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the selective destruction of large-scale brain networks by pathogenic protein spread is a ubiquitous 
theme in neurodegenerative disease. characterising the circuit architecture of these diseases could 
illuminate both their pathophysiology and the computational architecture of the cognitive processes 
they target. However, this is challenging using standard neuroimaging techniques. Here we addressed 
this issue using a novel technique—spectral dynamic causal modelling—that estimates the effective 
connectivity between brain regions from resting-state fMRi data. We studied patients with semantic 
dementia—the paradigmatic disorder of the brain system mediating world knowledge—relative 
to healthy older individuals. We assessed how the effective connectivity of the semantic appraisal 
network targeted by this disease was modulated by pathogenic protein deposition and by two key 
phenotypic factors, semantic impairment and behavioural disinhibition. the presence of pathogenic 
protein in SD weakened the normal inhibitory self-coupling of network hubs in both antero-mesial 
temporal lobes, with development of an abnormal excitatory fronto-temporal projection in the left 
cerebral hemisphere. Semantic impairment and social disinhibition were linked to a similar but more 
extensive profile of abnormally attenuated inhibitory self-coupling within temporal lobe regions 
and excitatory projections between temporal and inferior frontal regions. Our findings demonstrate 
that population-level dynamic causal modelling can disclose a core pathophysiological feature of 
proteinopathic network architecture—attenuation of inhibitory connectivity—and the key elements of 
distributed neuronal processing that underwrite semantic memory.

Normal brain operation depends on the structural and functional integrity of distributed neural networks: the 
disruption of these networks by pathogenic protein deposition is a fundamental theme in the pathophysiology 
of neurodegenerative  diseases1–4. According to one emerging paradigm, these diseases constitute ‘molecular nex-
opathies’5: specific conjunctions between pathogenic protein and neural network characteristics, manifested in a 
distinctive clinico-anatomical phenotype. However, the mechanisms by which pathogenic proteins produce func-
tional disconnections and how network damage in turn translates to the clinical phenotype remain key unsolved 
problems. This is partly attributable to the inherent complexity and heterogeneity of these diseases but also the 
difficulty of quantifying neuronal architectures—and the impact of pathogenic proteins on those architectures. 
Previous studies have attempted to define disease effects on macroscopic anatomical connectivity, as measured 
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using white matter  tractography6–8 or functional connectivity, using resting-state  fMRI9. Functional connectivity 
reflects statistical dependencies between spatially remote neurophysiological  events10, generally based on seed 
correlation or independent component analysis—and assessed post hoc using connectomic constructs from 
graph theory. Such metrics have certain limitations: they are not grounded in neuroanatomical frameworks 
of inter-regional (extrinsic) connectivity, cannot identify directed connections, cannot measure within-region 
(intrinsic) connectivity and are potentially confounded by age-related or neurodegenerative changes in neuro-
vascular coupling. The fMRI BOLD signal comprises both neuronal and vascular components which are dif-
ferentially affected by healthy aging and neurodegenerative  pathologies11,12. Functional connectivity—the most 
widely studied network connectivity measure in the fMRI literature—is based on (undirected) correlations that 
do not distinguish or compartmentalise neuronal from cerebrovascular  signalling12.

In contrast, dynamic causal modelling (DCM) estimates network effective connectivity—the direct (causal) 
effect of one neuronal population (or network element) on  another10,13. DCM incorporates a hemodynamic 
 model5 to partition the effects of neuronal interactions from Neurovascular signaling and MRI noise. A hierar-
chical Bayesian framework is then used to derive a model of neuronal interactions that best explain observed 
signal fluctuations (such as the BOLD response). By defining the direction and strength of specified connections, 
DCM has the potential to delineate the computational architecture of neural circuits that generate observed fMRI 
responses (including functional connectivity)14. DCM was originally designed to assess BOLD time series data 
with relatively small networks, limiting its applicability in neurodegenerative  disease15–17. However, the tech-
nique of ‘spectral’ DCM, recently developed to model resting-state fMRI data, enables effective connectivity to 
be estimated in the spectral (frequency) domain by fitting cross-spectra rather than the underlying BOLD time 
 series18,19 and is also scalable to larger  networks20,21. Spectral DCM employs generative modelling to partition 
the BOLD signal into three components: a neuronal state model, describing effective connectivity; a hemody-
namic state model (the well-validated, biophysical balloon  model5,22) that characterises how neural activity is 
transformed into the BOLD signal; and observation or measurement  noise22 (further mathematical details are 
provided in Supplementary Material). Once the generative DCM model is defined, it can be fitted to the (meas-
ured) BOLD data to furnish parameter estimates of effective connectivity that incorporate connection strength, 
directionality and valence (whether inhibitory or excitatory)10,13. Estimation of the directionality and valence of 
neuronal coupling (not possible using functional connectivity measures) and independence from neurovascular 
confounds ground spectral DCM in neurobiology and make it particularly well equipped to uncover the network 
architecture of neurodegenerative  proteinopathies12,14.

