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Abstract

Next-generation genetic sequencing (NGS) technologies facilitate the screening of multiple genes 

linked to neurodegenerative dementia, but there is little guidance available about their use in 

clinical practice. Guidelines on which patients would most profit from testing, and information on 

the likelihood of discovery of a causal variant in a clinical syndrome, are conspicuously absent 

from the literature, mostly for a lack of large-scale studies. We applied a validated NGS dementia 

panel to 3241 patients with dementia and healthy aged controls; 13,152 variants were classified by 

likelihood of pathogenicity. We identified 354 deleterious variants (DV, 12.6% of patients); 39 

were novel DVs. Age at clinical onset, clinical syndrome and family history each strongly predict 
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the likelihood of finding a DV, but healthcare setting and gender did not. DVs were frequently 

found in genes not usually associated with the clinical syndrome. Patients recruited from primary 

referral centres were compared to those seen at higher-level research centres and a national clinical 

neurogenetic laboratory; rates of discovery were comparable, making selection bias unlikely and 

the results generalizable to clinical practice. We estimated penetrance of DVs using large-scale 

online genomic population databases and found 71 with evidence of reduced penetrance. Two DVs 

in the same patient were found more frequently than expected. These publicly-available data 

should provide a basis for informed counselling and clinical decision making.

Introduction

In recent years we have seen an increasing focus on research in dementia because of its 

rising prevalence in an aging society (1). Although most dementias appear sporadic, familial 

forms of early-onset dementia (EOD) with Mendelian inheritance (such as familial 

Alzheimer’s disease (AD), familial fronto-temporal dementia (FTD) or inherited prion 

disease) have been crucial to furthering our understanding of the underlying clinical-

pathological processes, and the ensuing development of animal models and experimental 

therapeutics (2). Because of a series of high-profile failures of advanced clinical trials, 

clinical research has focussed on testing therapies earlier in disease using imaging and CSF 

biomarkers to support a pre-dementia diagnosis (1). Clinical genetic studies offer the 

potential for presymptomatic diagnosis in at-risk individuals with a high degree of 

confidence about molecular pathology. Indeed, individuals carrying high penetrance 

mutations may be the most appropriate groups in whom to test experimental therapeutics to 

prevent or delay neurodegeneration – especially if those therapeutics had been developed 

using animals expressing mutant human proteins (3).

Several factors have historically inhibited clinicians from considering a clinical genetic test 

in patients with dementia: lack of information about the probability of finding a high-

penetrance mutation in single genes or the perception that this is unlikely; genetic 

heterogeneity (multiple genes causing the same pathology or clinical syndrome); high costs; 

the length of time to return results; and the lack of disease-modifying treatment options. 

These problems have been exacerbated recently because of a high rate of gene discovery and 

heterogeneity, particularly in frontotemporal dementia, with many genes not becoming 

available for clinical testing (4). Furthermore, recent discoveries show marked pleiotropy, for 

example, the C9orf72 expansion mutation being found in patients with clinically-diagnosed 

FTD, amyotrophic lateral sclerosis (ALS), Huntington’s disease-like syndromes, and 

Alzheimer’s disease (5, 6). The advent of NGS based gene-panel technology circumvents 

some of these problems by examining multiple genes simultaneously; however reports of the 

use of panel diagnostics have been limited to small series that cannot provide the statistical 

power needed to support firm genetic evidence of pathogenicity of variants or clinical 

decision making (7).

In this multi-site retrospective and prospective study we analysed a large series of samples 

from patients with heterogeneous dementia syndromes using a validated NGS panel for 

dementia (7) and using gold-standard processes and analytical strategies similar to those 
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used by Clinically Accredited laboratories. The 17-gene panel was combined with 

amplification based assays of the C9orf72 and PRNP expansion mutations, and exome 

sequencing in a large subset: therefore we assessed all the known common causes, and most 

of the rarer causes of genetic dementia syndromes. We sought to establish statistically 

meaningful prevalences of genetically determined dementias in referred patients groups in 

order to provide data about predictive factors in the clinical assessment, rates of mutation 

detection in relevant mutation categories, mutations in genes unexpected for the phenotype, 

and multiple mutations in the same individual (concurrent). These analyses were performed 

on patient data classified by clinical diagnoses, not neuropathology, reflecting the real life 

situations and uncertainty faced by clinicians every day. Using online large-scale sequencing 

and data sharing projects we also sought to clarify issues of causality and penetrance in the 

literature. These data may help in interpretation of variants and in formulating guidance 

about the clinical use of panel and genomic technologies in dementia.

