitoring of spectrum changes

Spectrogram

This function supports continuous monitoring of spectrum changes with a SPAN up to 125 MHz. It is useful for checking the stability of burst signals and occasional interference signals due to intuitive recognition of changes in frequency and level with time.

LTE Signal causing Distortion due to Interference between Symbols

VSA Function: Intuitive Split-Screen Display

Various VSA analyses can be performed on the main trace by specifying analysis segments on the sub-trace. Intuitive analysis focusing on signal-on/rising/falling, etc., parts is made easy by observing signal distributions on the sub-trace.

VSA Function: One-Step Observation of Rising/Falling Signals

This function supports troubleshooting by frame-by-frame replay of transient burst responses and generation of unwanted spurious in captured RF signals.

VSA Function: Useful Replay Function for Comparative Verification

Captured waveforms can be replayed again by using the VSA function to read saved digitize data. This is convenient for comparing performance of each DUT test version using digitized data as well as for troubleshooting post-shipment product faults.

Digitize Data File Selection Screen

VSA Function: Flexible File Save Function

Captured data can be saved to a file by specifying the Analysis Time range (display range of main trace) or any time. The amount of saved data and later workload are cut because only required segments are captured and saved to a file.

VSA Function: FFT Analysis Advantages Ultra High Speed

The MS269xA measures many times faster than a sweep spectrum analyzer by using the signal analyzer mode, which performs FFT analysis for the standard 31.25 MHz bandwidth.

VSA Function: No Trace Mode

No Trace mode does not execute signal analysis. Therefore, "IQ data output" and "IQ data readout using remote commands" can be executed quickly without the need to wait for completion of analysis.

SPA Function: Six Times (max.) Faster Sweep

Fast mode with <u>6 times faster</u> sweeping minimizes spurious measurement times, etc.

Fast mode: Achieves high-speed measurement with accuracy by using internal calibration

Measurement Software

Modulation analysis of various communication systems from cellular system, such as 5G, LTE and WCDMA analysis software is all supported.

Communications Systems	Model	Name	Communications Systems	Model	Name
	MX269051A	5G Standard Measurement Software (Base License)	W-CDMA/HSPA/	MX269011A	W-CDMA/HSPA Downlink Measurement Software
	MX269051A-011	NR TDD sub-6 GHz Downlink (Requires MX269051A)	HSPA Evolution	MX269012A	W-CDMA/HSPA Uplink Measurement Software
5G	MX269051A-061	NR TDD sub-6 GHz Uplink (Requires MX269051A)	W-CDMA/HSPA	MX269030A	W-CDMA BS Measurement Software
	MX269051A-031	NR FDD sub-6 GHz Downlink (Requires MX269051A)	GSM/EDGE	MX269013A	GSM/EDGE Measurement Software
	MX269051A-081	NR FDD sub-6 GHz Uplink (Requires MX269051A)	EDGE Evolution	MX269013A-001	EDGE Evolution Measurement Software
LTE / LTE-Advanced(FDD)	MX269020A	LTE Downlink Measurement Software	0.004.0000	MX269024A	CDMA2000 Forward Link Measurement Software
	MX269020A-001	LTE-Advanced FDD Downlink Measurement Software	CDIVIA2000	MX269024A-001	All Measure Function
	MX269021A	LTE Uplink Measurement Software		MX269026A	EV-DO Forward Link Measurement Software
	MX269021A-001	LTE-Advanced FDD Uplink Measurement Software		MX269026A-001	All Measure Function
	MX269022A	LTE TDD Downlink Measurement Software	TD-SCDMA	MX269015A	TD-SCDMA Measurement Software
ITE / ITE Advanced (TDD)	MX269022A-001	LTE-Advanced TDD Downlink Measurement Software	ETC/DSRC	MX269014A	ETC/DSRC Measurement Software
LTE / LTE-Advanced (TDD)	MX269023A	LTE TDD Uplink Measurement Software	Multi-TDMA systems	MX269017A	Vector Modulation Analysis Software
	MX269023A-001	LTE-Advanced TDD Uplink Measurement Software		MX269028A	WLAN (802.11) Measurement Software (Supports IEEE802.11n/11a/11b/
			WLAN		11g/11j/11p) 802 112c (160 MHz)

See each software catalog for more details.

