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Abstract

Introduction: Frontotemporal lobar degeneration (FTLD) is the most common form of

dementia for those under 60 years of age. Increasing numbers of therapeutics targeting

FTLD syndromes are being developed.

Methods: In March 2018, the Association for Frontotemporal Degeneration convened

the Frontotemporal Degeneration Study Group meeting inWashington, DC, to discuss

advances in the clinical science of FTLD.

Results:Challenges exist for conducting clinical trials in FTLD. Two of the greatest chal-

lenges are (1) the heterogeneity of FTLD syndromes leading to difficulties in efficiently

measuring treatment effects and (2) the rarity of FTLDdisorders leading to recruitment

challenges.

Discussion: New personalized endpoints that are clinically meaningful to individuals

and their families should be developed. Personalized approaches to analyzingMRI data,

development of new fluid biomarkers and wearable technologies will help to improve

the power to detect treatment effects in FTLD clinical trials and enable new, clinical

trial designs, possibly leveraged from theexperienceof oncology trials. A computational

visualization and analysis platform that can support novel analyses of combined clinical,

genetic, imaging, biomarker data with other novel modalities will be critical to the suc-

cess of these endeavors.
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clear palsy

1 INTRODUCTION

Frontotemporal lobar degeneration (FTLD) is the neuropathological

term for a related group of rare neurodegenerative disorders that

cause a spectrum of impairments in personality, cognitive ability, lan-

guage, and motor function. These include behavioral variant fron-

totemporal dementia (bvFTD), primary progressive aphasias (PPA) and

the parkinsonian disorders, corticobasal syndrome (CBS) and progres-

sive supranuclear palsy (PSP). At present, there are no approved symp-

tomatic or disease-modifying treatments for FTLD. Medications that

are approved for use in other diseases are often used to manage FTLD

symptoms without lasting success, and none have been found to slow

or stop the progression of FTD.1–3 Current management for FTLD

relies on these symptomatic therapies as well as nonpharmacologi-

cal interventions that include reduction of excess stimulation from the

environment combined with management of inappropriate or repeti-

tive behaviors using tailored activity programs4,5 and language retrain-

ing or speech therapy where possible.6,7 The use of physiotherapy and

occupational therapy and modifications to the home environment can

support progressive lossofmotor skills.8 These interventionsoffer par-

tial but temporary symptomatic relief and address some of the care-

giver burden but do not substantially alter the course of this fatal spec-

trum of disease. Later disease stages often require institutional care

where behavioral problems, mutism, parkinsonism, and dysphagia are

managed symptomatically.

The Frontotemporal Degeneration Treatment Study Group (FTSG),

a program of the Association for Frontotemporal Degeneration, was

founded in 2010 to promote collaborations between academic and

pharmaceutical industry researchers focused on drug development

for FTLD and related disorders.2,9 Since the last FTSG meeting that

took place in 2016, much progress has been made in therapeutically

relevant FTLD research. With increasing numbers of potential thera-

pies entering familial FTLD (f-FTLD) clinical trials, the FTSG organized

a meeting in Washington, DC, March 2018, in partnership with the

National Institute ofNeurologicalDisorders and Stroke, to discuss clin-

ical trialmethodology andoutcomemeasures for theFTLDspectrumof

disorders. Two key challenges to FTLD clinical trial design were identi-

fied as topics for this meeting: (1) the heterogeneity of clinical symp-

toms in FTLD syndromes caused by the same mutation or underly-

ing pathology, leading to difficulties in efficiently measuring treatment

effects using clinical or imaging outcome measures; and (2) the rarity

of FTLD disorders leading to recruitment challenges and the neces-

sity for trial designs and instruments that can optimize the measure-

ment of treatment effects in small trial samples. This article summa-

rizes thepresentations anddiscussion fromthatmeeting andhighlights

new strategies to improve FTLD drug development.
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2 CLINICAL TRIAL DESIGN IN RARE FTLD
DISORDERS

The complexity of FTLD phenotypes and range of syndromes creates

a significant challenge for clinical trial design, along with the fact that

the FTLD disorders are considered rare diseases (less than 200,000

affected in the US). Collecting true population-based estimates for

FTLD disorders is problematic given the limited public awareness of

this younger onset dementia, clinical presentations that can overlap

with other diseases, and the absence of validated biomarkers to distin-

guish FTLD fromother neurological and psychiatric disorders. A recent

study in theUK10 reported a combined prevalence of 10.8 per 100,000

for bvFTD, PPA, PSP, and CBS for all ages (40–100 years) with a peak

between 65 and 70 years of approximately 45 per 100,000 which is

consistent with previous prevalence estimates for FTD and PPA.11,12

Interest in participation in clinical trials is very high among f-FTLD kin-

dreds aswell as families livingwith sporadic FTLD,which has facilitated

anumber ofmultisite clinical trials for FTLDdisorders including bvFTD,

semantic variant PPA, and multiple studies in PSP.13–16 Greater than

85% of participants in a survey for the Advancing Research and Ther-

apies in Frontotemporal Lobar Degeneration (ARTFL) North Ameri-

can clinical research consortium, described in the following, indicated

a strong interest to participate in a clinical trial.