Methods

The study comprised 3241 samples: 2784 patient samples, with clinical rather than 

pathological diagnoses to reflect clinical reality at the point of care (1052 AD, 794 FTD, 299 

prion disease, and 639 patients with a dementia syndrome not consistent with other 

categories and associated with motor symptoms (DemMot)), and 457 healthy elderly control 

samples. From 1998-2015 the UCL Department of Neurodegenerative Disease/MRC Prion 

Unit performed research genetic testing with clinical feedback for PRNP, PSEN1, PSEN2, 

APP, GRN, and C9orf72. 2352 UK patient samples were chosen retrospectively from these 

referred cases. Selection was based on the documentation of clinical parameters to be used 

in the predictive modelling and to equalise sample numbers in the different diagnostic, age 

and family history categories and was blind to research data about the presence of a gene 

variant. 432 patient samples were referred prospectively for the study: 165 patients from 

NHS cognitive disorders clinics in Southern England for gene-panel testing research, and 

267 patient samples from the Division of Neurogenetics at the National Hospital for 

Neurology and Neurosurgery (NHNN) for clinical gene-panel testing. The study was 

approved by the local research ethics committee.

Clinical syndrome was based on the assessment of the referring physician at the time of 

referral, as this is what genetic testing would be based on in real life. This included patients 

referred over a 20 year period; it would therefore not have been done according to a single 

standardised set of current research diagnostic criteria as these have been modified over this 

time. However these changes in definition are unlikely to have led to misclassifications as 

we used only high level clinical diagnostic categories, and changes in diagnostic criteria over 

time have principally focussed on achieving an earlier or biomarker supported diagnosis. 

DemMot was a category we defined to assemble a variety of clinical syndromes that 

comprise a cognitive disorder and pyramidal or extrapyramidal features, not fitting any of 

the other diagnostic categories, eg. Huntington’s disease-like (all were screened for the 

Huntington’s disease expansion), progressive supranuclear palsy, and corticobasal 

syndrome, to explore the usefulness of a dementia panel in cryptic movement disorder cases, 

which feature dementia as part of a complex syndrome. Prion disease patients were referred 

to the National Prion Clinic for PRNP gene testing based on a suspicion of inherited prion 

Koriath et al. Page 3

Mol Psychiatry. Author manuscript; available in PMC 2019 April 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



disease. FTD patients comprised the UCL and Cambridge University FTD Cohorts. 

Cerebrospinal fluid (CSF) results were available to confirm the diagnosis in 78 cases from 

AD and FTD cohorts, and were consistent with clinical diagnosis in 91.0%. 

Neuropathological data was available for 122 patients (4.5% of all patients) and confirmed 

the clinical diagnosis in 102 (83.6%) of cases. Only one case with an unexpected mutation 

went to post-mortem examination (from our AD cohort with an unexpected C9orf72 
expansion). Neuropathological data confirmed the expected TDP pathology.

Age at clinical onset (AAO), gender, site of sample origin and family history were 

documented from the clinical notes and referral cards. The strength of a patient’s family 

history was quantified with a modified Goldman score (GS) (8, 9), whereby GS1 

corresponds to at least three affected family members over two generations linked by a first 

degree relative; GS2 relates to a patient from a family with three cases but not fulfilling the 

criteria for GS1. GS3 relates to one relative with early-onset dementia, or GS3.5 for one 

relative with late-onset dementia. Cases with a known negative family history were called 

GS4, while cases with a censored or unknown family history were categorized as GS4.5.

Additional to ethnicity documented in our database, we considered non-white British 

ethnicity by comparing genotypes at 133 sequenced SNPs from our study participants to 

those from individuals from British and continental outgroup populations genotyped by the 

1000 Genomes study (10). Whilst the number of SNPs used was small for inference of 

ancestry, we were able to identify population specific clusters using principal components 

analysis (PCA) implemented with PLINK (11), and therefore study participants who were 

outliers from a British cluster. In this way we identified 105 individuals (carrying 14 DVs 

out of 354 in total) with evidence of non-white British ethnicity (3.2%). DVs identified in 

these individuals did not bias overall findings; therefore we included these individuals in our 

reports of mutation frequency.

2974 samples (2517 patients, 457 controls) were run using the MRC Dementia Gene Panel 

on an IonTorrent PGM sequencer (Thermo Fisher Scientific), which had been previously 

validated in a blinded in-house study (7). Similar gene panels using identical technologies 

are also in widespread use in Clinically Accredited laboratories (12). For quality control and 

according to the protocol, target amplification was assessed via qPCR and enriched 

template-postive ion-sphere particles were measured on a Qubit® 2.0 Fluorometer. For each 

run, chip loading and the number of aligned reads were evaluated. The panel comprised the 

open reading frame and intron/exon boundaries of 17 dementia genes: APP, CHMP2B, 
CSF1R, FUS, GRN, ITM2B, MAPT, NOTCH3, PRNP, PSEN1, PSEN2, SERPINI1, 
SQSTM1, TARDBP, TREM2, TYROBP and VCP and was supplemented by repeat-primed 