Semantic dementia (SD) is the paradigmatic disorder of the human semantic memory system, characterised 
by selective, progressive erosion of the meanings of words, sensory objects and  concepts20–24. Patients typically 
present with insidious anomic aphasia and loss of vocabulary but as the syndrome evolves, semantic impairment 
blights all sensory modalities and complex behavioural disturbances supervene, due to impaired understanding 
and evaluation of socio-emotional  signals25–27. The SD syndrome arises from pathogenic protein deposition; prin-
cipally targeting one canonical, large-scale connectivity network: the ‘semantic appraisal network’. This network 
is anchored in anterior temporal lobe cortex and encompasses mesial, inferior and lateral temporal and inferior 
frontal lobe regions in both cerebral hemispheres, albeit generally with an asymmetric, left-sided  emphasis2,4,28,29. 
This leads to a highly characteristic profile of atrophy and associated white matter tract degeneration, spreading 
from temporal pole, fusiform gyrus and hippocampus–amygdala complex to inferior and middle temporal gyri, 
homologous contralateral temporal lobe regions and orbitofrontal  cortex23,28,30–32. In the majority (> 80%) of cases, 
SD is underpinned by a specific histopathological subtype of pathogenic protein TDP-43 (type C)  deposition33,34. 
SD therefore constitutes a neurodegenerative proteinopathy with a uniquely coherent clinical, neuroanatomical 
and molecular pathological signature: a cardinal ‘molecular nexopathy’3,24.

In the healthy brain, the intrinsic architectural features of the semantic appraisal network are well equipped 
to support neural processes inherent to semantic cognition. The network has been shown to have a distributed 
and broadly hierarchical organisation, with reciprocal interactions among participating  regions29,35–41. An emerg-
ing synthesis of empirical data suggests that multi-modal semantic representations of objects and concepts 
are activated by a temporopolar cortical ‘hub’. The term ‘hub’ here refers to a region that is (in a graph theo-
retic sense) more strongly connected to its network than other network nodes and which (in a related, cogni-
tive neuroscientific sense) integrates information from multiple other cortical regions and sensory processing 
 streams36–38,42. The status of temporopolar cortex as a hub is well attested by an extensive body of connectivity 
and neuropsychological data, derived from the healthy brain and SD and other  disorders28,30,36–39,43–45. This region 
integrates modality-specific representations of sensorimotor, interoceptive, affective and episodic features, based 
on extensive connections to temporal lobe subregions (including fusiform gyrus, amygdala and hippocampus) 
and extratemporal  cortices28,29,43–45. These integrated semantic representations inform flexible and contextually 
appropriate, real-world behaviour via the process of controlled semantic cognition: the manipulation, evaluation 
and regulation of stored semantic representations by interacting top-down and bottom-up neural mechanisms 
instantiated in distributed anterior temporal and extra-temporal regions, including middle temporal gyrus and 
orbitofrontal  cortex31–33,37. The neural circuitry of the frontal and temporal lobes is densely recurrent: this pro-
vides a substrate for local feedback loops that in turn promote the tuning of interneuronal information transfer by 
excitation-inhibition coupling, mediated by  GABA39. The orchestrated balance between excitatory and inhibitory 
transmission is critical to normal neural circuit function and fundamentally sculpts the BOLD signal fluctua-
tions that constitute resting-state fMRI time  series46 . GABAergic inhibitory processes maintain efficient neural 
network operation by regulating the gain of neural circuit activity and stimulus reactivity and (by ‘sharpening’ 
circuit outputs) enable response  selectivity46,47 . These intrinsic network electrophysiological properties—and the 
network connectivity they promote, as captured with fMRI—directly determine behaviour during cognitive tasks, 
by priming and shaping network responses to  stimuli39,46,47 . With particular reference to semantic processing, 
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such features would enable selective activation and predictive updating of semantic representations: processes 
essential to normal semantic  cognition37,39,48.

Work in SD—the principal ‘lesion model’ of human semantic memory—has corroborated this picture. SD is 
associated with graded disintegration of conceptual representations: this is linked to a profound disruption of 
semantic network integrity (as indexed by graph theoretic parameters including reduced mean network degree, 
clustering coefficient and global efficiency and increased mean functional path length) with widespread abnor-
malities of inter-regional structural and functional connectivity, and leads to dysregulated semantic appraisal 
and associated abnormal  behaviours6,24,28–30,35,37,43,44,49–52. By inference from emerging evidence in the healthy 
 brain39,46,47, it is plausible that attenuation of normal inhibitory (or abnormally heightened excitatory) connec-
tions within and between the nodes of the semantic appraisal network might play a key role in the loss of network 
coherence and efficiency and associated semantic deficits that characterise SD. Indeed, failure of anterior temporal 
cortical deactivation is associated with abnormal language processing in  SD53 while abnormally enhanced con-
nectivity and/or reduced inhibitory GABAergic transmission within the semantic appraisal network has been 
linked to behavioural deficits in other neurodegenerative  proteinopathies51,54–59. However, the underlying changes 
in effective connectivity wrought by SD (i.e., the crucial neural circuit characteristics of this proteinopathy and 
the semantic memory system it selectively targets) have not been defined.

The use of task-free, resting-state methods to define the intrinsic architecture of language networks has been 
strongly endorsed in SD and other neurodegenerative  syndromes60. Such methods avoid the methodological 
challenges inherent in designing task-based scanning paradigms for cognitively impaired patients; moreover, 
task-free paradigms yield highly consistent and reproducible results and the networks these paradigms reveal 
map closely onto the patterns of activation during task-directed language  processing60. With particular reference 
to the semantic appraisal network and SD, striking convergence of core semantic network elements has been 
demonstrated when task-free and task-directed connectivity patterns are compared directly, albeit with additional 
extra-temporal connectivity during task-based  processing38. Furthermore, changes in resting-state network con-
nectivity have been directly correlated with semantic deficits in  SD29,43,50,51. Considered more broadly, semantic 
processing is likely to be a major constituent of the ‘default mode’ operation of the resting brain, maintaining 
readiness to respond appropriately to objects in the environment that impinge on homeostatic and other self-
referential  processes38,45. Taken together, this evidence suggests that resting-state connectivity techniques are a 
valid and informative means to identify the intrinsic network architecture that supports semantic cognition and 
to characterise the effects of SD on this architecture.