There have been few randomized, placebo-controlled trials in

FTLD.3 Previous clinical trials have demonstrated the feasibility of

using behavioral questionnaires, cognitive scales, and functional activ-

ity ratings as outcomemeasures. Although no study to date has yielded

evidence of disease modifying therapeutic efficacy, previous trials

have laid the groundwork for sharing data that could improve trial

design.17 Previous trials may have been unable to detect treatment

effects for a number of reasons such as outcome measures that do

not address clinical, etiological, and imaging heterogeneity between

patients carrying the same molecular diagnosis, inadequate sample

size, and participants being too late in the course of the disease to

demonstrate benefit. Refining FTLD patient selection and trial design

will gain even greater importance as new disease-modifying thera-

peutics are developed.17 The two largest industry-sponsored trials in

bvFTD (NCT01626378) and FTLD due to progranulin gene mutations

(FTLD-GRN; NCT02149160) have not yet been published, and it is

anticipated that data shared from these studies would advance our

understanding of trial design for FTLD. Strongermechanisms to ensure

prompt publication and data sharing, based on the Collaboration for

Alzheimer’s Prevention principles,18 will be particularly important for

a rare disease and need to be incorporated into future FTLD clinical

trials.

Despite these challenges, newtreatments targeting taugainof func-

tion, progranulin haploinsufficiency, and chromosome 9 open reading

frame 72 (C9orf72) hexanucleotide repeat expansions are progress-

ing in clinical development for FTLD and related disorders, with some

agents such as anti-tau monoclonal antibodies having entered large-

scale efficacy studies for PSP (NCT02460094 and NCT02985879).

Table 1 summarizes drugs recently tested, in late stages of preclini-

cal development, or currently under active evaluation in clinical trials.

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture using traditional (e.g., PubMed) sources, meeting

abstracts and presentations. There have been a limited

number of randomized placebo-controlled clinical trials

performed in frontotemporal lobar degeneration syn-

dromes in the past. A variety of endpoints have been used

in these studies; all were negative. The relevant citations

are appropriately cited.

2. Interpretation: A variety of challenges exist for conduct-

ing clinical trials in frontotemporal lobar degeneration

(FTLD). Most prominently, these are 1) the heterogene-

ity of FTLD syndromes leading to difficulties in efficiently

measuring treatment effects using common clinical or

imaging outcome measures and 2) the rarity of FTLD dis-

orders leading to recruitment challenges and difficulties

with adequate power to detect treatment effects.

3. Future directions: A limited number of clinical trials are

underway and more are planned for both familial and

sporadic FTLD syndromes. New personalized endpoints

that aremost clinicallymeaningful to individuals and their

families should be developed. In addition, more power-

ful approaches to analyzing heterogeneous clinical and

MR imaging data and development of new fluid biomark-

ers and wearable technologies will help to improve the

power to detect treatment effects in FTLD clinical trials

and enable new, more efficient clinical trial designs mod-

eledononcology.Morewidespread sharingof clinical trial

data and biofluid samples will be critical to developing

new endpoints and refining FTLD clinical trial designs.

These ongoing and planned clinical trials across the spectrum of FTLD

highlight the urgency of developing novel outcome measures, patient

stratification tools and clinical trial designs. Therapies that leverage

or modify the immune system to treat FTLD are now in clinical tri-

als. Tau immunotherapies are being tested by several groups who are

leveraging the clinical homogeneity of patients with PSP-Richardson’s

syndrome16,39 ornonfluent variantPPA,40 whichare considered “pure”

4 repeat tauopathies with well-defined natural history of disease pro-

gression. These FTLD syndromes provide cohorts in whom it may be

easier to demonstrate, and hopefully define, clinically meaningful end-

points that could achieve regulatory approval. A trial of a monoclonal

antibody that blocks a progranulin receptor, and thereby hypothesized

to increase progranulin levels, is also now underway (Table 1).