PCR assessment for C9orf72 expansions (13), DNA size fractionation for PRNP octapepide 

repeat insertional mutation (OPRI) (14), and APOE genotype by minor groove binding 

probe. Data were aligned to the hg37 build in NextGENe, assessed for an at least 95% 10X 

target coverage and the VCF files exported to GeneticistAssistant (both Softgenetics) for 

further analysis. On average, samples had 157,350 mapped sequencing reads, 90% of which 

were on target. The average mean depth of coverage was 676 with an average uniformity of 

94.7%; on average, 99.5% of the target sequence was covered at least tenfold. In addition to 

the average coverage, coverage of the variant (>10x), zygosity and variant (allele) frequency 
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were assessed for each variant being analysed in GeneticistAssistant; allele frequency should 

be between 0.25 and 0.75 for heterozygous variants, and between 0.8 and 1 for homozygous 

variants. If necessary, forward and backward reads (similar reads in both directions) were 

evaluated in NextGENe. C9orf72 expansions and PRNP OPRIs were analysed in 

PeakScanner (LifeTechnologies). Novel DVs were confirmed by Sanger-sequencing.

267 patient samples referred for testing to the Neurogenetics Laboratory at the NHNN were 

sequenced on an Illumina MiSeq or HiSeq platform using the Neurogenetics Laboratory 

Dementia Panel, which included 17 genes: APP, CHMP2B, CSF1R, DNMT1, FUS, GRN, 
HTRA1, ITM2B, MAPT, NOTCH3, PRNP, PSEN1, PSEN2, TARDBP, TREM2, TYROBP, 
and VCP. Both the Neurogenetics Laboratory and the MRC Prion Unit team worked 

together on the validation of the original gene panel (7) and are laboratories experienced in 

the quality control, validation and clinical reporting of gene tests. For this study, only 

variants in genes overlapping the MRC Dementia Gene Panel were included. Library 

preparation and enrichment was performed using the Nextera Rapid Capture Custom 

Enrichment Kit (Illumina) according to manufacturer’s protocols. All RefSeq transcripts of 

the genes listed were targeted (coding exons +/-15 bp flanking intronic sequences, with the 

exception of MAPT, which was sequenced to +/- 25 bp to cover known intronic splicing 

mutations). A minimum of 99% coverage at 30X and an average read depth of 500X was 

consistently obtained in samples; sequencing regions with coverage lower than 10X were 

manually inspected. DVs in these clinically sequenced samples were confirmed by bi-

directional Sanger sequencing. These patient samples were not tested for APOE, C9orf72 or 

PRNP insertional mutations.

715 patients who were tested on the MRC Dementia Gene Panel (AD n=509, FTD n=83, 

DemMot=31, Prion=92, no controls) were also exome sequenced at Source Bioscience 

(Nottingham, UK). Agilent-based exome capture (Agilent, Santa Clara, US) was followed 

by paired-end sequencing on the HiSeq2000 sequencer (Illumina, San Diego, US). 

Sequencing reads were aligned to GRCh37 using Novoalign followed by QC and variant 

calling in the Genome Analysis Toolkit (GATK), and annotation with ANNOVAR. Mean 

coverage across the cohorts was 64x, and 81.5% of targeted bases were covered >10x. Two 

DVs were detected in genes not included in the 17-gene panel (see results). No other known 

pathogenic variants were returned by Ensembl’s Variant Effect Predictor (15) in the exome-

sequencing data.

Variant classification followed the guidelines published by the American College of Medical 

Genetics and Genomics and the Association for Molecular Pathology in 2015(16), for which 

we introduced clarifications specific to our disease circumstances and removed criteria 

unsuited to our setting (Table 1). The algorithm used for classification is based on the level 

of evidence available for each variant (Table 1a), which is combined for a final classification 

(Table 1b). Intronic variants were assessed using Human Splicing Finder HSF V3.0 and 

classified according to our criteria (17). Only variants with a population frequency <5% 

were manually classified. For the Neurogenetics Laboratory samples we did not report likely 

benign, benign or synonymous variants.
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Statistical analysis for associations, predictors and relative risks were performed in SPSS 

(IBM, Version 24) and included logistic regression, univariate analysis of variance 

(ANOVA), and contingency tables. Statistical analyses were carried out with a pre-defined 

statistical threshold of p<0.01 to account for testing five key independent hypotheses (see 

tests labelled †); subsequent secondary, exploratory tests were carried out without further 

corrections for multiple testing.,

Penetrance calculations were based on estimates of lifetime risk generated using a Boolean 

literature search of PubMed for “dementia” AND “epidemiology” from 2008 to January 

2017 to determine incidence and prevalence of early-onset AD (EOAD) and early-onset 

FTD (EOFTD). Subsequent calculations were performed in Microsoft Excel based on the 

methodology used in prion disease (18), both for variants identified in this dataset and 

reportedly pathogenic variants described in the literature (see Supplementary data for more 

details).

Results

Baseline characteristics of patients and controls are shown in Table 2.