*: Only for MS269xA.

Combining with the MS269xA-078 Analysis Bandwidth Extension to 125 MHz supports modulation analysis up to 160 MHz bandwidth signals of the IEEE802.11ac.

MX269028A-002 *

Measurement Software (for MS269xA) The MS269xA has all the versatile built-in measurement functions needed for evaluating Tx characteristics. Using functions matching measurements supports simple tests according to specifications.

Measure Function	SPA ^{*1}	VSA ^{*2}	
Channel Power	✓	✓	
Occupied Bandwidth	\checkmark	\checkmark	
Adjacent Channel Leakage Power	\checkmark	\checkmark	
Spectrum Emission Mask	\checkmark		
Burst Average Power	✓	✓	
Spurious Emission	✓		
AM Depth		\checkmark	
FM Deviation		\checkmark	
Multi-marker & Marker List	\checkmark	\checkmark	
Highest 10 Markers	\checkmark	✓	
Limit Line	\checkmark		
Frequency Counter	\checkmark		
2-tone 3rd-order Intermodulation Distortion	✓		
Annotation Display (On/Off)	\checkmark		
Phase Noise	Independe	nt function	
Power Meter	Independent function ^{*3}		
Noise Figure	Opt. 017 *4		

*1: SPA (Spectrum Analyzer)

- *2: VSA (Vector Signal Analyzer)
- *3: Use USB Power Sensors
- *4: Use Noise Sources (Noisecom, NC346 series)

Channel Power

Channel power measurement using three types of filter (Rectangular, Nyquist, Root Nyquist) is supported.

Channel Power Measurement

Occupied Bandwidth

Occupied bandwidth is measured in two modes—N% and X dB.

Occupied Bandwidth Measurement

Useful Measurement Functions for Evaluating Tx Characteristics (4/21)

Adjacent Channel Leakage Power (ACLR)

This function measures adjacent channel leakage power.

Adjacent Channel Leakage Power Measurement

Useful Measurement Functions for Evaluating Tx Characteristics (5/21)

Adjacent Channel Leakage Power (ACLR)

In Band can be set from 1 to 12 carriers and switched instantaneously on the screen. Moreover, true ACLR performance is measured using the noise cancellation function to subtract main-frame noise from the measurement result.

Useful Measurement Functions for Evaluating Tx Characteristics (6/21)

Adjacent Channel Leakage Power (ACLR)

Offset channel can be set from 1 to 8 and switched instantaneously on the screen.

Spectrum Emission Mask (SEM)

Offset limit lines can be set for up to 12 segments. The peak frequency and level in each segment are displayed and parts exceeding the limit line are indicated in red. Also, when a limit line is exceeded at just one part, Fail is displayed in red at the Result displays at the bottom left of the screen.

Spectrum Emission Mask Measurement

Limit Lines

Up to six types of Limit line can be set on the spectrum display (frequency domain). In addition to setting the frequency and level of crossover points manually in sequence from the low frequency, after creating the right half of a line, the left half can be created by reversing and copying the right half, to set a symmetric limit line. Additionally, a Limit line that traces the measured waveform can be created using the Limit Envelope function. A margin can be set on the Limit line in the amplitude direction.

When the waveform is above or below the Limit line, it is evaluated automatically as PASS or FAIL. Evaluation is also possible with an added margin. The target evaluation line can be chosen from any of six types.

When the waveform matches the evaluation conditions (Event), it can be saved automatically as a csv format file. Any one of the following five Event types can be selected. (Save on Event Function)

- (1) Limit Fail: Saves waveform file when evaluation result is Fail
- (2) Limit Pass: Saves waveform file when evaluation result is Pass
- (3) Margin Fail: Saves waveform file when evaluation result including Margin is Fail
- (4) Margin Pass: Saves waveform file when evaluation result including Margin is Pass
- (5) Sweep Complete: Saves waveform file at every measurement regardless of evaluation result

Line: Limit 1, Limit 2, Limit 3, Limit 4, Limit 5, Limit 6 Evaluation Type: Upper Limit, Lower Limit Crossover (Point): 1 to 100 Margin: Set Margin line for each Limit 1, 2, 3, 4, 5, 6 **Evaluation Result: PASS, FAIL** Result Save: Auto-save as csv format file. (Save on Event Function)

PASS/FAIL evaluation is performed by changing the input signal level. The evaluation results for the five line types can be displayed simultaneously on one screen.