Antisense oligonucleotide (ASO) therapy has been demonstrated to

be effective in the central nervous system when used to treat spinal

muscular atrophy.41,42 Oligonucleotides offer the opportunity for pre-

cision designwith a sequence andmodifications that can improve their

selectivity, stability, and specificity. Current platforms create either a
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TABLE 1 Potential FTLD therapeutics

Drug Mode of action Status Ref NCT∗

GRN-targeted therapeutics

FRM-0334 HDAC inhibitor Phase 2 (negative) n/a 01835665

Chloroquine Vesicular pHmodulator Repurposed 19 -

Nimodipine Increased progranulin secretion Repurposed; phase 1b (neg) 20 01835665

AL-001 Anti-sortilin mAb Phase 1 n/a 03636204

Proprietary A, B HDAC inhibitor Preclinical 21 -

Proprietary A-C AAV gene therapy Preclinical 22,23 -

C9orf72 therapeutics:

Proprietary A, B C9orf72 antisense oligonucleotides Phase 1 ALS; FTLD planned 24,25 03626012

Tau-targeted therapeutics:

LMTX (methylene blue) Protein clearance activator Phase 3 (negative for bvFTD) n/a 01626378

Lithium carbonate GSK inhibitor Phase 2 FTD n/a 02862210

Abeotaxane (TPI-287) microtubule stabilizer Phase I (negative for CBD, PSP) n/a 01966666

Salsalate Tau acetylation inhibitor Phase 1 PSP; abandoned 26 02422485

ABBV-8E12 N-terminal anti-taumAb Phase 2 PSP (abandoned) 27 02985879

BIIB092 N-terminal anti-taumAb Phase 2 PSP 28 02460094

BIIB092 N-terminal anti-taumAb Phase 1b: CBD, nfvPPA, sMAPT 28 03658135

AADvac1 Active anti-tau vaccine Phase 1: nfvPPA 29 03174886

UCB0107 Mid-domain anti-taumAb Phase 1 30 -

ASN001 o-GlcNACase inhibitor Phase 1 31 -

IONIS-MAPTrx Antisense oligonucleotide Phase 1 AD 32 03186989

Other (immunomodulatory, neuroprotective therapeutics):

NP001 Macrophage activation inhibitor Phase 2 ALS (negative) 33,34 03186989

DLZ Kinase inhibitor Neuroprotective agent Phase 1 ALS 35 02655614

Symptomatic approaches:

Oxytocin Symptomatic improvement Phase 2 bvFTD 36 01386333

Rivastigmine Cholinesterase inhibitor Phase 2 PSP n/a 02839642

Transcranial DC stim Electric current stimulation N/A (pilot) bvFTD, PPA 37 02999282

Transcranial magn. stim Magnetic field stimulation PPA 38 03406429

Abbreviations:C9orf72, chromosome 9 open reading frame 72; FTLD, frontotemporal lobar degeneration; PPA, primary progressive aphasias; bvFTD, behav-

ioral variant frontotemporal dementia; ALS, amyotrophic lateral sclerosis; PSP, progressive supranuclear palsy; AD, Alzheimer’s disease; nfvPPA, non-fluent

variant Primary Progressive Aphasia.
∗NCT, www.clinicaltrials.gov registration number.

stereo-random mixture of oligonucleotides, or more recently a pure

stereo-isomer.42 Two different ASO programs targeting the C9orf72

mutation are approaching the clinical stage for FTLD and an anti-MAPT

ASO trial is underway in Alzheimer’s disease (AD). This ASO could also

potentially be used to treat FTLD due toMAPTmutations or PSP in the

future.

Studies of FTLD syndromes using clinical endpoints and volumet-

ric MRI provide a measure of disease progression and indicate that

many FTLD syndromes (bvFTD, CBS, PSP) progress more rapidly than

AD thereby enabling smaller and shorter trials and the potential to

learn from successes and failures more quickly.43 Clinical trials that

enroll presymptomatic familial FTLD (f-FTLD) mutation carriers have

the potential to act as disease “prevention” studies, but will be more

dependent on the development of biomarkers that are highly predic-

tive of clinical outcomes in a reasonable period following treatment.

Following themodel of theDominantly Inherited Alzheimer’s Network

Treatment Unit trials,44,45 FTLD natural history studies are beginning

to develop similar capabilities.