Here, we used spectral DCM for resting-state fMRI data to delineate the effective connectivity of the seman-
tic appraisal network in a cohort of patients with SD of moderate severity relative to healthy older individuals. 
Rather than addressing a particular semantic task or deficit, our goal was to identify changes in intrinsic network 
architecture (evident in the resting brain) in SD that could potentially affect various active, task directed processes 
during semantic cognition. We targeted a small number of regions in the anterior temporal and inferior frontal 
lobes that have been consistently shown to be core to the neural network primarily targeted by pathogenic pro-
tein spread in  SD2,4,24,28,29,31–33,43,44,50. Although the role of inter-hemispheric protein spread in SD is  unclear24,28, 
as both cerebral hemispheres become affected in tandem with evolution of the disease, we separately explored 
key commissural connections linking the semantic appraisal networks in each hemisphere. Drawing on avail-
able neuropsychological, neuroanatomical and physiological  evidence37,39,50, we hypothesised that SD would be 
associated with reduced network efficiency, manifest as reduced recurrent inhibition (intrinsic self-coupling) 
within semantic network regions and the emergence of abnormally excitatory inter-regional (extrinsic) effective 
connectivity. Finally, we anticipated that these effective connectivity changes would predict preeminent semantic 
cognitive and behavioural phenotypic features of SD.

Results
General characteristics of participant groups. A summary of demographic and clinical measures for 
the patient groups is reported in Table 1. Participant groups did not differ in age, handedness, gender nor years 
of education. The SD patient group differed from controls in MMSE, verbal IQ (WASI), semantic tests (graded 
naming test, British Picture Vocabulary Scale), verbal fluency and episodic memory for faces and words (Rec-
ognition Memory Test).

Accuracy of DcM model estimation. The estimation of DCM models for individual participants in both 
groups was excellent. Across participants, the average percentage variance-explained by DCM model estimation 
when fitted to the observed (cross spectra) data was 82.8% (minimum 69%; maximum 98%) for left hemisphere 
ROIs and 81.1% (minimum 60%; maximum 99%) for right hemisphere ROIs.

Healthy semantic appraisal network. The healthy semantic network was characterised by strong inhib-
itory self-coupling within all temporal lobe regions, most marked for hippocampus–amygdala complex (Fig. 1; 
Supplementary Table 1), bi-hemispherically. In addition, left orbitofrontal cortex made inhibitory projections to 
left temporal pole and hippocampus–amygdala complex and left fusiform gyrus made an inhibitory projection 
to left middle temporal gyrus.

Effect of pathogenic protein deposition. Comparing the extrinsic and intrinsic effective connectivity 
profiles of the core semantic network in the SD group with the healthy control group, deposition of pathogenic 
protein was associated with reduced inhibitory self-coupling in the temporal pole and amygdala-hippocampus 
complex bi-hemispherically. In addition, there was emergence of an excitatory projection from left orbitofrontal 
cortex to left temporal pole; and increased inhibitory self-coupling within right orbitofrontal cortex (Fig. 2). No 
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other alterations of intra-hemispheric or commissural (inter-hemispheric) connections were significant (Sup-
plementary Figure 4). A model covarying for regional grey matter volume displayed the same pattern of signifi-
cant results (Supplementary Table 1, Supplementary Figure 3).

Semantic dementia phenotype. Semantic impairment (indexed by the derived composite semantic test 
score) was associated with widespread alterations in network connectivity (Fig. 2). These comprised reduced 
inhibitory self-coupling within all temporal lobe regions bi-hemispherically; emergence of excitatory projec-
tions from left orbitofrontal cortex to temporal pole, hippocampus–amygdala complex and middle temporal 
gyrus, from left fusiform gyrus to middle temporal gyrus and from left middle temporal gyrus to temporal 
pole; and increased inhibitory self-coupling within right orbitofrontal cortex. The model covarying for regional 
grey matter volume displayed the same pattern of significant results (Supplementary Table 1, Supplementary 
Figure 3).

Social disinhibition (indexed by the derived caregiver rating score; Fig. 2) was associated with reduced 
inhibitory self-coupling within all temporal lobe regions bi-hemispherically; and with development of excita-
tory projections from orbitofrontal cortex to temporal pole bi-hemispherically, from left orbitofrontal cortex 
to left hippocampus–amygdala complex and from left fusiform gyrus to left middle temporal gyrus. The model 

Table 1.  Demographic, clinical and neuropsychological characteristics of participant groups. Mean 
(standard deviation) scores are shown unless otherwise indicated; maximum scores are shown after tests (in 
parentheses). BPVS British Picture Vocabulary Scale; Category fluency totals for animal category and letter 
fluency for the letter F in 1 min, D-KEFS Delis Kaplan Executive System, DS digit span, GDA Graded Difficulty 
Arithmetic test, GNT Graded Naming Test, MMSE Mini-Mental State Examination score, N/A not assessed, 
NART  National Adult Reading Test, PAL Paired Associate Learning test, RMT Recognition Memory Test, SD 
patient group with semantic dementia; Trails-making scores based on maximum time achievable of 2.5 min on 
task A and 5 min on task B, VOSP Visual Object and Spatial Perception Battery—Object Decision test, WASI 
Wechsler Abbreviated Scale of Intelligence, WMS Wechsler Memory Scale. *Significantly different from healthy 
controls (based on t-tests, or chi-square tests for categorical variables).