Useful Measurement Functions for Evaluating Tx Characteristics (9/21)

Average In-burst Power Measurement

The average power of specified burst segments is displayed in the time domain. Measurement only requires setting the measurement start and end positions on the screen.

Average In-burst Power Measurement

Spurious Emission

The peak frequency and level in each segment and the standard margin are displayed; parts exceeding the limit line are indicated in red. Also, Fail is displayed in red at the bottom left of the Results display even when the limit line is exceeded at only one part. A maximum of 20 segments can be set.

Spurious Emission Measurement

Detected spurious: Segment number, frequency, level (Peak/Margin), limit line

Useful Measurement Functions for Evaluating Tx Characteristics (11/21)

AM: Power vs. Time

This function measures the amplitude modulation.

FM Shift Measurement Function: Frequency vs. Time

This function measures frequency shift.

AM Measurement

VSA

FM Shift Measurement

Useful Measurement Functions for Evaluating Tx Characteristics (12/21)

VSA

Phase Fluctuation Display Function: Phase vs. Time

This function displays phase time fluctuations.

Phase Fluctuation Display

Zone Marker Function

This displays the Peak value within the specified range. It is useful for measuring unstable signals with fluctuating frequency and noise.

Multi-Marker/Highest 10 Function

This automatically searches for the ten highest peaks sorted from highest level (Sort Y) or lowest frequency (Sort X). In addition, setting a threshold eliminates unnecessary searching. This can be used for IM and harmonic, etc., measurements.

IM Measurement

Harmonic Measurement

SPA

VSA

Gate Sweeping

This function performs sweeping at the specified gate timing. The spectrum of the burst-on signal is easily displayed, etc., because sub-screens can be displayed simultaneously in the time domain.

Frequency Counter

Set [Freq. Count] to ON to use the frequency counter function. [Gate Time] sets the frequency counter measurement time.

Off

SPA

2-tone 3rd-order Intermodulation Distortion

Input two CW signals (wanted signals) with different frequencies and calculate the TOI (Third Order Intercept) from the 2-tone 3rd-order Intermodulation Distortion generated near the wanted signals by the DUT non-linear characteristics.

Spectrum Analyzer	^{012 1027:40} Results Display
RBW 3kHz ATT 10dB Spectru VBW 3kHz SWT 27ms	Displays calculated TOI. Displays
Reference Level 0.00dBm Pos & Neg 10001 points	TOI TOI (dBm) worst value (Lower) of two
Wanted Signal Wanted Signal	Displays level ratio of 2-tone 3rd-
-100 - 2-tope 3rd-order	equency to Tuno Amplitude (dBc) wanted signal Displays worst value
-30.0 Intermodulation Intermodulation	(smaller value) of two calculated
-40.0 Distortion Auto	Manual Values (Lower, Upper).
-50.0 -60.0	distortion generated at Lower frequency of wanted waveform.
	Displays frequency, signal level, level ratio compared to wanted signal and calculated TOL
	Signal, and calculated For. 050 000GHz Wanted signal with lower frequency Lower Tone components. Displays frequency and
Center 0.999 999 98GHz Span 400.160kHz S	search signal level.
TOI Frequency Amplitude Amplitude TOI (dBm) (GHz) (dBm) (dBc) (dBm) 1.69 Lower 3rd 0.999 850 000 -43.21 -29.94 1.69	Upper Tone Components. Displays frequency and signal level.
Amplitude (dBc) Lower Tone 0.999 949 960 -13.28 -29.94 Upper Tone 1.000 050 000 -13.27 Upper 3rd 1.000 149 999 -43.30 -30.02 1.74	2-tone 3rd-order intermodulation distortion generated at Upper frequency of wanted waveform
A₩ off B− C− D− E− E− I off I of 2	Upper 3rd Displays frequency, signal level,
	signal, and calculated TOI.

