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Abstract.
Background: The pathophysiology of frontotemporal dementia (FTD) is poorly understood but recent studies implicate
neuroinflammation as an important factor. However, little is known so far about the role of the resolution pathway, the
response to inflammation that allows tissue to return to a homeostatic state.
Objective: We aimed to measure the concentrations of lipid mediators including specialized proresolving mediators (SPMs)
and proinflammatory eicosanoids in the cerebrospinal fluid (CSF) of people with FTD.
Methods: 15 people with genetic FTD (5 with C9orf72 expansions, 5 with GRN mutations, and 5 with MAPT mutations)
were recruited to the study along with 15 age- and sex-matched healthy controls. Targeted liquid chromatography-tandem
mass spectrometry techniques were used to measure the CSF concentrations of lipid mediators in the docosahexaenoic acid
(DHA), n-3 docosapentaenoic acid, eicosapentaenoic acid, and arachidonic acid (AA) metabolomes.
Results: Only the C9orf72 expansion carriers had higher concentrations of SPMs (DHA-derived maresins and DHA-derived
resolvins) compared with controls. In contrast, GRN and MAPT mutation carriers had normal concentrations of SPMs but
significantly higher concentrations of the proinflammatory AA-derived leukotrienes and AA-derived thromboxane compared
with controls. Additionally, the C9orf72 expansion carriers also had significantly higher concentrations of AA-derived
leukotrienes.
Conclusion: This initial pilot study of lipid mediators provides a window into a novel biological pathway not previously
investigated in FTD, showing differential patterns of alterations between those with C9orf72 expansions (where SPMs are
higher) and GRN and MAPT mutations (where only proinflammatory eicosanoids are higher).
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INTRODUCTION

The term frontotemporal dementia (FTD) encom-
passes a group of neurodegenerative disorders with
a wide spectrum of clinical manifestations and com-
plex disease mechanisms [1]. FTD is a highly heri-
table disorder, with the majority of genetic FTD
caused by mutations in progranulin (GRN), micro-
tubule-associated protein tau (MAPT), and chromo-
some 9 open reading frame 72 (C9orf72) [2–4].
In common with other neurodegenerative diseases,
inflammation appears to play a crucial role in the
development of FTD and both molecular and clin-
ical studies over recent years have highlighted its
importance (reviewed in Bright et al. [5]). Neu-
roinflammation is complex and involves multiple
stages: once it is triggered there is activation of glial
cells with upregulation of several proteins, includ-
ing cytokines and chemokines, that help guide the
process. However, consistent inflammatory activa-
tion destroys the healthy structures surrounding the
inflammatory core and leads to cellular necrosis or
apoptosis. A regulatory mechanism that ameliorates
inflammation-related damage is therefore required,
and this is the process called ‘resolution’, which
emerges after innate and adaptative inflammation has
occurred [6]. Resolution involves a number of cel-
lular processes that promote removal of dead cells
and debris, restoration of vascular integrity and per-
fusion, and regeneration of tissue [7]. Key to the
process of resolution are the specialized proresolv-
ing lipid mediators (SPMs) that are synthesized
by a variety of cells including endothelial cells,

macrophages and neutrophils [8]. While studies have
started to investigate the presence of measures of
microglial activation, cytokines, chemokines, and
complement proteins in the biofluids of people with
FTD (reviewed in Swift et al. [9]), there has been
little investigation of SPMs and how the resolution
pathway might be altered in FTD [10]. However,
recent studies have suggested that impaired resolu-
tion may be a contributing mechanism leading to
chronic inflammation in dementia [11].

Although the majority of lipid mediators are
involved in resolution (Fig. 1), a number of those
derived from arachidonic acid (eicosanoids) are in
fact proinflammatory [12–14] and while little is cur-
rently known about their role in FTD, they have
previously been shown to exacerbate pathology in
Alzheimer’s disease (AD) [13, 14].

We therefore set out to measure the lipid mediators
underlying the resolution pathway (SPMs), as well
as the closely related proinflammatory eicosanoids,
in the cerebrospinal fluid (CSF) of a group of people
with genetic FTD.