Characteristic Healthy controls SD

Demographic and clinical

No. (male:female) 9:11 9:5

Age (years) 67.08 (6.23) 66.29 (6.86)

Handedness (R:L) 19:1 14:0

Symptom duration (years) N/A 6.12 (2.86)

Education (years) 16.25 (2.05) 15.69 (2.53)

MMSE (/30) 29.82 (0.39) 24.07 (6.61)*

General intellect

Verbal IQ (WASI) 122 (8.79) 69 (23.66)*

Performance IQ (WASI) 122 (12.88) 116 (18.69)

Episodic memory

RMT words (/30) 49 (1.20) 35 (8.05)*

RMT faces (/30) 43 (4.99) 32 (4.90)*

Executive skills

WASI matrices (/32) 26 (4.35) 26 (3.84)

WMS-R digit span forward (max) 7 (0.75) 7 (0.99)

WMS-R digit span reverse (max) 6 (1.36) 5 (1.21)

D-KEFS Stroop colour naming (s) 29 (4.83) 43 (16.3)

D-KEFS Stroop word reading (s) 23 (4.40) 28 (10.72)

D-KEFS Stroop interference (s) 52 (10.04) 72 (24.64)

Trails A (s) 32 (9.31) 45 (16.41)

Trails B (s) 60 (20.45) 123 (75.20)

Letter fluency (F, 1 min) 17 (4.76) 9 (4.62)*

Category fluency (animals, 1 min) 24 (5.13) 7 (4.88)*

Semantic skills

WASI vocabulary (/80) 71 (4.21) 30 (19.62)*

WASI similarities (/48) 40 (3.90) 17 (11.22)*

Graded naming test (/30) 26 (2.68) 2 (5.30)*

BPVS (/150) 148 (1.50) 78 (40.37)*

Other skills

GDA (/24) 14 (5.69) 13 (4.44)

VOSP object decision (/20) 19 (1.10) 16 (2.42)
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covarying for regional grey matter volume displayed the same pattern of significant results (Supplementary 
Table 1, Supplementary Figure 3).

connectivity drivers of disease: leave-one-out cross-validation. In a leave-one-out cross-valida-
tion of the parametric empirical Bayesian models (Table 2; Supplementary Figure 1; Supplementary Figure 2), 
the best predictors of diagnostic group were the excitatory projection from left orbitofrontal cortex to left tempo-
ral pole (8/14 SD patients, 8/20 healthy controls correctly classified; three SD patients, one healthy control mis-
classified) and the inhibitory recurrent connection of right orbitofrontal cortex (7/14 SD patients, 9/20 healthy 
controls correctly classified; two SD patients, no healthy controls misclassified). The best predictor of social 
disinhibition was the projection from left orbitofrontal cortex to left temporal pole (Table 2). The best predictors 
of semantic impairment were the projections from left orbitofrontal cortex to left middle temporal gyrus and 
from left middle temporal gyrus to left temporal pole (Table 2). Cross-validation results remained unchanged for 
the models covarying for regional grey matter volume.

Discussion
Here, we used spectral DCM, a novel technique for quantifying effective connectivity among distributed neu-
ronal populations, to characterise the functional architecture of the human semantic memory system, under 
the impact of a specific neurodegenerative proteinopathy. The semantic appraisal network in the healthy brain 
at rest was revealed as a dense web of predominantly inhibitory neural connections, both recurrently within 
regions and between regions, with a hub in orbitofrontal cortex—projecting to two key temporal lobe regions: 
temporal pole and hippocampus–amygdala complex. The presence of pathogenic protein in SD weakened the 
normal inhibitory self-coupling of network hubs in both antero-mesial temporal lobes, with the emergence of 
an aberrant excitatory projections from orbitofrontal to temporal polar cortex in the more severely affected left 
cerebral hemisphere. Key cognitive and behavioural features of the SD phenotype—semantic impairment and 
social disinhibition—were linked to a similar but more extensive profile of abnormally attenuated inhibitory 
self-coupling within temporal lobe regions and excitatory projections between temporal and inferior frontal 
regions. Effective connectivity profiles remained essentially the same after adjusting for the effects of regional 
grey matter loss. In highlighting the network-level attenuation of intrinsic (self) inhibitory connectivity in SD, the 
paradigmatic disorder of semantic cognition, our findings identify both a core pathophysiological characteristic 
of this proteinopathy and a potentially crucial principle governing the functional anatomy of semantic memory.

Our findings reconcile previous evidence for structural and functional network disintegration in SD with 
computational models of the organisation of semantic cognition and its breakdown. Functional connectivity 
and graph theoretic analyses of resting-state fMRI data in SD have documented a generalised disruption of the 
physiological integrity of the semantic appraisal network, manifesting as reduced network clustering coefficient, 
reduced global efficiency and increased path length relative to healthy controls, emergence of subsidiary network 
hubs outside the canonical regions targeted by the disease and overall loss of network integrative  capacity29,43,44. 