Classification of variants

There is no computational or experimental tool to perfectly classify individual variants by 

their pathogenicity, the current start-of-the-art clinical method is decision making that 

considers multiple factors and is adaptable to multiple potential genes/disease mechanisms 

(Table 1). In this way we classified 13,152 variants in 3,241 individuals (Figure 1, Tables 2, 

3 and Supplementary Table 4S) and identified 352 DVs (deleterious or likely deleterious 

variants) in 341 patients (12.2% of patients, p=2.8 x 10-14, OR: 31.8, 95% CI (7.88, 

127.94)). Two additional DVs were seen in two of 457 controls (0.4%, Figure 1, Table 3). In 

addition to these 343 individuals carrying DVs, 121 possibly deleterious variants were found 

in 3.5% of all samples (4.1% patients, 1.3% of controls), in excess in cases vs. controls 

(p=0.005 (†), OR: 3.06, 95% CI (1.34, 7.01)), suggesting that two thirds of variants in this 

category might be reclassifiable as DVs if sufficient data were available; these warrant 

further research specific to each case including the potential for segregation in families. 143 

variants that could not be classified as benign or deleterious, termed uncertain, were seen in 

4.4% samples (4.6% patients, 3.5% controls, p=0.39).

Novel variants were defined as variants that had not previously been reported in the literature 

nor found in the Genome Aggregation Database (gnomAD) of exomes and genomes (19). 

Out of the 343 samples with 352 DVs detected in this dataset, 39 (11.3% patients with DVs, 

Chi-squared test p=0.004 (†)) were novel DVs, Figure 2, Table 5S; 16 were identified in 

GRN, eight in PSEN1, six in MAPT, six in CSF1R and one each in NOTCH3, PSEN2, and 

VCP. Because of the well-known disease mechanism of GRN related to loss of function, 

novel variants in this gene were easier to classify as DVs than those in genes with less well 

understood pathomechanisms.

There have been several reports of concurrent pathogenic mutations in patients with FTD 

(20–22). 11 patients were found to carry two DVs (out of chance expectation, p<0.001 (†), 
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Binomial test (23), 3.2% of patients with at least one DV, 0.4% single DV in controls; one 

AD patient, seven FTD patients, two patients with prion disease and one patient with 

DemMot). There was a notable excess in FTD, as previously suggested by case reports 

(observed 7, expected 2.7, Chi-squared test, p=0.003) (20).

14 DVs were observed in 12 patient samples of non-UK ancestry; of these, 2 were C9orf72 
expansions and 2 cases carried a double DV. None of the DVs found in samples of non-UK 

ancestry were observed on gnomAD, except for the secondary variant of one of the 

concurrent mutations, which was described in 4 South Asian, 1 East Asian and 3 European 

samples, with a frequency of 0.013%, 0.0058% and 0.0027%, respectively.

Rare GRN missense variants found in cases and controls were all classified as possibly 

pathogenic. Collectively, compared to controls (1.1%), GRN missense variants were seen 

significantly in excess in patients (3.6%, p=0.004, OR 3.4 (1.4-8.4)) with AD (3.5%, 

p=0.006, OR=3.3) and FTD (3.7%, p=0.006, OR=3.4) but not DemMot (2.5%, p=0.1, 

OR=2.3) or prion disease (2.7%, p=0.2, OR=2.5). Compared to controls (3.7%), 

heterozygous TREM2 missense variants were not significantly more common in dementia 

syndromes (4.9%; p=0.3), or in AD alone (5.9%, p=0.097; OR=1.6), albeit consistent with 

effect sizes previously reported (24).

715/2984 samples that were analysed with the NGS gene-panel were also exome sequenced 

(see Methods), which allowed discovery of only two additional mutations classified as DVs, 

in TBK1 (25), and DNMT1 (26), and no DVs in other neurology-relevant genes not included 

in the panel.

All the analyses reported here were repeated following exclusion of known family members 

(n=73), on the basis of the proband being identified in the family history of the second case, 

with no significant change to any finding.

Phenotypes associated with deleterious or likely deleterious variants

Neurodegenerative disease syndromes caused by DVs were found to have broadly similar 

ages at onset (AAO), independent of the gene in which these variants were identified 

(Supplementary Figure 1). An overall statistically significant difference in AAO by gene 

(ANOVA, p=0.003), was driven by the relatively late clinical onset in GRN and the 

relatively early onset of patients with DVs in PSEN1, MAPT and PRNP. Nevertheless, 

patients with PRNP DVs presented with a very wide range of AAO, stretching into old age 

(range 22 years to 79 years). DVs discovered in old age were not restricted to PRNP, and 

included APP, PSEN1, C9orf72, GRN, MAPT, CHMP2B, CSF1R, TYROBP and VCP.