METHODS

Participants

Fifteen people with genetically-confirmed symp-
tomatic FTD (5 with MAPT mutations, 5 with GRN
mutations, and 5 with C9orf72 expansions) with
available CSF were consecutively recruited from the
University College London Genetic FTD Initiative
study. The group consisted of 10 men and 5 women,

Fig. 1. Schematic representation of the role of lipid mediators in modulating neuroinflammation (adapted from Tiberi et al., 2021 [12]).
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with a mean (standard deviation) age of 63.8 (5.7)
years old at sample collection. In the individual
genetic groups: MAPT 3 men, 2 women, 63.1 (4.2)
years old; C9orf72 4 men, 1 woman, 63.4 (6.9) years
old; GRN 3 men, 2 women, 64.8 (6.7) years old. 15
healthy controls were recruited over the same time
period: 10 men and 5 women, 64.0 (5.9) years old.
No significant differences were seen between groups
in terms of age or sex.

The London Queen Square Ethics committee
approved the study.

Targeted lipid mediator profiling

All samples were extracted using solid-phase ex-
traction columns as previously described [15].
Prior to sample extraction, deuterated internal stan-
dards, representing each region in the chro-
matographic analysis were added to facilitate
quantification in 4 volumes of cold methanol. Lipid
mediators were then measured via liquid chromatog-
raphy tandem mass spectrometry using targeted
multiple reaction monitoring. Each lipid mediator
was identified using established criteria, including
matching retention time to synthetic and authentic
materials and at least 6 diagnostic ions. Calibration
curves were obtained for each using synthetic com-
pound mixtures at 0.78, 1.56, 3.12, 6.25, 12.5, 25, 50,
100, and 200 pg, which gave linear calibration curves
with r2 values of 0.98–0.99 [15].

Lipid mediators in the following groups were
identified: 1) in the docosahexaenoic acid (DHA)
metabolome, maresins, protectins, and resolvins; 2)
in the n-3 docosapentaenoic acid (n-3 DPA) meta-
bolome, maresins, protectins, and resolvins (D-
series and 13-series); 3) in the eicosapentaenoic acid
(EPA) metabolome, resolvins; and 4) in the arachi-
donic acid (AA) metabolome, lipoxins, leukotrienes,
prostaglandins, and thromboxane. Concentrations of
individual lipid mediators were combined to give a
single measure for each of the 12 groups outlined
above. This is detailed in Supplementary Table 1
(and previously described in [15]). Of note, the
leukotrienes, prostaglandins and thromboxanes are
proinflammatory eicosanoids whilst the other mea-
sures are all SPMs.

Statistical analysis

All statistical analyses were performed in STATA
(v.16). The concentrations of each measure were
compared between groups using non-parametric

tests: the Wilcoxon Rank Sum test for comparison
between the total FTD group and controls and the
Kruskal-Wallis test (with post hoc pairwise tests) for
comparisons between the individual genetic groups
and controls. Spearman correlation coefficients were
determined to investigate the relationship between the
concentrations of each measure and disease duration.

RESULTS

Concentrations were below the lower limit of
detection for the DHA-derived protectins, n-3 DPA-
derived protectins and n-3 DPA-derived D-series
resolvins. However, differences were seen between
groups in four of the other nine measures (Table 1,
Fig. 2). Among the SPMs, concentrations were
higher in the C9orf72 expansion carriers for the
DHA-derived maresins (controls mean 0.6 (standard
deviation 1.6) pg/mL, MAPT 4.6 (7.9), C9orf72 7.1
(5.9), GRN 0.0 (0.0)) and the DHA-derived resolvins
(controls 1.3 (2.9) pg/mL, MAPT 0.9 (0.7), C9orf72
7.7 (4.7), GRN 0.6 (1.0)) in comparison with con-
trols and the GRN mutation carriers (but not with
the MAPT group). No differences were seen in the
MAPT or GRN mutation carriers compared with con-
trols, although concentrations of the DHA-derived
maresins were positively correlated with disease
duration in the MAPT group (rho = 0.89, p = 0.041).
No other significant correlations were seen compar-
ing SPMs with disease duration apart from in C9orf72
expansion carriers for n-3 DPA-derived 13-series
resolvins levels (rho = –0.89, p = 0.041).