Figure 1.  Effective connectivity of the healthy semantic appraisal network. The left panel shows a model of the 
network, comprising six nodes in the right (R) and left (L) cerebral hemispheres (here rendered on a cartoon 
view of the brain from below): FG fusiform gyrus, HPAM hippocampus–amygdala complex, ITG inferior 
temporal gyrus, l left, MTG middle temporal gyrus, OFC orbitofrontal cortex, r right, TP temporal pole. Gold 
circles indicate regions whose extrinsic connections survived Bayesian model reduction. Dashed lines indicate 
recurrent (intrinsic) connections within regions and solid lines indicate (extrinsic) connections between regions. 
Line colours code the parity of connectivity: red, inhibitory; green, excitatory (see also Table S2). The middle 
and right panels show the corresponding connectivity matrices for each cerebral hemisphere, the colour scale 
here coding connection strength (in Hz). Note: connections on the main diagonal (or self-coupling) are always 
inhibitory but values are log-scaled such that positive values (green; recurrent connections) indicate greater 
inhibition and negative values (red) less inhibition.
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Figure 2.  Effects of major disease factors associated with semantic dementia on effective connectivity of the semantic 
appraisal network. The left panels show brain cartoons representing connection changes in the right (R) and left (L) cerebral 
hemispheres associated with pathogenic protein deposition (A), semantic impairment (B) and disinhibited behaviour (C), 
comparing the semantic dementia group with the healthy control group (semantic dementia > controls). Gold circles code 
regions that show significant connectivity effects that survived Bayesian model reduction. Dashed lines indicate recurrent 
(intrinsic) connections within regions and solid lines indicate (extrinsic) connections between regions. Line colours code 
direction of connectivity changes relative to the group mean: red, decreased; green, increased. Line thickness codes the effect 
size; connection parity (derived by summing directional connectivity change with mean baseline connection strength) is 
coded as +, excitatory or −, inhibitory (see also Table S2). The middle and right panels show the corresponding matrices of 
connectivity changes for each cerebral hemisphere, the colour scale coding (log-scaled) connection strength (in Hz). Positive 
connectivity values (green) represent a positive change in effective connectivity with increasing score for a given disease factor 
while negative values (red) represent a negative change in effective connectivity with increasing score. Connectivity matrices 
after adjusting for regional grey matter atrophy are shown in Supplementary Figure 3 and for inter-hemispheric connections 
are shown in Supplementary Figure 4. FG fusiform gyrus, HPAM hippocampus–amygdala complex, ITG inferior temporal 
gyrus, l left cerebral hemisphere, MTG middle temporal gyrus, OFC orbitofrontal cortex, r right cerebral hemisphere, TP 
temporal pole.
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Computational models of SD have foregrounded an essential erosion of the boundaries that normally define 
semantic representations, traversing sensory modalities: activation of multimodal object representations becomes 
more dependent on irrelevant surface rather than conceptual similarities, leading simultaneously to errors of 
over-generalisation (e.g., a bat is classified as a bird because it has wings) and under-generalisation (e.g., an emu 
is not classified as a bird because it lacks wings)37,49. However, the neural mechanism that links network altera-
tions to these ‘leaky’ semantic representations has not previously been defined.

Here, we have identified a candidate for this pathophysiological ‘missing link’, in the attenuation of recurrent 
inhibitory intrinsic connections that normally govern the semantic appraisal network in the anterior temporal 
lobe. Tonic inhibitory GABAergic transmission is likely to be crucial for sharpening the activation of neural 
representations via close coupling to phasic excitatory mechanisms and may constitute a generic principle of 
normal neural network function, synchronising the operation of network elements and conferring network 
strength, efficiency and  plasticity39,46,47,61,62. GABA-ergic inhibitory interneurons in the more superficial corti-
cal laminae arborise widely within cortical  columns62,63, providing a microanatomical substrate for the normal 
recurrent inhibitory control over regional temporal lobe circuitry—the circuitry that is targeted by pathogenic 
protein deposition in  SD24. The functional and behavioural relevance of this altered profile of intrinsic effective 
connectivity in SD is evidenced in the correlation with semantic impairment and social disinhibition across 
the temporal lobe regions sampled: this is in line with previous work associating altered resting-state func-
tional connectivity and impaired deactivation of the semantic appraisal network with semantic impairment in 
 SD43,50,51,53 and increased GABA levels in anterior temporal lobe with better semantic performance in healthy 
 individuals39 as well as with evidence that attenuated inhibition may be a general mechanism of neurodegen-
erative  pathophysiology16,54. It is noteworthy that the temporopolar hub—previously emphasised in models of 
semantic function and disruption in  SD18,19—did not emerge as a dominant connectivity node here. It is unlikely 
this reflects a purely technical limitation, as review of individual MR images revealed negligible signal dropout 
from the temporal polar region. The connectivity of anterior temporal cortex has previously been shown to be 
modulated by  task38,64: the present findings delineate the intrinsic ‘baseline’ connectivity of the semantic appraisal 
network, in the absence of an overt semantic task.

The profile of effective connectivity alterations in SD extended beyond local temporal lobe circuitry, addi-
tionally involving connections beyond the temporal lobe. Involvement of structural and functional connections 
between orbitofrontal and anterior temporal cortex—in particular, uncinate fasciculus—has been shown to be 
a structural signature of  SD6,29,44,65. Functionally, this is now revealed as an abnormally enhanced excitatory 
communication, originating primarily in left orbitofrontal cortex. In the formulation of controlled semantic 
 cognition37,48,66, inferior frontal cortex is normally engaged when dynamic ‘tuning’ of semantic representations 
is demanded by context and in programming an appropriate behavioural output, particularly under conditions 
of task difficulty or stimulus ambiguity. It is noteworthy that another core element of the ‘semantic control 
network’—middle temporal gyrus—was also implicated in an abnormal excitatory link to orbitofrontal cortex.