3 THE ROLE OF NATURAL HISTORY
STUDIES IN FTLD

In 2013, the National Alzheimer’s Project Act–Alzheimer’s Disease-

Related Dementias Summit identified key research priorities for

FTLD.46 With an ultimate goal of developing effective therapies for

FTLD, the clinical researchpriorities included the formationof a clinical

trials ready research network and development of new biomarkers for

FTLD. The ARTFL network, created in 2014, is a large cross-sectional

and natural history study of sporadic and familial FTLD disorders in

https://www.clinicaltrials.gov
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the US and Canada. Fully integrated with this program is the Longi-

tudinal Evaluation of Frontotemporal Dementia Subjects (LEFFTDS)

project, a detailed, longitudinal observational study of autosomal dom-

inant FTLD-causing mutation families (C9orf72, GRN, orMAPT), with a

focus on developing presymptomatic biomarkers for FTLD.47

Like the LEFFTDS network, the Genetic Frontotemporal Dementia

Initiative (GENFI) network also follows f-FTLD kindreds with a goal of

developing multimodal MRI and fluid biomarkers and genomics meth-

ods to identify predictive factors, neuroanatomic correlates, and vari-

ability in the natural history of disease progression.39,48,49 By focusing

on asymptomatic or mildly symptomatic f-FTLD patients who have rel-

atively little neuropathology, future clinical trials shouldhave improved

power to detect treatment effects of new therapies.

More robust natural history data from all FTLD syndromes is

needed to develop clinically meaningful outcome measures and to

better inform drug development for both symptomatic and disease-

modifying therapies. Functional and quality of life outcomes may pro-

vide opportunities to capture clinically meaningful outcome measures

for a broad variety of FTLD phenotypes, but there are few such out-

come measures at this time that are FTLD-specific. A better under-

standing of how persons diagnosed with FTLD and their caregivers

would definemeaningful functional stabilization or improvements that

impact quality of life is needed.50,51 In addition, what constitutes a

clinically meaningful benefit for asymptomatic or questionably symp-

tomatic mutation carriers is not agreed on.

4 HETEROGENEITY OF FTLD SYNDROMES
AND OUTCOME MEASURES: NEW
APPROACHES TO MEASURING DISEASE
PROGRESSION

FTLD encompasses an array of clinical syndromes involving behav-

ior, speech, and/or motor deficits that arise from a handful of

similar underlying brain pathologies, most commonly FTLD-tau or

FTLD-TDP.52,53 The clinical course of FTLD generally begins as one

of the distinct phenotypic variants and often progresses to involve

other cognitive, behavioral, andmotor domains.54 Survival ranges from

2 to 13 years after diagnosis (depending on clinical syndrome and

underlying pathology), but averages about 8–10 years.55 Slower pro-

gression cases with longer survival (ranging 20–30 years) have been

described.56,57 Existing clinical instruments such as the Neuropsychi-

atric Inventory may help classify subtypes within a particular syn-

dromic diagnosis such as behavioral variant FTD58 but cannot iden-

tify the underlying molecular pathology causing the syndrome.59 Vol-

umetric MRI is currently the best available technology at an individ-

ual level for the in vivo identification of neuron loss in FTLD, although

the neuropathological correlates of MRI defined brain atrophy have

not been fully validated.60 Resting-state fMRI can identify abnormal-

ities in presymptomaticmutation carriers61 but FDGPETmay bemore

promising for capturing disease progression.62 Emerging data demon-

strate the correlation of bvFTD subtypes with distinct patterns of

degeneration63,64 and provide a potential network-basedmodel of the

various phenotypes.65 Furthermore, data-driven approaches applied

to volumetric MRI from genetic FTLD also shows promise for iden-

tifying different FTLD syndromes.66,67 MRI-based imaging measures

such as voxel-based morphometry, diffusion tensor imaging, and arte-

rial spin label perfusion change over time in individual FTLD patients

and generally show good correlations with clinical measures.68 A chal-

lenge is that the data acquired from these images are often highly vari-

able across syndromes caused by the same underlying pathology, but

also even within the same clinical FTLD syndrome. Ideally an imaging

method would provide a way of following an individual patient’s atro-

phy patterns regardless of FTLD syndrome to predict or distinguish

their variable trajectory.