DVs were often discovered in patients with clinical syndromes that would not normally 

prompt a request for sequencing of the implicated gene. In 58 patient samples, DVs were 

identified in genes that would not normally be screened in the clinical syndrome (16.9% of 

all patients with DVs, p= 6.3 x10-50 (†)), Figure 3. In patients diagnosed with AD we found 

three C9orf72 expansions, nine DVs in MAPT, five in CSF1R, two in GRN, three in PRNP, 

and one each in SQSTM1, TARDBP and VCP, as well as a homozygous TREM2 DV 

normally associated with Nasu-Hakola disease. For FTD patients, five were seen in VCP, 
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three variants each were seen in CSF1R and PSEN1, two in PRNP and SQSTM1, and one 

each in NOTCH3 and CHMP2B. Two DVs in PSEN1 and one each in GRN and VCP were 

identified in patients referred with suspected prion disease, the latter as part of a concurrent 

mutation with a PRNP DV. In DemMot, four DVs were identified in PSEN1, three variants 

in MAPT, as well as one variant each in ITM2B, PRNP, GRN and PSEN2 were found.

Predictors of deleterious or likely deleterious variants (Ϯ)

Coverage, sex, ethnicity, healthcare setting, and prospective/retrospective recruitment did not 

influence the likelihood of a DV (p=0.97, p=0.33, 0.68, 0.61 and p=0.53, respectively, 

logistic regression); we therefore combined genders, ethnicities, sample coverage, sampling 

method and sample referral sites in further analyses. Compared to controls, AD (logistic 

regression, p=0.006; Odds Ratio (OR): 7.46, 95% Confidence Interval (CI) (1.77, 31.49)), 

FTD (p=2.0x10-6; OR: 33.58, 95% CI (7.95, 141.81)), Prion patients (p=2.24x10-9; OR: 

92.54, 95% CI (20.98, 408.184)) and DemMot patients (p=0.042; Odds Ratio: 4.7, 95% CI 

(1.06, 20.87)) were significantly more likely to carry a DV in order of declining frequency 

Prion>FTD>AD>DemMot (Table 3).

AAO was a very strong predictor of finding a DV (p=3.8x10-9, logistic regression, Figure 4). 

Risk was high from early adulthood through to middle age and steadily declined into old age 

without clear change in risk at the traditional boundary of early and late-onset disease, age 

65. Family history was also highly predictive of a DV (p=4.6x10-38, logistic regression, 

Figure 5). This association was also strong in late-onset dementia, in which circumstance GS 

remained highly predictive of identifying a DV (p=2.3x10-4, logistic regression), but age at 

onset no longer had a significant effect (p=0.452). The combined effects of AAO, clinical 

syndrome and family history were considered in recommendations for use of dementia gene 

panels (Figure 6).

In the AD cohort, unsurprisingly, ApoE genotypes 3/4 and 4/4 were significantly enriched 

(p=3.0x10-4 and p=0.001, Chi-squared test, respectively); for FTD patients, the ApoE 
genotype 4/4 was also significantly enriched (p=6.7x10-4, Chi-squared test). 75% of GS1 

AD patients and 71% of GS1 FTD patients (all ages) had either a DV or one ApoE4 
genotype.

Penetrance calculations in EOAD and EOFTD

Minikel et al.(18) evaluated the penetrance of PRNP variants showing that some of those 

previously suspected to be DVs were neither highly penetrant nor benign. We therefore 

attempted to discover similarly partially penetrant DVs using the gene panel. The method 

used by Minikel requires an estimate of lifetime risk of disease and population frequency of 

a variant. We estimated lifetime risk of early-onset AD (EOAD, 1 in 3194) and early-onset 

FTD (EOFTD, 1 in 3276) (see Supplementary data). We assessed the likely penetrance of 

reported DVs in APP, PSEN1 and PSEN2 for EOAD and GRN, MAPT and VCP for 

EOFTD both in the literature and novel variants discovered in this study. Assuming a 

proportion of autosomal dominant genetic cases of 10% for EOAD (27) and 20% for 

EOFTD (28), our calculations led to an expectation of 26 DVs among the 141,352 

individuals on the gnomAD online database (19), but instead 182 variants were counted. For 
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EOFTD, we would have expected to see 51 DVs in gnomAD while we found 36 variant 

counts (6324 if “unclear” variants are included). The prevalence of AD deleterious variants 

in the literature (29) therefore vastly exceeds our estimates based on the prevalence of 

genetic early-onset dementia, in the assumption of high penetrance and high ascertainment. 

We therefore went on to test whether evidence from our study and data publicly available 

would revise classification of variants and clarify those deemed “unclear”.