In contrast, both the GRN and MAPT mutation car-
riers had significantly higher concentrations of the
AA-derived leukotrienes (controls 0.0 (0.1) pg/mL,
MAPT 0.4 (0.5), C9orf72 0.3 (0.3), GRN 0.4 (0.2)),
and AA-derived thromboxane (controls 0.8 (1.0)
pg/mL, MAPT 3.1 (1.8), C9orf72 2.4 (2.2), GRN
1.8 (0.7)) compared with controls. The AA-derived
leukotrienes were also higher than controls in the
C9orf72 group. For the AA-derived leukotrienes,
concentrations were strongly positively correlated
with disease duration in the MAPT group: rho = 0.97,
p = 0.005. No other correlations were found in any
of the groups comparing proinflammatory eicosanoid
levels with disease duration.

DISCUSSION

In this preliminary study, we show that SPMs
and the proinflammatory eicosanoids are abnormal
in genetic FTD, with a differential pattern in the
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Table 1
Demographics and mean (standard deviation) concentrations (pg/mL) for the lipid mediators in controls, the total FTD group and each of

individual genetic groups (MAPT, C9orf72, and GRN mutations)

Controls Total FTD MAPT C9orf72 GRN
N 15 15 5 5 5

Age at CSF sampling (y) 64.0 (5.9) 63.8 (5.7) 63.1 (4.2) 63.4 (6.9) 64.8 (6.7)
Sex (% male) 66.7 66.7 60.0 80.0 60.0
Disease duration (y) N/A 7.5 (5.6) 6.7 (3.5) 10.8 (7.7) 5.0 (4.0)
DHA-derived maresins 0.6 (1.6) 3.9 (6.1) 4.6 (7.9) 7.1 (5.9)∗∗ 0.0 (0.0)
DHA-derived protectins N/A N/A N/A N/A N/A
DHA-derived resolvins 1.3 (2.9) 3.1 (4.3) 0.9 (0.7) 7.7 (4.7)∗ 0.6 (1.0)
n-3 DPA-derived maresins 0.0 (0.1) 0.1 (0.2) 0.1 (0.3) 0.1 (0.2) 0.0 (0.0)
n-3 DPA-derived protectins N/A N/A N/A N/A N/A
n-3 DPA-derived D-series resolvins N/A N/A N/A N/A N/A
n-3 DPA-derived 13-series resolvins 0.1 (0.3) 0.4 (0.7) 0.6 (0.9) 0.6 (0.8) 0.1 (0.2)
EPA-derived resolvins 0.4 (1.4) 4.9 (15.4) 0.9 (1.3) 13.0 (26.6) 0.9 (1.2)
AA-derived lipoxins 0.1 (0.2) 0.2 (0.5) 0.2 (0.3) 0.4 (0.8) 0.1 (0.1)
AA-derived leukotrienes 0.0 (0.1) 0.3 (0.3)∗∗∗ 0.4 (0.5)∗∗ 0.3 (0.3)∗ 0.4 (0.2)∗∗∗
AA-derived prostaglandins 27.3 (18.0) 19.6 (10.9) 23.2 (13.8) 19.8 (8.4) 15.9 (10.9)
AA-derived thromboxane 0.8 (1.0) 2.4 (1.7)∗∗ 3.1 (1.8)∗∗ 2.4 (2.2) 1.8 (0.7)∗

Significant differences between disease groups and controls are shown in bold: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. The only significant
differences between individual genetic groups was between the C9orf72 and GRN groups for DHA-derived maresins and DHA-derived
resolvins (both p < 0.05). N/A, not assessed as all values were at the lower limit of detection.