4.1 MRI-based approaches to account for
heterogeneity within FTLD syndromes

The underlying phenotypic heterogeneity of FTLD clinical syndromes

argues for a personalized medicine approach able to capture individ-

ualized measures of change based on the patient’s baseline pheno-

type. A new imaging approach being investigated is the use ofW-score

maps that highlight how each individual voxel’s W-score (similar to Z-

score, corrected for demographic variables) in FTLD images differ from

those in normal brains, allowing quantification of the total burden or

pattern of atrophy and assigning scores based on these maps which

clearly differentiate CDR R© Dementia Staging Instrument plus NACC

FTLD Behavior & Language Domains (CDR R© plus NACC FTLD) = 0

(asymptomatic) from CDR R© plus NACC FTLD = 1 (fully symptomatic)

or higher.67,69 Thesemapsmayaid in thevisualizationof earlyneurode-

generative change; however,more data sets fromyounger healthy con-

trols will be required to understand the observed variations in the rate

of change. Increasingly, MR imaging is being combined with putative

fluid biomarkers in an effort to stage andmonitor FTLDwith prediction

of progression through amultimodal approach.70–72

4.2 A new,multidomain, global rating scale to
measure clinical heterogeneity

The LEFFTDS and ARTFL networks have developed a new scale based

on the FTLD-CDR69 that incorporates motor and sensory domains

as well as separate streams of information for patients, informants,

and neuropsychologists, called the Multidomain Impairment Rating

(MIR) scale as a global and quantitative clinical burden rating scale

(Boeve et al., personal communication). TheMIR is designed to bemore

sensitive than standard scales to the earliest signs and symptoms of

FTLD in mutation carriers. Using standard lobar volumetric assess-

ments, volumetric MRI in MAPT and other f-FTLD kindreds demon-

strate prominent atrophy rates in symptomatic carriers, intermedi-

ate rates in asymptomatic carriers, and only age-related changes in

noncarriers.73 Modeling such rates of decline across different imag-

ing modalities in mutation carriers at different MIR-defined stages

of disease may help to understand phenoconversion from clinically
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TABLE 2 Draft FDA guidance for approvals in presymptomatic/early AD

Stage 1 Stage 2 Stage 3 Stage 4

Preclinical Prodromal (MCI) Early AD Mild-moderate AD

Definition • Asymptomatic

• Biomarker evidence

of pathology (only)

• Detectable cognitive

changes

• No functional impairment

• Cognitive impairment

• Mild functional

impairment

• Overt dementia

• Cognitive and functional

impairment

Possible endpoints • Biomarker

• Imaging

Cognitive scale(s) only

(biomarker supported dx)

Clinical scale(s) to assess

both daily function and
cognitive effects

Clinical scale(s) to assess

both daily function and
cognitive effects

Clinically meaningful

effect for approval?

Not required Clinically meaningful ideal;

not required
Clinically meaningful

effect required

Clinically meaningful effect

required

asymptomatic to symptomatic FTLD. A better understanding of the

onset, duration, and variability of this window could also lead to the

identification of biomarkers that can predict or measure this change.

The MIR will likely be an important tool to timestamp phenoconver-

sion, a necessary step in biomarker validation.

4.3 Fluid biomarkers

There is a growing literature on cerebrospinal fluid (CSF) and

blood neurofilament light chain (NfL), viewed as a biomarker of

neurodegeneration74–76 and as a candidate marker of disease onset in

FTLD. Furthermore, it may serve as a prognostic biomarker for genetic

and sporadic FTLD77–79 and reflect disease severity and rate of pro-

gression in some sporadic FTLD subtypes.75,80–82 Recent biomarker

development studies reflect a growing trend to create test panels with

a combination of a large number of analytes to discriminate between

clinically defined syndromes within FTLD and other neurodegener-

ative diseases such as AD and amyotrophic lateral sclerosis/motor

neuron disease (ALS/MND) disorders.77 However, a weakness of this

approach is that many previous efforts using statistically clustered

combinations of fluid biomarkers have failed to replicate. Other poten-

tial fluid biomarkers that reflect changes in autophagy, neuroinflamma-

tion, RNA metabolism, and mitochondrial function are a growing area

of study in FTLD and other dementias;85 however, it is not well under-

stood whether this broader spectrum of measures will reflect early

neurodegenerative processes or late responses to neurodegeneration.

Relating these biomarkers to the accumulation of insoluble deposits

of tau and/or TDP-43 measured at autopsy in FTLD will be impor-

tant. Even the relationship of TDP-43 and tau deposition to the onset

and progression of sporadic FTLD syndromes is not well understood.