In the molgen database (29) and on the mutation database of Alzforum, 302 variants in APP, 

PSEN1 and PSEN2 and 153 variants in GRN, MAPT and VCP were listed as deleterious 

and a further 21 variants in APP, PSEN1 and PSEN2 and 64 variants in GRN, MAPT and 

VCP were reported as having unclear pathogenicity (Supplementary data). Many of the 

reported DVs are not observed at all, or found at very low frequencies resulting in estimates 

of penetrance with very wide confidence intervals, however, 71 purported DVs were 

detected in gnomAD, calling into question the extent of their pathogenicity and penetrance 

(Supplementary Tables 1S-3S). Based on their relative frequency in cases and the general 

population, most of the variants classified as DVs in our dataset appear to be highly 

penetrant pathogenic mutations, with three exceptions. APP Ala713Thr was observed once 

in our AD cohort and despite being reported as pathogenic in the literature, its population 

frequency suggests low penetrance for EOAD of 0.4% (95% CI 0.1-2.4%), MAPT 
Gly389Arg (observed twice in our dataset) was estimated to have 10.2% penetrance (95% CI 

1.6-63.5%) and PSEN1 Ile227Val (observed once in our dataset) was estimated to have 2.9% 

penetrance (95% CI 0.3-26.9%) (See Tables 1S-3S for more details).

Discussion

Numerous Mendelian genetic causes of dementia have been discovered over the last 28 

years, but the translation of this knowledge into routine clinical practice has been limited 

(30). Until recently, only a small number of tests were clinically available. Here, we try to 

bridge this gap by providing data to support gene panel diagnostics in dementia through 

analysis of a series of patients enriched for those likely to be carrying deleterious mutations, 

and large enough to inform clinical practice. The identification of clinically-relevant variants 

in our series was high in all groups aside from the elderly with a negative family history and 

those with dementia and motor symptoms that may not be caused by variants in typical 

dementia genes. We also discovered a high rate of novel variants and known variants in 

genes that even an experienced clinician would probably not have selected for single gene 

tests based on the clinical syndrome. Our results therefore justify broader clinical testing 

than hitherto customary. We identified clinical syndrome, age and the strength of the family 

history as predictive factors that should help guide counselling and decisions about referral 

for testing. Whilst many variants of uncertain significance remain and additional evidence is 

needed, these data, in tandem with large-scale population data, provide some of the evidence 

base needed for correct information and guidance in genetic testing.

Clinical syndrome was a strong predictor of the chance of detecting a mutation and the gene, 

but in markedly different ways. 94% of suspected prion disease cases with DVs were linked 

to a single gene, PRNP; 93.5% of FTD patients with DVs were linked to three major, and 

two additional genes associated with FTD syndromes (C9orf72, GRN, MAPT, SQSTM1, 
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VCP); however, in only 63% of clinically diagnosed AD patients were the DVs in genes 

linked to AD pathologies (APP, PSEN1 or PSEN2). DVs in patients with a dementia-motor 

syndrome were uncommon and heterogeneous in their associations. These findings have 

implications for clinical practice: it would be reasonable to refer suspected prion disease 

patients for testing of PRNP alone. For FTD and AD syndromes, the dementia gene-panel 

approach seems sensible due to the diversity of genes involved and phenotypic 

heterogeneity. Dementia-motor syndromes are more challenging however; a low rate of DV 

discovery either implies that disease relevant variants are not covered by our panel. This 

would not be surprising as we did not screen genes associated with familial Parkinson’s 

disease or the expansion disorders linked to HD phenocopy syndromes other than C9orf72; 

alternatively, these patients may harbour a low rate of single gene disorders. Despite the 

prominent role dementia plays in these patients’ clinical syndromes, a panel covering typical 

dementia genes only is of limited use in this cohort; more research is needed to resolve this 

question.

The low additional rate of mutation detection by research exome sequencing argues in 

favour of panel-based testing which should be more cost effective and avoids issues related 

to incidental detection of clinically-relevant variants. We have not generated data to allow a 

rigorous comparison of alternative gene panel technologies or composition, augmented 

exomes, genomes or other diagnostic approaches.

Age at onset was also a strong predictor of finding a DV. However this was not an absolute 

rule, with the rate of DV detection being 13.5% in those with AAO <65 and 7.2% in those 

with AAO >65, which was a surprising finding perhaps related to the selection bias inherent 

in our referral based sample. Family history remained an important predictor in all age 

groups. Our findings therefore encourage the use of gene panels in late-onset dementia 

where there is evidence of a family history measured using a tool like the Goldman score. 

Only 6 DVs in 233 patients (2.6%) were found in late-onset dementia with a negative family 

history (GS4), three in PRNP, two C9orf72 expansions, and one in GRN, so if the family 

history is negative in late-onset dementia it seems reasonable not to consider gene-panel 

testing, as would be normal practice at the moment. We recommend dementia gene panel 

diagnostics are considered in all early-onset patients, and late-onset patients with evidence 

of a genetic disorder in the family history (GS1, 2, or 3)(11). We have suggested guidance 

based on these findings (see flowchart Figure 6); beyond the report of our experience, 

opinions will vary among physicians and patients about what level of risk justifies gene 

panel testing. Indeed, some clinicians/patients/families may feel that even low risks <5% of 

a DV would justify testing.