The leave-one-out validation analysis here confirmed that these abnormal orbitofrontal connections were 
strong predictors of pathogenic protein and phenotypic effects associated with SD. The results imply that, in a 
newly presenting patient, estimates of effective connectivity of efferent connections from the left orbitofrontal 
cortex to left temporal regions will most strongly predict both pathogenic protein deposition and the behavioural 
sequelae associated with SD. Given that both inferior frontal and middle temporal cortices are normally engaged 
during resolution of semantic ambiguity (for example, due to competing alternative resolutions or weak concep-
tual  associations67)—and here showed abnormal effective connectivity correlating with behavioural measures—it 
is tempting to interpret the development of excitatory projections from these regions in SD as a compensatory 
mechanism in the face of an intrinsically degraded semantic store. A similar argument could apply to our find-
ing of enhanced recurrent inhibitory connectivity within right orbitofrontal cortex (a region targeted relatively 
late by pathogenic protein  deposition32) in the SD group. However, it is not clear that any such ‘compensatory’ 
mechanism would in fact be beneficial a priori. Adopting a predictive processing framework, tonic hyperactiv-
ity of ‘top-down’ inter-regional projections might establish overly precise expectations about sensory data that 
would tend to increase reliance on prototypical (and increasingly aberrant) object representations; particularly 

Table 2.  Semantic appraisal network connections as predictors of key disease factors. This table summarises 
the results of leave-one-out cross validation using individual connections within the semantic appraisal 
network that reached the significance criterion (posterior probability > 95%) (see also Supplementary Figure 1 
and Supplementary Figure 2). Bold indicates the highest out-of-sample correlation for the connection(s) of 
interest between the three disease factors. Each cell specifies the Pearson’ s correlation coefficient between 
the observed values and the predicted values for each ‘left-out’ subject. MTG middle temporal gyrus, OFC 
orbitofrontal cortex, TP temporal pole.

Disease factor

Connection

Left hemisphere Right hemisphere

OFC to TP OFC to MTG to TP OFC to OFC

Pathogenic protein Corr (df 32) = 0.55 p < 0.001 Corr (df 32) = 0.37
p = 0.001 Corr (df 31) = 0.53 p < 0.001

Semantic function Corr (df 32) = 0.45 p = 0.0038 Corr (df 32) = 0.39
p = 0.011

Corr (df 31) = 0.46
p = 0.0038

Social disinhibition Corr (df 32) = 0.67 p < 0.001 Corr (df 32) = 0.10
p = 0.28 Corr (df 31) = 0.37 p = 0.018
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as any capacity for the formation of new representations and associations (updating of priors) in SD is likely to 
be severely  compromised37. It has further been argued that isolated hyperconnectivity of frontal cortex may be 
maladaptive, reflecting reduced or abnormal feedback during the programming of  behaviour51.

This work illuminates the pathophysiology of a poorly characterised dimension of SD; namely, its impact 
on complex socio-emotional behaviours. The profile of intrinsic and extrinsic effective connectivity changes 
linked to social disinhibition in SD was qualitatively similar to that associated with semantic impairment, albeit 
relatively less left-lateralised. Previous structural and tractographic studies have implicated orbitofrontal and 
anterior temporal cortices and their connections in the pathogenesis of  disinhibition68–71. Studies addressing 
the functional connectivity of the culprit network in SD have reported altered resting-state fronto-temporal 
connectivity but have not addressed the mechanism of the behavioural  phenotype29,51,65. Our findings argue for 
a mechanism that is at least partly in common with the pathophysiology of semantic impairment; the effective 
connectivity profile of social disinhibition implicating a conjunction of intrinsically degraded social conceptual 
representations and tonically overactive top-down control. Aberrant top-down control may promote inflexible 
behavioural routines: e.g., food consumption is normally heavily modulated by social mores; where relevant 
social knowledge is no longer accessible, the imperative to consume available food is likely to lead to faux pas. 
This interpretation, emphasising a deranged social lexicon rather than a release of frontal controls, is supported 
by neuropsychological  evidence27.

The present findings raise a number of issues that should be addressed in further work. From a clinical 
perspective, spectral DCM can characterise the intrinsic functional architecture of large-scale neural networks, 
while discounting the potentially confounding effects of age-related haemodynamic changes. This presents an 
unprecedented opportunity for novel, dynamic biomarker development in neurodegenerative disease. Currently, 
the most widely used MRI biomarkers of neurodegeneration signal structural change (generally, brain atrophy; 
that is, cell death). Functional connectivity and recent variants of  DCM72,73 which employ linear approximations 
to neuronal activity along with fixed and linear hemodynamic response functions are not suitable for modelling 
neurodegeneration, which, like ageing, differentially impacts neuronal and vascular components of the BOLD 
 signal11,12. In contrast, spectral DCM, by estimating nonlinear hemodynamics allows one to separate the con-
tribution of neuronal and vascular factors in a BOLD signal and here has revealed clinically relevant changes in 
neural circuit function. These circuit changes are proxies for complex clinical phenomena that are themselves 
difficult to measure directly. Such a dynamic, functional neuroimaging biomarker that can capture core features 
of the disease phenotype could be used to guide early diagnosis or to evaluate new candidate therapies, in SD and 
potentially other neurodegenerative  proteinopathies54,74. However, realising this promise will require longitudinal 
studies employing spectral DCM in larger patient cohorts—representing a range of proteinopathies—in order 
to establish the sensitivity and specificity of the technique. Ultimately, this will also require histopathological 
or molecular correlation. DCM can detect motor changes in presymptomatic Huntington’s disease mutation 
 carriers75; considered as a group, the frontotemporal dementias have a substantial genetic component that could 
likewise facilitate presymptomatic  diagnosis76. This could be particularly pertinent if (as has been proposed in 
Alzheimer’s  disease54) network hyperconnectivity proves to be both a marker and a driver of pathogenic protein 
spread in SD.