For example, other than in MAPT or TARDBP mutation carriers, it is

not known whether changes in these proteins initiate, mediate, con-

tribute to, or simply reflect other processes that drive disease progres-

sion. The complexity of biomarker discovery and validation for vari-

ous heterogeneous FTLD syndromes in comparison with the simpler

and more pathologically and clinically homogeneous AD syndromes

has resulted in fewer FTLD specific biomarkers, and as yet no presymp-

tomatic biomarkers of sporadic disease. This makes it more challeng-

ing to develop a biological definition for FTLD, as has been recently

suggested for AD.86 Similarly, applying the recent FDA draft guidance

for prodromal AD drug development (Table 2) allowing for acceler-

ated approvals based on fluid or imaging biomarkers87 represents a

higher hurdle for prodromal FTLD. Nevertheless, with the strong data

already obtained using CSF and blood NfL, use of this fluid biomarker

to define or predict onset of clinical symptoms may enable FTLD pre-

vention trials in asymptomatic or early symptomatic FTLD mutation

carriers. In such a scenario, the time to elevation in blood NfL or the

rate of increase of NfL concentration in the late presymptomatic stage

of disease or even change from the baseline could be used as potential

endpoints for prevention trials (Table 2). Such a scenario will require

that blood NfL levels strongly correlate with underlying neurodegen-

eration and are strongly predictive of future clinical status allowing

them to be validated as a surrogate endpoints as has been done in

other diseases such as HIV or cancer, in which some clinical trials

have relied on a surrogate biomarkers that predicts future disease for

approvals.88

5 AUTOSOMAL DOMINANT FTLD AND
SPORADIC FTLD—THE SAME DISEASE?

The autosomal dominant FTLD gene mutations afford a unique insight

into the molecular “switches” that convert asymptomatic to symp-

tomatic mutation carriers. It is hoped that the biology of this prodro-

mal transition will also provide new insight into the causes and earliest

biological changes in sporadic FTLD. Although the autosomal dominant

gene mutations provide greater confidence for an FTLD diagnosis and

can help to assure recruitment of the right patients into clinical trials, it

is not clear how different FTLD-causing mutations lead to biochemical

changes that converge on the same brain networks that produce the

unique phenotypes associated with FTLD. Furthermore, while insights

based on the study of f-FTLD are often relied on for drug discovery, it is

not known how such genetic FTLD syndromes relate to sporadic FTLD

or how findings developed in preclinical models based on a particular f-

FTLDmutation (such as P301SMAPT) will relate to other genetic (such

as V337MMAPT) FTLD patients. Initial data from bvFTD patients car-

rying mutations in C9orf72, GRN, or MAPT suggest that they are very

similar from a clinical and MR imaging perspective to sporadic FTLD

patients (Heuer et al., in press at Alzheimer’s & Dementia).
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TABLE 3 Application of draft early AD approval guidance to FTLD

Stage 1 Stage 2 Stage 3 Stage 4

Population Preclinical (mut. carriers) Prodromal (MCI/MBI) Early dementia Mild-moderate disease

FTLD-CDR FTLD-CDR= 0 FTLD-CDR= 0.5 FTLD-CDR= 1.0 FTLD-CDR> 1.0

Definition • Asymptomatic

• Biomarker evidence of

pathology (only)

• Questionable or mild

clinical disease

• No functional impairment

• Clinical impairments

• Mild functional

impairment

• Overt dementia

• Clinical or functional

impairment

Possible endpoints Biomarker

• NfL

Imaging

• regional brain atrophy

Clinical scale±Biomarker Clinical scale(s) to assess

both daily function and
clinical effects

Clinical scale(s) to assess

both daily function and
cognitive effects

Clinically meaningful

effect for approval?

Not required Clinically meaningful ideal;

not required
Clinically meaningful Clinically meaningful

Abbreviations: AD, Alzheimer’s disease; NfL, neurofilament light chain; FTLD, frontotemporal lobar degeneration; FTLD-CDR, CDR R© Dementia Staging

Instrument PLUSNACC FTLDBehavior & Language Domains;MCI/MBI, mild cognitive impairment/mild behavioral impairment.

An important question is when (and where) neurodegeneration in

FTLD begins? In autosomal dominant FTLD, mutations are present

from conception89 and recent data in C9orf72 mutation carriers sug-

gest there is a lifelong propensity to develop psychiatric disorders.