MS260XA E. Lenvision : ensure

Annotation Display (On/Off)

Screen annotations can be set to On or Off. Annotations about frequency, amplitude, etc., are not displayed at the Off setting.

Phase Noise Measurement Function

This function measures the phase noise over a frequency offset range of 10 Hz to 10 MHz.

Useful Measurement Functions for Evaluating Tx Characteristics (18/21)

Power Meter Function

Power meter function can connect a USB power sensor to the MS269xA and read the measurement values.

MS2692A Power Meter	6/6/2012 12:58:15
	We Power Meter Power Meter
	Frequency
	►
COM5 MA24108A Freq: 1.000 000 000 GHz Range: Auto	Amplitude
POWER : -10.00 dBm	
0.00 dB	Measure
100. _µ vv	
Measuring Not Zeroed Offset : Off , 0.00 dB Average : 80 / 1000	
	Accessory

Compatible USB power sensors.

Model	Frequency	Resolution	Dynamic Range
MA24104A*	600 MHz to 4 GHz	1 kHz	+3 to +51.76 dBm
MA24105A	350 MHz to 4GHz	100 kHz	+3 to +51.76 dBm
MA24106A	50 MHz to 6 GHz	1 kHz	–40 to +23 dBm
MA24108A	10 MHz to 8 GHz	100 kHz	–40 to +20 dBm
MA24118A	10 MHz to 18 GHz	100 kHz	–40 to +20 dBm
MA24126A	10 MHz to 26 GHz	100 kHz	-40 to +20 dBm

*: MA24104A has been discontinued.

Useful Measurement Functions for Evaluating Tx Characteristics (19/21)

Noise Figure Measurement Function [Opt.017]

Noise Figure is measured with the measurement method of Y-factor

method which uses a Noise Source.

Frequency Mode: Fixed/List/Sweep

DUT Mode: Amplifier

Screen Layout: Graph/Table

Measurement Results Display

Graph/List/Spot

Displays measurement results for each trace (Trace1/Trace2).

- Noise Figure (NF) [dB]
- Noise Factor (F) [Linear]

Gain

- Y-Factor: Power ratio when Noise Source is turned ON/OFF
- T effective: Effective noise temperature
- P Hot: Power measured when Noise Source is On.
- P Cold: Power measured when Noise Source is Off.

Measurement Result: Example of Graph display (Frequency Mode: Sweep, Screen Layout: Graph)

1 MS2690A	Noise Figure						_0	10/24/2012 19:31:42
BW		4 000 000Hz	ATT DUT	Ar	0dB nplifier	Loss Status	Before:Off After:Off	Heasure
Total Point		8	T cold	2	96.50K	CAL Status ENR Status	OK Table	Trace
Result								
	Fr	equency		Noise Figure		Gain		Storage
	30 100	000 000H	Z 7	10.66039dB 3.08945dB	1 1	7.40024dl 6 59371dl	3	Layout
	1 000	000 000H	Z	2.05194dB	1	4.53178dl	В	Graph <u>Table</u>
	2 000 (3 000 (000 000H: 000 000H:	z z	2.93286dB 3.10655dB	1) 1(2.31772di 0.24146di	3 3	
	6 000	000 000H	Z	5.07462dB	1	1.33644dl	3	BW
	2 100 (000 000H: 000 000H:	z z	1.97577dB 2.81561dB	1	5.33487di 2.24213di	3	4.000MHz
								Analysis Time Mode <u>Auto</u> Manual
								Analysis Time (Ave. Time) 16.19ms
Freque	ency Min	30 000 00	0Hz	Frequency	Max	6 000 000	000Hz	Cal Setup
Ref.Int	Pre-Amp	On						0

Measurement Result: Example of List display (Frequency Mode: List, Screen Layout: List)