As there are no proven disease modifying treatments yet available, some may question why 

an effort should be made to identify Mendelian causes of dementia (31). However, many 

arguments can be brought in favour of identifying patients who carry pathogenic variants. 

These include the provision of a precise diagnosis, removing the need for further potentially 

invasive diagnostic tests and providing information about prognosis. It also opens up access 

to patient support from a community with a shared molecular pathology, who often lend 

strong lobbying and practical support to research and care in their condition. Genetic 

diagnosis allows for precision medicine in current and forthcoming clinical trials, for which 
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there are several active examples. A positive genetic test in a relative also provides the 

opportunity for siblings or descendants to make an informed decision about testing. Our data 

should provide information to help doctors and genetic counsellors discuss risks with 

patients and their families to make informed joint decisions about clinical gene testing.

Our sampling strategy was to be representative of cases being considered for genetic testing 

by referring physicians. Bias in referrals due to selection will have influenced the prevalence 

of DVs seen in this study vs. a population based study or unselected dementia patients, 

however a true population study would have to be very large indeed to detect a similar 

number of DVs. Whilst acknowledging selection bias as a limitation, we found no difference 

in rates of DV detection in prospectively referred cases, or those referred for a UK National 

Health Service (NHS) clinical accredited service, implying that our findings are 

generalizable to cognitive clinic cases that physicians might consider referring. We were also 

limited by a selection of dementia genes and blinded validation studies that were done in 

2014. Since then the only major Mendelian disease gene to be discovered in the study’s 

relevant dementia syndromes is TBK1 associated with FTD (found in a single patient by 

exome sequencing).

More work is needed to improve information in the literature and databases about the 

pathogenicity and penetrance of variants. An excess of potential DVs is seen in population 

data, incompatible with the observed prevalences of early-onset dementias. Both for EOAD 

and EOFTD, variants have been reported as potentially deleterious, which are most likely 

either benign or low penetrance. Large-scale studies harnessing the power of NGS and big 

data are vital tools to ensure clinical diagnosis, testing and feed-back are as accurate as 

possible going forward. Improved sharing of patient genetic data, the availability of large-

scale population data, improved in silico and in vitro modelling, particularly for less 

commonly involved genes and dementia syndromes should help improve the accuracy of 

classification (19). We encourage the development of guidelines and funding to support 

sharing of clinical and genetic data in databases to further improve the accuracy of 

classification.

Increased genetic testing of a wide range of patients with diverse dementia syndromes 

promises opportunities for the patient, clinician, and research, but also implies a burden for 

Clinical Genetics services. Similarly, predictive genetic testing in blood relatives ensuing 

from diagnosis in a proband, can have a considerable psychological impacts and the 

involvement of at-risk individuals from families in decisions about gene diagnostics is 

crucial.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Frequency of variant pathogenicity classes in the dataset
This figure shows the frequency of the various variant pathogenicity classes in the total 

dataset broken down by individual phenotypes.
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Figure 2. Genes in which novel DVs were found.
11% of DVs were not previously described in the literature (n=39). Known mutations were 

found in PRNP (24.6%), C9orf72 (19.2%), MAPT (15.8%), GRN (9.9%), PSEN1 (9.6%), 

APP (3.4%), CSF1R (2.0%), VCP (1.7%), SQSTM1 (0.9%), TARDBP (0.6%), and 

CHMP2B, ITM2B, NOTCH3, PSEN2, and TREM2 (0.3% each).
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Figure 3. Chart illustrating the association between clinical syndrome and gene implicated
Numbers on the left refer to patients with clinical syndromes, numbers of the right refer to 

DVs in implicated genes.
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Figure 4. Proportion of patients with a deleterious or likely deleterious variant per age group 
(%)
The distribution is skewed towards the younger ages of onset, but we discovered many 

patients with DVs associated with elderly ages of onset, particularly in the presence of a 

family history.
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Figure 5. Family history is a strong predictor for the identification of a deleterious or likely 
deleterious variant
Stratifying cases by Goldman Score reveals its strong predictive value in identifying cases 

with a DV; however, deleterious or likely deleterious variants are found in clinically-relevant 

proportions of cases with no (GS4) or a censored (GS4.5) family history.
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Figure 6. Suggested decision making about use of dementia gene panel testing.
We found gene panel diagnostics was most useful in AD and FTD syndromes where it was 

hard to predict the implicated single gene. Yield of clinically-relevant mutations was high 

(>10%), medium (5-10%) or low (<5%) in groups stratified by age and family history. The 

decision to refer for gene panel diagnostics is not solely driven by the chance of a clinically-

relevant result, and many clinicians would consider even a low yield (<5%) justifies use of a 

gene panel in many clinical scenarios. A decision should take into consideration the wishes 

of the patient and at-risk individuals. FTD subtype (behavioural variant, progressive non-

fluent aphasia, semantic dementia, etc.) may also influence the approach to testing but this 

requires further study. Suspected prion disease patients are best referred for PRNP testing in 

the first instance, and if this is negative, reconsider as per AD syndrome. Dementia-motor 

syndromes had a generally low yield on dementia panel testing (<5% all subgroups), 

recommendations have been made for the stepwise investigation of HD-like syndromes 

which are often caused by expansion disorders not well ascertained by gene panel 

diagnostics(5).
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Table 1a
Evidence used to classify variants according to their pathogenicity level

Variants identified in a sample were classified according to the information available about them. This 

included the type of mutation in question, its position in the gene and/or protein, its frequency in online 

population databases, in silico predictions of effects on proteins, and whether it had previously been reported 

in families, single cases or controls.