Furthermore, each gene demonstrates heterogeneity in its associated

clinical syndromes, and family members with the same mutation may

present with a different clinical syndrome90 (M. Ramos et al., personal

communication). MAPT mutations most often lead to a bvFTD phe-

notype, but may be expressed as the movement disorder syndromes

of PSP or CBS. With more than 60 mutations and a small number of

affected families, trying tomap the differentMAPTmutations to differ-

ent brain networks is daunting.91,92 GRN and C9orf72mutations offer

similar challenges with C9orf72 providing additional variability with of

amixof clinical syndromes thatmaybebvFTD, orALS, or FTDwithALS,

or ALS with a range of behavioral or cognitive impairment or with CBS

or nonfluent variant PPA.93–95 To best understand these processes,

combining data from genetic and sporadic FTLD patients may be

necessary. For example, a recent publication examined the overlap

between ALS and FTLD revealing a number of novel loci and functional

pathways shared by ALS, bvFTD, and PSP and that theMAPT H1 hap-

lotype conferred risk for ALS.96 Together, these studies suggest that

studying both autosomal dominant and sporadic FTLD syndromes in

parallel, with the same clinical, imaging, and biomarker tools, will help

to overcome limitations of studying one population on its own, thereby

increasing the likelihood of progress toward an effective therapy.

6 DEVELOPING TARGETED THERAPIES
FOR MOLECULARLY DEFINED SUBSETS OF A
DISEASE

The FDA has recently issued draft guidance on “Developing Targeted

Therapies in Low-Frequency Molecular Subsets of a Disease”.97 This

guidance was issued to address challenges in the development of tar-

geted therapies for diseases with multiple molecular subsets, when

some of these subsets are too small to deliver robust and conclusive

data. For these targeted therapies, moving forward with drug develop-

ment toward approval is challengedbypatient recruitment, interpreta-

tion of results and extrapolating findings to putatively similar molecu-

lar subtypes.97 The new guidance recommends that grouping patients

with different molecular alterations into a single trial may be based

on a scientific rationale that the grouped patients will have a simi-

lar pharmacological response to a new drug. This would allow for the

possibility of extrapolating efficacy findings across multiple subsets in

spite of a low number of patients in some subsets. Although the guid-

ance is focusedondeveloping targeted therapies in low-frequency sub-

sets within a single disease, some principles may be applicable to bas-

ket trial designs where more than one disease is included in a sin-

gle clinical trial.98 One such basket design clinical trial is now under-

way with an anti-tau monoclonal antibody in FTLD-tau syndromes

(NCT03658135) and other similar studies in FTLD-TDP syndromes are

planned.

Precision medicine has advanced in oncology by classifying many

cancers by the presence of known pathogenic gene mutations, allow-

ing for inclusion of additional patients in trials based on the presence

of a specific geneticmarker in their cancerous cells.99,100 This ability to

identify subpopulations that may respond to a specific treatment, and

tailor treatment to the individual characteristics of each patient based

on biomarkers, has contributed to an understanding of trial design

elements that could also be applied to FTLD. In oncology, platform

trials using master protocols with multiplexed biomarkers improve

the efficiency of testing novel agents and allow for the use of com-

mon controls, thereby reducing overall sample sizes necessary to test

multiple new drugs. Adaptive trials use the accumulating data to sup-

port decision-making on modifying a study in a prespecified manner

such as dropping arms, using surrogate endpoints or adaptive ran-

domization and Bayesian analysis.101,102 For example, therapeutics for

glioblastoma are limited but molecular knowledge of the disease is

significant. The INdividualized Screening trial of Innovative Glioblas-

toma Therapy (INSIGhT)103 and the Adaptive Global Innovative Learn-

ing Environment for Glioblastoma (GBM-AGILE) were devised as

multiarm platforms to support and inform drug development using
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biomarkers that allow for accumulating trial data to identify possible

responders.104,105 As increasing numbers of outcome and pharmaco-

dynamic biomarkers are developed for FTLD, similar approachesmight

be pursued.