↑ MS2690A Noise Figure	10/24/2012 19:36
BW 4 000 000Hz AT DU T c	T OdB Less Status Before:Off TT Amplifier old 296.50K CAL Status OK ENK Status Table
Result	Average 10 / 10
Frequency	Noise Figure Gain Result Type
1 000 000 000Hz	2.09268dB 14.55470dB
Noise Figure	NF Max 2.12025dB
NF Current 2.082870	IB NF Min 2.06244dB
NF Average 2.092680	IB NF Max to Min 0.05781dB
	Reference 3.00dB
Ref.int Pre-Amp On	Scale/Div 1.000dB

Measurement Result: Example of Spot display (Frequency Mode: Fixed) **Useful Measurement Functions for Evaluating Tx Characteristics (20/21)**

Noise Figure Measurement Function [Opt.017]

Noise Source

Supports noise sources from Noisecom NC346 series. NC346 series models and summary specifications are listed below. See the NC346 series catalog and datasheet for detailed specifications.

Model	RF Connector	Frequency [GHz]	Output ENR [dB]	VSWR (maximum @ on/off) [GHz]				DC Offect	DC Block
MODEL				0.01 to 5	5 to 18	18 to 26.5	26.5 to 40	DC Oliset	DC BIOCK
NC346A	SMA (M)	0.01 to 18.0	5 to 7	1.15:1	1.25:1	_	_	No	Not required
NC346A Precision	APC3.5 (M)	0.01 to 18.0	5 to 7	1.15:1	1.25:1	—	_	No	Not required
NC346A Option 1	N (M)	0.01 to 18.0	5 to 7	1.15:1	1.25:1	—	_	No	Not required
NC346A Option 2	APC7	0.01 to 18.0	5 to 7	1.15:1	1.25:1	_	_	No	Not required
NC346A Option 4	N (F)	0.01 to 18.0	5 to 7	1.15:1	1.25:1	—	_	No	Not required
NC346B	SMA (M)	0.01 to 18.0	14 to 16	1.15:1	1.25:1	—	—	No	Not required
NC346B Precision	APC3.5 (M)	0.01 to 18.0	14 to 16	1.15:1	1.25:1	—	_	No	Not required
NC346B Option 1	N (M)	0.01 to 18.0	14 to 16	1.15:1	1.35:1	_	_	No	Not required
NC346B Option 2	APC7	0.01 to 18.0	14 to 16	1.15:1	1.25:1	_	_	No	Not required
NC346B Option 4	N (F)	0.01 to 18.0	14 to 16	1.15:1	1.35:1	_	_	No	Not required
NC346D	SMA (M)	0.01 to 18.0	19 to 25*1	1.50:1	1.50:1	—	_	No	Not required
NC346D Precision	APC3.5 (M)	0.01 to 18.0	19 to 25 ^{*1}	1.50:1	1.50:1	—	_	No	Not required
NC346D Option 1	N (M)	0.01 to 18.0	19 to 25*1	1.50:1	1.75:1	_	_	No	Not required
NC346D Option 2	APC7	0.01 to 18.0	19 to 25*1	1.50:1	1.50:1	—	_	No	Not required
NC346D Option 3	N (F)	0.01 to 18.0	19 to 25*1	1.50:1	1.75:1	—	_	No	Not required
NC346C	APC3.5 (M)	0.01 to 26.5	13 to 17	1.15:1	1.25:1	1.35:1	_	Yes ^{*3}	Required ^{*3}
NC346E	APC3.5 (M)	0.01 to 26.5	19 to 25 ^{*1}	1.50:1	1.50:1	1.50:1	_	Yes ^{*3}	Required ^{*3}
NC346Ka	K (M)*2	0.10 to 40.0	10 to 17	1.25:1	1.30:1	1.40:1	1.50:1	Yes ^{*3}	Required ^{*3}

NC346 series summary specifications

*1: Flatness better than ±2 dB

*2: Compatible with SMA and APC3.5

*3: When using noise sources output by DC, always use in combination with a DC block.

