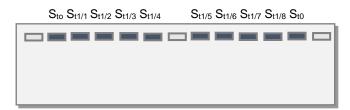


#### Student Protocol CRISPR



#### 1. gRNA-Synthesis




1.1 Pipet following reagents in your empty tube S for gRNA-synthesis:

| Tube             | Content           | Vol.  |
|------------------|-------------------|-------|
| H <sub>2</sub> O | Nuclease free H₂O | 16 µL |
| NTP              | NTP Buffer mix    | 10 μL |
| D                | DNA Duplex        | 2 µL  |
| T7               | T7 RNA Polymerase | 2 µL  |
| Total \          | /olume (S)        | 30 μL |

- 1.2 As the blank control for gRNA-synthesis, pipet 5  $\mu$ L out of your tube S in a new tube marked with S<sub>10</sub> and put it on ice.
- 1.3 Incubate your tube S at 37 °C for 1 h.

### 2. Gel Electrophoresis Check of the gRNA Produced

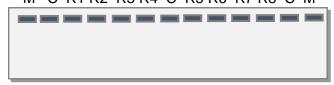
- 2.1 Open gel cassette and moisten the wells with  $H_2O_{\text{dist}}$ .
- 2.2 Aspirate excess water using the kitchen roll.
- 2.3 Pipet 5  $\mu$ L out of your gRNA synthesis tube (S) in a new tube marked with S<sub>t1</sub> and your group number. Keep tube (S) on ice.
- 2.4 Add into both tubes  $S_{t0}$  and  $S_{t1}$  1  $\mu L$  of loading buffer (LB).
- 2.5 Pipet according to the following scheme 6  $\mu$ L of gRNA synthesis tubes  $S_{t1/1} S_{t1/8}$  and two groups  $S_{t0}$  in the wells of the gel:



2.6 Connect FlashGel dock to the power supply and start gel electrophoresis at 180 V. Watch progress of electrophoresis by switching on the UV lamp on the dock.

Task: Evaluate your gel regarding gRNA synthesis.

# 3. Restriction Digestion to linearize Plasmid pBR322


3.1 Pipet restriction digestion ingredients according to the following table into empty tube D:



| Tube             | Content                | Vol.   |
|------------------|------------------------|--------|
| H <sub>2</sub> O | Nuclease free H₂O      | 15 μL  |
| Р                | pBR322 (2,5 μg)        | 5 µL   |
| RE               | Pstl (2,5 units)       | 2.5 µL |
| RE-P             | 10x Restriction Buffer | 2.5 µL |
| Total \          | /olume (D)             | 25 μL  |

- 3.2 Incubate tube D at 37 °C for 15 minutes.
- 4. Proof of Restriction Digestion by Gel Electrophoresis
- 4.1 Open gel cassette and moisten the wells with  $H_2O_{\text{dest}}$ .
- 4.2 Aspirate excess water using the kitchen roll.
- 4.3 Pipet for blank control 1  $\mu$ L loading buffer (LB), 1  $\mu$ L of undigested plasmid (P) and 4  $\mu$ L H<sub>2</sub>O in a new tube (C).
- 4.4 Pipet for proving successful digestion
  1 μL loading buffer (LB), 1 μL H<sub>2</sub>O and
  4 μL restriction digestion from tube D in a new tube (R). Keep tube (D) on ice.
- 4.5 Pipet according to the following pipetting scheme in each well
  - 4 µL marker (M),
  - 6 µL undigested plasmid (C)
  - 6 µL of restricted samples (R) of each 8 work groups **R1 R8** into the wells of the gel:

M C R1 R2 R3 R4 C R5 R6 R7 R8 C M



4.6 Connect FlashGel dock to the power supply and start gel electrophoresis at 180V. Watch progress of electrophoresis by switching on the UV lamp on the dock.

Task: Evaluate your gel regarding restriction digestion of plasmid pBR322 by *Pst*l.



#### Student Protocol CRISPR



5. Cleavage of linearized Plasmid pBR322 by Nuclease Cas9



5.1 Pipet samples 1 – 3 according to following table:

| Sample                          | 1                     | 2                                           | 3                                         |
|---------------------------------|-----------------------|---------------------------------------------|-------------------------------------------|
|                                 | pBR322 <sub>lin</sub> | pBR322 <sub>lin</sub><br>+ Cas9<br>(- gRNA) | pBR322 <sub>lin</sub><br>+ Cas9<br>+ gRNA |
| H₂O<br>(Nucle-<br>ase free)     | 24 μL                 | 23 μL                                       | 22 μL                                     |
| <b>CP</b> (Buffer)              | 3 µL                  | 3 µL                                        | 3 µL                                      |
| S<br>(synthe-<br>sized<br>gRNA) | 0 μL                  | 0 μL                                        | 1 μL                                      |
| Cas9<br>Nuclease                | 0 µL                  | 1 µL                                        | 1 μL                                      |

# Mix by tapping the tubes and incubate for 10 minutes at room temperature

| D                |      |      |      |
|------------------|------|------|------|
| (Digest-<br>ed   | 1 μL | 1 μL | 1 μL |
| ed               |      |      |      |
| plasmid)         |      |      |      |
| H <sub>2</sub> O |      |      |      |
| (Nucle-          | 2 µL | 2 μL | 2 µL |
| ase free)        |      |      |      |

## Mix by tapping the tubes and incubate for 10 minutes at 37 °C

| PK<br>(Protein-<br>ase K) | 1 μL  | 1 μL  | 1 μL  |
|---------------------------|-------|-------|-------|
| Sample<br>Vol.            | 31 µL | 31 µL | 31 µL |

Mix by tapping the tubes and incubate for 10 minutes at room temperature

- 6. Proof of Cas9 Cleavage in linearized Plasmid (pBR322<sub>lin</sub>) by Gel Electrophoresis
- 6.1 Pipet 8.5  $\mu$ L out of your cleavage samples 1 3 in 3 new tubes and mark the tubes again with 1, 2 and 3.
- 6.2 Add to each of the 3 new tubes 1.5 μL of loading buffer (LB) and mix by snipping.
- 6.3 Open your gel cassette and moisten the wells with  $H_2O_{\text{dist}}$ .
- 6.4 Aspirate excess water using the kitchen roll.
- 6.5 Pipet according to the following pipetting scheme in each well of your gel cassette
  - 4 µL marker (M),
  - 10 μL of your samples 1 3

M 1/1 1/2 1/3 2/1 2/2 2/3 3/1 3/2 3/3 4/1 4/2 4/3



M 5/1 5/2 5/3 6/1 6/2 6/3 7/1 7/2 7/3 8/1 8/2 8/3



6.6 Connect FlashGel dock to the power supply and start gel electrophoresis at 180 V. Watch progress of electrophoresis by switching on the UV lamp on the dock.

Task: Evaluate your gel regarding nuclease Cas9 cleavage.