From a neurobiological perspective, the components of the semantic appraisal network as we have defined it 
here communicate widely with unimodal sensory cortices and higher order extra-temporal association (in par-
ticular, cingulate, insular and parietal)  cortices28–30,43,45. These connected regions participate in other large-scale 
brain networks, including the salience and so-called ‘default mode’  networks2,4. Dynamic interactions between 
these networks are likely to be integral to semantic cognition, particularly when knowledge retrieval is modu-
lated by behavioural context, self-projection or complex multidimensional objects (such as other people)45,77,78. 
However, regions (such as angular gyrus) that are strongly connected to the paradigmatic semantic network 
foregrounded in this study are likely to be domain-independent processors, playing a regulatory or permissive 
role in semantic  cognition79,80. Our study was necessarily limited to core regions that are intrinsic to the patho-
genesis of SD; the relatively small cohort size here imposed a combinatorial ‘ceiling’ on the complexity of the 
anatomical models that could validly be fitted. Future studies of effective connectivity in SD should address the 
extended connectivity architecture of semantic cognition and interactions between distributed brain networks, 
in larger patient cohorts that enable the fitting of more comprehensive models.

It will also be important to elucidate how effective connectivity in SD—and other neurodegenerative pro-
teinopathies—relates to other structural and functional metrics of regional grey matter and white matter path-
ways and in particular, to task-related activation of vulnerable neural networks in the working brain. While 
semantic processing appears to be a ‘default’ resting operating characteristic of the human  brain38,45, the activity 
of the semantic appraisal network is nevertheless likely to be modulated by task demands: in this regard, it may 
be noteworthy that temporopolar cortex, generally considered an integrative hub in current models of semantic 
 cognition36,37,66, did not emerge as the most highly connected region of the semantic appraisal network in the 
present study nor in a previous resting-state connectivity  analysis50. It should also be acknowledged that charac-
terising large-scale changes in network effective connectivity is but a first step toward defining the local micro-
circuit properties that underpin synaptic alterations and how these mirror pathogenic protein characteristics, 
as anticipated by the molecular nexopathies  paradigm3. Combining spectral DCM in these clinical populations 
with magnetoencephalography (which can measure changes in microcircuit laminar function) would be an 
attractive approach toward closing this scale gap. Additionally, however, the proper interpretation of resting-state 
connectivity methods when applied to complex, task-directed processes such as semantic cognition will entail a 
more detailed understanding of how intrinsic circuit architectural features support behavioural outputs, drawing 
on novel neurochemical, computational and related  approaches37,39.

While acknowledging these caveats, the present study suggests a powerful new approach to characterising 
neurodegenerative proteinopathies as exemplified by SD. Semantic memory can be regarded as, essentially, a 



9

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16321  | https://doi.org/10.1038/s41598-020-72847-1

www.nature.com/scientificreports/

means to support neural inferences about important but unobserved states of affairs in the world at  large37. From 
this perspective, uncovering the circuit architecture underpinning semantic cognition—as disclosed here by a 
specific proteinopathy—holds promise for our understanding of a fundamental principle of brain operation—the 
adaptive minimisation of prediction error—and potentially, a new computational taxonomy of neurodegenerative 
proteinopathies as perturbers of this process.

Methods
participant characteristics. Fourteen patients fulfilling consensus criteria for  SD81 of moderate sever-
ity (mean symptom duration 6.12 years, range 2–12 years) and 20 healthy older individuals with no history 
of neurological or psychiatric illness participated. Patients and healthy controls did not differ significantly in 
age, gender distribution or educational attainment. Neuropsychological assessment and structural brain MRI 
corroborated the syndromic diagnosis in all patients; no participant had radiological evidence of significant 
cerebrovascular damage. General clinical and neuropsychological characteristics of the participant groups are 
summarised in Table 1.

This study was approved by the University College London institutional ethics committee and all participants 
gave informed consent in accordance with the Declaration of Helsinki.

Brain MRi acquisition and pre-processing. Resting-state functional (BOLD echoplanar imaging) and 
structural (T1-weighted MP-RAGE) data were acquired on a Siemens Trio 3T MRI scanner using a 32-chan-
nel phased-array head-coil. The resting-state data acquisition duration was seven minutes. Initial image pre-
processing was performed using Statistical Parametric Mapping (SPM12) (https ://www.fil.ion.ucl.ac.uk/spm/) 
and followed a standard analysis pipeline: slice timing correction, motion correction, structural and functional 
image co-registration, segmentation, normalisation (based on each participant’s structural image) to the Mon-
treal Neurological Institute (MNI) 152 template, and smoothing using a Gaussian kernel with a full-width half 
maximum 6 mm. Further details are in Supplementary Material.

Head motion is a potential confound in any study that compares patients with healthy controls. We com-
puted the magnitude of head movements during each scan by extracting the translational and rotational motion 
parameters estimated during the realignment pre-processing step, and calculated the mean root-mean-squared 
values for translation and Euler angles for rotation. Two-sample t-tests confirmed that the healthy control and 
SD groups did not differ in translational or rotational motion (translational motion: controls mean (standard 
deviation) 0.27 (0.07) cm, SD 0.41 (0.08) cm, t = 1.25, p = 0.22; rotational motion: controls 0.005 (0.001) rad, SD 
0.008 (0.001) rad, t = 1.18, p = 0.25). The range of motion was acceptable for all participants.

Dynamic causal modelling and connectivity analyses. Effective connectivity was estimated using 
spectral  DCM18,19 implemented in SPM12 r7219 (Wellcome Centre for human Neuroimaging, London, UK; 
code available at: https ://www.fil.ion.ucl.ac.uk/spm/softw are/), separately for each cerebral hemisphere. Further 
technical background about DCM can be found in Supplementary Material.