Evidence level Criteria

Pathogenic
Strong

1) Coding amino-acid change previously published as deleterious with evidence of segregation in more than one 
pedigree or in multiple unrelated patients with the same phenotype
2) Null variant in a gene where loss of function (LOF) is a known disease mechanism (caveat LOF variants at 
extreme 3' end)
3) Variant in a gene associated with an expected very rare pathology (e.g. PRNP mutation and prion pathology)
4) Explained mechanism of pathophysiology of variant using in vitro or in vivo studies
5) Found in a mutational hotspot i.e. a domain where many other pathogenic mutations are seen, generally with 
additionally support from in silico prediction software

Pathogenic Moderate 1) Coding amino-acid change previously and justifiably published as deleterious but without evidence of 
segregation or in a single pedigree/patient
2) Novel missense change at an amino acid residue where a different pathogenic missense change has been seen
3) A very different amino-acid change at the same site or next to one with a less dramatic amino-acid change but 
deleterious
4) In a gene the mechanism of which is understood and the effect of the variant is in keeping with that mechanism;
5) Protein length changes as a result of in-frame deletions/insertions in a nonrepeat region or stop-loss variants
6) Mutation in a gene associated with a rare pathology in a case with a compatible clinical syndrome
7) Intronic variant affecting splicing or protein length

Pathogenic Supporting 1) Variant with a major amino-acid change near or in a functional domain (e.g. active site of an enzyme) but not in a 
mutational hotspot
2) Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, 
evolutionary, splicing impact, etc.) Caveat: Because many in silico algorithms use the same or very similar input for 
their predictions, each algorithm should not be counted as an independent criterion
3) Reported in both cases and controls, but more cases than controls (statistically significant in a study)

Pathogenic
Risk factor

1) Previously reported as risk factor, either variant itself or clear established pattern in gene
2) >1 in 10000 in gnomAD;
3) The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in 
controls

Benign Independent Allele frequency >5% on gnomAD, or 1000 genomes project

Benign
Strong

1) Allele frequency >1% on gnomAD;
2) Reported benign in multiple pedigrees or with insight into gene/protein mechanism
3) Allele frequency is greater than expected for disorder
4) Lack of segregation in affected members of a family, caveat: phenocopies and penetrance
5) Seen in equal or greater frequencies in controls than cases

Benign
Moderate

1) Allele frequency over 0.1% on gnomAD
2) Reported benign in one case or pedigree
3) Genetic mechanism inconsistent with pathological phenotype, or known mutation spectrum

Benign
Supporting

1) Missense variant in a gene for which primarily truncating variants are known to cause disease or the mechanism 
is very specific and known
2) Multiple lines of computational evidence suggest no impact on gene or gene product (conservation, evolutionary, 
splicing impact, etc.)
3) A synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus 
sequence
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Table 1b
Criteria for variant classification

The evidence available about each variant was combined to determine its likely effect and likelihood of 

causing disease

Pathogenicity Algorithm

Deleterious Found in patient(s) and not controls OR in significant excess in patients AND seen on gnomAD at less than 1 in 
50,000;
AND Pathogenic Strong evidence 1) OR 2),
PLUS one additional Pathogenic Strong or two Pathogenic moderate or one Pathogenic moderate and one Pathogenic 
Supporting criterion

Likely deleterious The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls, 
or only seen on gnomAD at less than 1 in 10,000;
AND Pathogenic Moderate evidence 1) OR 2) OR 3)
AND one additional Pathogenic Strong or Moderate or Supporting criteria.

Possibly deleterious Found on gnomAD at less than 1 in 5000 and at least one Supporting criterion

Uncertain Insufficient or conflicting evidence
Missense mutation not nearby other missense mutations thought to be pathogenic

Likely benign One Benign Strong criteria OR one Benign Moderate AND one Benign Supporting criteria OR two Benign Supporting 
criteria

Benign Benign Independent OR one Benign Strong evidence criterion AND two further Benign Moderate or Benign 
Supporting criteria

Risk factor Previously reported as risk factor, either variant itself or clear established pattern in gene,
AND >1 in 10000 in gnomAD;
AND the prevalence of the variant in affected individuals is significantly increased compared with the prevalence in 
controls
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