Fig. 2. Concentrations of proresolving and proinflammatory lipid mediators. Results expressed in pg/mL in controls and genetic FTD groups
(MAPT, C9orf72, and GRN). Significant differences between groups shown by bars. In the docosahexaenoic acid (DHA) metabolome:
MaR, maresins; PD, protectins; RvD, resolvins. In the n-3 docosapentaenoic acid (n-3 DPA) metabolome: MaRn-3DPA, maresins; PDn-3DPA,
protectins; D-series RvDn-3DPA and 13-series (RvT), resolvins. In the eicosapentaenoic acid (EPA) metabolome: RvE, resolvins. In the
arachidonic acid (AA) metabolome: LX, lipoxins; LT, leukotrienes; cysteinyl leukotrienes; PG, prostaglandins; Tx, thromboxane.

different forms: the SPMs are higher in concentration
in C9orf72 mutation carriers but normal in GRN and
MAPT mutation carriers whilst the proinflammatory
eicosanoids are higher in GRN and MAPT mutation
carriers with only AA-derived leukotrienes higher in
C9orf72 mutation carriers.

Only one previous study has investigated SPMs in
FTD: Fraga and colleagues studied the levels of the
lipoxin LXA4 and found no differences in behavioral
variant FTD in either plasma or CSF compared to

healthy controls or people with AD [10]. In contrast,
studies of AD have shown abnormalities of SPMs
both in tissue and CSF, e.g., downregulation of DHA-
derived mediators such as MaR1, PD1, and RvD5 as
well as LXA4 is seen in the entorhinal cortex and hip-
pocampus [16, 17], while concentrations of LXA4 are
lower in the CSF of people with AD [18], suggesting
that the impairment of resolution may potenti-
ate chronic inflammation in AD [11]. Intriguingly,
we found the opposite pattern in C9orf72-related
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neurodegeneration with increased levels of SPMs.
One prior study of DHA-derived resolvins does in
fact show increased levels in the spinal cord tissue of
people with amyotrophic lateral sclerosis [19], one of
the phenotypes of C9orf72 expansions. The mecha-
nisms of how this affects the pathophysiology of FTD
or amyotrophic lateral sclerosis remains unclear, and
further studies both in tissue and biofluids will be
important to understand this more clearly.

The finding of abnormal proinflammatory eico-
sanoids in GRN mutation carriers is consistent with
previous studies showing that inflammation plays
a major role in this form of FTD [5, 20]. In
CSF, abnormalities have previously been shown in
microglial activation markers [21–24], chemokines
and cytokines [20, 25], and complement proteins
[26]. Here, we add to these findings, suggesting a
further biomarker that may be useful in disease mod-
ifying trials—lowering of the concentrations of the
proinflammatory eicosanoids may help to show a
therapeutic effect in GRN-related FTD with improve-
ment of chronic neuroinflammation, although more
validation work would need to be done in the first
instance. An increase in proinflammatory eicosanoids
was seen in MAPT-related FTD as well; this group
has also been previously associated with abnormal
neuroinflammation in prior studies [27]. Only an
increase in the AA-derived leukotrienes was seen
in the C9orf72 group, likely due to the complex
nature of neuroinflammation and the different path-
ways affected.

Although there has been little work in SPMs in
FTD, there is a growing literature on the involve-
ment of lipids in the pathophysiology of the disease
[28–30], including biomarker studies in CSF. One
study showed an association with survival [30] (with
cholesterol levels), whilst a lipidomic study found
widespread abnormalities in different lipid species
[29]. However, most of the studies so far have focused
on clinically-defined populations with the association
of abnormal lipid processing in FTD and underlying
molecular pathology remaining unclear.

The limitations of the study include the small num-
ber of cases investigated here, reducing the power to
detect changes. However, even with these small num-
bers, we found differences within the genetic groups.
One further potential limitation is that as this was
an exploratory study we did not correct for multi-
ple comparisons [31]. Further studies will be needed
to extend this pilot investigation, including a wider
group of mutation carriers across the spectrum from
the presymptomatic to symptomatic stages. Another

limitation was the lack of data collected on concurrent
medication including particularly anti-inflammatory
drugs; such information will be an important factor
to take into account in future studies.

Overall, our results suggest that there are dif-
ferential alterations in SPMs and proinflammatory
eicosanoids in the different forms of genetic FTD and
that these changes can be detected and monitored in
CSF supporting the use of such lipids as biomarkers
to understand underlying disease pathophysiology in
FTD, and potentially as markers of neuroinflamma-
tion in future therapeutic trials. Further studies will be
needed in a larger cohort, including in very early dis-
ease, to determine when and how alterations of lipid
mediators occur, and how they change over time.
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