We first defined six functional regions of interest (ROI) to represent key components of the bi-hemispheric 
semantic appraisal network that have been consistently implicated across studies of  SD2,4,24,28,29,33,50: namely, the 
temporal pole, fusiform gyrus, hippocampus–amygdala complex, inferior temporal gyrus, middle temporal gyrus 
and orbitofrontal cortex (further details in Supplementary Material; see Fig. 1). For the right hemisphere, we 
defined six ROIs for 13 instead of 14 SD patients because of a marked signal loss restricted to medial temporal 
regions due to movement artefact in one case. In order to estimate the strength of within-subject, directed neural 
connections separately in each cerebral hemisphere (to account for hemispheric asymmetry in the distribution of 
disease), for each participant and hemisphere we created a fully-connected first (within-subject) level generative 
model of their fMRI time series—considering all possible connections among these brain regions. This model 
was then inverted using spectral DCM. We separately assessed a 12-ROI model to estimate inter-hemispheric 
connections for each participant, with the intention to look at three major commissural connections: between 
left and right hippocampus–amygdala complex (via anterior commissure), between left and right inferior tem-
poral gyrus (via anterior commissure) and between left and right orbitofrontal cortex (via rostral corpus cal-
losum)24,28,82,83. We performed a second (between-subjects) level analysis to estimate the group mean and effect 
of diagnosis for each connection. Parametric empirical Bayes routines were used to assess candidate network 
connectivity models at group  level84; this procedure assesses how individual (within-subject) connections relate 
to group or condition means, taking account of both the expected strength of each connection and the associ-
ated uncertainty (further details in Supplementary Material). We focused on effective connections that were 
necessary to account for the data, with Bayesian posterior probability > 0.95 (details of all effective connections 
can be found in Supplementary Table 1).

We assessed three separate second-level Bayesian models, to examine changes in intrinsic and extrinsic 
effective connectivity (connection strength and directionality) within and between core regions of the semantic 
appraisal network associated with deposition of pathogenic protein and with two key phenotypic features of 
SD: semantic impairment and disinhibited social behaviour. The latter is a major component of the complex 
behavioural phenotype of SD and has been shown previously to have a structural neuroanatomical substrate 
encompassing various components of the targeted semantic  network25,26,51,68,69,85; moreover, it is a relatively 
striking behavioural ‘signal’ that is likely to be detected by caregivers. For each participant, a ‘semantic score’ was 
generated using a principal component analysis of neuropsychological test scores of semantic function (details 
in Supplementary Table 2); a ‘social disinhibition score’ was obtained from ratings on a scale from 0 to 3 (0, 
absent; 1, mild; 2, moderate; 3, severe) provided by each patient’s primary caregiver and by a reliable informant 
for each healthy control (relevant changes in social behaviour comprised lack of adherence to social norms; 

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/software/
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e.g., inappropriate jokes or sexual comments, swearing or shouting in public). For the patient cohort, this score 
significantly correlated with a measure assessing disinhibition (‘acts impulsively without thinking, lacks judg-
ment’) from the validated Frontotemporal Dementia Rating Scale (FTD-FRS)86 (r = 0.55, p = 0.04). For the model 
assessing pathogenic protein deposition, covariates were group mean and diagnostic category coded as 1 or − 1; 
for the models assessing phenotypic features, raw scores were scaled within the range − 1 to 1.

Bayesian model reduction was used to test all reduced models within each parent Bayesian model (assuming 
that a different combination of connections could  exist84) and ‘pruning’ redundant model parameters; parameters 
of the best 256 pruned models (in the last Occam’s window) were averaged and weighted by their evidence (i.e. 
Bayesian Model Averaging) to generate final estimates of connection parameters. To identify important effects 
(i.e., changes in directed connectivity), we compared models (using log Bayesian model evidence to ensure the 
optimal balance between model complexity and accuracy) with and without each effect and calculated the pos-
terior probability for each model, as a softmax function of the log Bayes factor. We treat effects (i.e., connection 
strengths and their changes) with posterior probability > 0.95 as significant for reporting purposes.

Analysis adjusting for effects of regional grey matter loss. To determine the impact on effective 
connectivity profiles from regional grey matter atrophy, we assessed the effect of adjusting for the factor in a 
supplementary analysis. We extracted grey matter density values from segmented images (based on masks from 
the AAL atlas) for each of the regions included in the DCM analysis. We averaged grey matter volume over the 
six regions in each hemisphere and normalised by total intracranial volume. This step ensured that we looked at 
regionally specific atrophy and not global measures of atrophy or differences in overall brain  size17. We included 
the resulting grey matter values as a covariate in all PEB models. Results for this adjusted analysis are reported 
in Supplementary Table 1 and Supplementary Figure 3.

Leave-one-out validation analysis. In a leave-one-out cross-validation of the parametric empirical 
Bayesian models (Table 2; Supplementary Figure 1, Supplementary Figure 2), we assessed how well changes 
in individual network connections predicted key features of SD. Cross-validation of this kind provides out- of-
sample estimates of the validity of specific connectivity strength changes for predicting the phenotype of a new 
patient; here, we measured the predictive posterior density over the main disease factors of interest (presence 
of pathogenic protein, semantic impairment, social disinhibition). Cross-validation was applied to individual 
connections found to be significant at group level. The connections that led to the most accurate predictions of 
group membership, semantic score and social disinhibition score were identified based on their out-of-sample 
correlation with the three factors of interest (Table 2, Supplementary Figure 1, Supplementary Figure 2).

Data availability
Matlab code is available in SPM12 r7219 (https ://www.fil.ion.ucl.ac.uk/spm/softw are/). Anonymized data will 
be shared on request from a qualified investigator for non-commercial research purposes within the limits of 
participants’ consent, and subject to institutional ethics committee approval and material transfer agreements.
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