Useful Measurement Functions for Evaluating Tx Characteristics (21/21)

Noise Figure Measurement Function [Opt.017]

Specifications Outlines of Recommended DC Blocks and Adapters

\sim		Ordering	PE Connector	Frequency Range	
	Model	Name	KF CONNECTOR		
DC Block	J0805	DC Block, N type (MODEL 7003)	N (M)-N (F)	10 kHz to 18 GHz	
	J1555A	DC Block, SMA type (MODEL 7006-1)	SMA (M)-SMA (F)	9 kHz to 20 GHz	
	K261	DC Block	K (M)-K (F)	10 kHz to 40 GHz	
Adapter	J0004	Coaxial Adapter	N (M)-SMA (F)	DC to 12.4 GHz	
	J1398A	N-SMA Adapter	N (M)-SMA (F)	DC to 26.5 GHz	

Recommended DC blocks / Adaptor combinations for MS269xA/MS2830A series signal analyzer

	Model	Frequency Range	RF connector	Recommended DC Block Order Name	Recommended Adapter Order Name
	MS2690A	50 Hz to 6 GHz	N (F)	J1555A (from 9 kHz)	J0004
MS269xA series	MS2691A	50 Hz to 13.5 GHz	N (F)	J1555A (from 9 kHz)	J1398A
	MS2692A	50 Hz to 26.5 GHz	N (F)	J1555A (9 kHz to 20 GHz)	J1398A
	MS2830A-040	9 kHz to 3.6 GHz	N (F)	Not required	Not required
	MS2830A-041	9 kHz to 6 GHz	N (F)	Not required	Not required
MS2830A series	MS2830A-043	9 kHz to 13.5 GHz	N (F)	Not required	Not required
	MS2830A-044	9 kHz to 26.5 GHz	N (F)	J1555A (9 kHz to 20 GHz)	J1398A
	MS2830A-045	9 kHz to 43 GHz	K (F)	K261	Not required

SG Feature: Vector Signal Generator

The MS269xA incorporates a Vector Signal Generator with frequency range from 125 MHz to 6.0 GHz, 120 MHz vector modulation bandwidth, and 256 Msample (1 GB) waveform memory.

Due to the excellent level accuracy and ACLR performance, it is ideal for use with the spectrum analyzer and signal generator functions for measuring amplifiers, filters and antennas.

Features

Frequency: 125 MHz to 6.0 GHz
Vector modulation band: 120 MHz
Waveform memory: 256 Msample
High level accuracy

Absolute Level Accuracy: ±0.5 dB Linearity: ±0.2 dB (typ.)

 •Excellent ACLR performance ≤-64 dBc -68 dBc (typ.) @ 5 MHz offset ≤-67 dBc -70 dBc (typ.) @10 MHz offset
 •BER Measurement function
 •AWGN Addition function

Wanted signal + AWGN signal output from one unit

[Signal Generator Option] MS269xA-020 Vector Signal Generator (125MHz to 6GHz)

SG Feature: Communication System Line Up

The pre-installed standard waveform pattern is bundled free-of-charge. Moreover, optional PC software (IQproducer) generates waveform patterns with any parameter settings.

In addition, any waveform pattern can be created using IQ data output from simulation tools.

Versatile communication system

Built-in waveform patterns

- W-CDMA HSDPA CDMA2000
- CDMA2000 1xEV-DO GSM/EDGE
- Digital Broadcast (ISDB-T/BS/CS/CATV)
- WLAN (IEEE802.11a/11b/11g) Bluetooth®
- AWGN

-TD-SCDMA*

IQproducer (waveform creation software)

-5G (FDD, Sub-6 GHz)* -5G (TDD, Sub-6 GHz)* -LTE (FDD)* / LTE-Advanced (FDD)* -LTE (TDD)* / LTE-Advanced (TDD)* -HSDPA/HSUPA* -W-CDMA -TDMA (PDC, PHS, Various ARIB standards)* -Multi-carrier* -WLAN (11a/b/g/n/j/p)* / WLAN 11ac*

* option

Arbitrary waveform creation

Outputs ASCII IQ data from EDA tool converted to waveform pattern for MS269xA-020

See each IQproducer brochure for more details.

SG Function: Frequency Range and Modulation Band

This all-in-one hardware SG has the performance (frequency 6 GHz, modulation band 120 MHz) to output signals for main communication systems.

Bandwidth (MHz) 120 LTE **WLAN** 100-LTE-Adv **WLAN** (11n 11b/g) (11ac LTE 11n LTE-Adv 11a) 20 10-**WMAN** W-CDMA TD-SCDMA **WMAN** 1 cdmaOne cdmaOne GSM EDGE PDC PDC 0 5 0.25 3 1 2 Frequency (GHz)

• Frequency range: 125 MHz to 6 GHz

The frequency range covers 5 GHz band wireless LAN, 5G and 4G.

Vector modulation band: 120 MHz (built in baseband generator)

The wideband 120 MHz vector modulation bandwidth is achieved using a built-in baseband signal generator.

SG Performance: ACLR Performance

Superior ACLR Performance

The superior ACLR performance is useful for device Tx tests of amplifiers, etc. The MX269904A Multi-Carrier IQproducer software generates multiple carrier waveform patterns.

4 Carrier ACLR (measured value)

(W-CDMA, TestModel1 64DPCH, 2 GHz, SG output -5 dBm)

*: The value is only example data selected at random, and is not the guaranteed performance.

SG Function: AWGN

Built-in AWGN Generator for Dynamic Range Tests

This can add AWGN (Additive White Gaussian Noise) to the wanted wave in arbitrary waveform memory. It is useful for Tx dynamic range tests.

SG Function: Built-in BER Measuring Instrument (option)

Built-in BER Measurement for Rx Characteristic Evaluation

Adding the MS269xA-020 Vector Signal Generator option includes a built-in BER measuring instrument for measurements up to 10 Mbps. It supports Rx sensitivity tests by inputting the receiver-demodulated Data/Clock/Enable to the back of the MS269xA.

Merits of All-in-One SA+SG (1/3) Easy reproduction of field environment

Digitizer Function + Vector SG Option

Captured waveforms are converted to Vector SG waveform patterns using the built-in PC software. These patterns are read by the vector signal generator to replay the signal.

The field environment is easily reproduced at the bench top to use captured device signals with a stable golden DUT for debugging and higher reliability testing.

Reproduce captured waveforms from SG

Merits of All-in-One SA+SG (2/3) Easy reproduction of field environment

Digitizer Function + Vector SG Option

Capture & Playback Function

The MS269xA provides *Capture & Playback* functionality that enables laboratorygrade testing of transceiver systems using real world signals. Using the optional integrated Vector Signal Analyzer and Vector Signal Generator of the MS269xA, *Capture & Playback* allows users to conveniently capture up to 100 MHz of spectrum and play it back at any designated frequency and amplitude, making it easy to determine device performance margins.

Bandwidth and Time Limits

Minimum 10 kHz Bandwidth (2000 s maximum duration)* Maximum 100 MHz Bandwidth (500 ms maximum duration)* *: Maximum bandwidth depends upon vector signal analyzer options installed (Standard analysis bandwidth or Opt. 077/078).

• Captured signal may be freely tuned to any output frequency and amplitude supported by the vector signal generator.

- Any section of the captured waveform record may be selected and played back.
 - Enables user to isolate and reproduce specific signal bursts
 - ✓ Enables user to change duty cycle of pulsed waveforms

Merits of All-in-One SA+SG (3/3) Reduced Equipment Investment

The spectrum analyzer and signal generator in one main frame support easy configuration of measurement systems and save bench space, initial equipment investment, and running costs (calibration, management, and power consumption).

Software Download Service

Software download service

This service, which provides updated versions of firmware and software for downloading by product customers, is available on Anritsu's website.

Firmware / Software	Contents	Available version	
MS269xA Software Installer	 MX269000A Standard Software This software is installed as standard when shipping the main frame. Spectrum Analyzer function, Signal Analyzer function, etc. MX2690xxA series Measurement Software Measurement software for various communication systems. 	The latest version is available on the website.	
MX370100A IQproducer Installer	MX2699xxA series IQproducer PC application software used for generating waveform pattern for various communication systems		
Standard waveform patterns	MX269099A Standard waveform pattern This waveform pattern is installed as standard when shipping the MS269xA-020. The latest version is installed when shipping.	Only the updated waveform pattern is available on the website.	

Download software list

User registration is required for using the software download service.

User registration can be performed on the Anritsu website:

https://my.anritsu.com/home

2020-4 MJM No. MS269xA-E-L-1-(18.00)