7 PERSONALIZED ENDPOINTS, DATA
SHARING, AND NEW TECHNOLOGIES

Personalized clinical outcomes, in which the clinical outcomemay vary

between different patients in an effort to measure the most impor-

tant and relevant signs, symptoms, functions, as well as the degree

of severity of these impairments in each individual, are one approach

to capturing heterogeneous changes in diseases caused by a common

underlying pathology.106,107 Such personalized outcomes are encour-

aged by the FDA’s Patient-Focused Drug Development initiative.108

Approaches to the development of personalized outcomes include the

“most bothersome symptoms” approach,106 goal attainment scaling

(GAS),109 and computer adaptive testing.110 GAS is an example of

how a quantitative approach to measuring individual outcomes can

be developed within a structured method for documenting patient-

centered problems and care.111 The benefits of GAS are the improve-

ment in stakeholder engagement and empowerment of the patient,

caregiver, and clinician, as well as providing inherent clinical meaning-

fulness in capturing preferences.112 It has been used successfully inAD

clinical trials (ACADIE, VISTA) demonstrating GAS scores were more

responsive than standard outcomes including the ADAS-Cog and the

CIBIC+.113–115 Other studies have subsequently determined that GAS

can help dementia caregivers reach their own goals.116 Other plat-

forms such as the HierarchyModel of Needs in Dementia have value in

relating needs to individual goal-setting instruments for patients and

caregivers.117

There is increased demand for broader data sharing by research

funders and the recognition of a secure environment to store such

data and make it available for analysis within the disease subset as

well as externally to other diseases and potentially other data plat-

forms. The limited capabilities of existing platforms that serve to dis-

seminate preclinical and clinical data such as the National Alzheimer’s

Coordinating Center (NACC), Laboratory of Neuroimaging (LONI), and

Database of Genotype and Phenotype (dbGAP), suggest that more

fit-for-purpose platforms for multimodal data sharing for FTLD will

be needed. Other drivers include the evolution of wearable devices

and the use of mobile technology to record, store, and transmit user-

produced data, creating a “digital phenotype” that can be uploaded

and analyzed as part of clinical data collection, already in use in move-

ment disorders research.118–120 Database challenges include ensur-

ing data privacy and security, gaining regulatory approval of remote

tracking devices, extracting the maximal amount of information from

the smallest number of devices and locations and validating outputs

against existing standards, as well as providing sites that can not only

store data but provide a cloud-based platform for data analysis with

large data sets. The NIH “Accelerating Medicines Partnership” pro-

gram for Parkinson’s disease is a public-private partnership that seeks

to address this challenge by creating a cloud-based resource that can

store and analyze complex data sets for fluid biomarkers in patient and

control populations. A similar effort could be developed with NIH for

FTLD, or a focused precompetitive alliance of partners from industry,

patient advocacy organizations, and philanthropy could accelerate this

effort as has been done for Alzheimer disease through theCritical Path

Institute (https://c-path.org/programs/cpad/).

Essential to the success of remote data collection and the creation

of a shared database is concise informed consent to increase data and

biospecimen access.121 Critical to the success of any database is well-

curated data and well-defined data standards122,123 that can tease

apart symptoms and signs that may be common across different dis-

eases or subtypes. Such databases can transform clinical trials with

high frequency, objective, and continuous data.124 Developing a sus-

tainable ecosystem that captures remotely tracked, continuous, bio-

metric data will require a collaborative effort across many groups of

stakeholders as demonstrated for AD with the Coalition to Prevent

Alzheimer’s Disease (CPAD) and Global Alzheimer’s Association Inter-

activeNetwork (GAAIN)databases, andPooledResourceOpen-Access

ALS Clinical Trials Database (PRO-ACT) for ALS.125–127 Well-curated

databases can speed the pace and reduce the cost of drug development

by creating data standards that can aid in the evaluation of efficacy and

safety of new therapies. They have the potential to be reviewed and

qualified by the FDA as a “drug development tool”, but to be successful

will require buy-in from all stakeholders with relevant drug develop-

ment pipelines.

8 CONCLUSIONS AND FUTURE
DIRECTIONS

Increasing numbers of clinical trials for FTLD are planned in the next

few years. Particularly exciting are therapies targeting altered levels or

mutant forms of products from the FTLD-causing genes,C9orf72,GRN,

andMAPT. In addition, the successful enrollment of large clinical trials

of anti-tau therapies in PSP is likely to enable new clinical trials of these

therapies in sporadic FTLD syndromes with predicted underlying 4R

tau pathology including nonfluent variant PPA and CBS.

Manychallenges remain to findingeffective therapies forFTLD. Fur-

ther development of statistical and biomarker approaches to account

for heterogeneity of phenotypes in both genetic and sporadic FTLD

syndromes will be necessary to develop optimal clinical trial outcome

measures. One potential solution is to develop personalized endpoints

to measure treatment effects. These personalized endpoints may have

increased clinical meaningfulness if approaches such aGAS are used as

a basis for endpoint development.

Although a strong body of evidence now exists to support the use of

blood or CSF NfL as a fluid biomarker to help define disease onset and

severity of neurodegeneration, new biomarkers that can be deployed

in asymptomatic FTLDmutation carriers or questionably symptomatic

individuals with sporadic forms of FTLD will be necessary to allow

inclusion of these individuals in clinical trials at the earliest stages

of disease when new therapies are most likely to be effective. With

https://c-path.org/programs/cpad/
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new FDA draft guidance for approval of drugs to prevent dementia in

asymptomatic individuals who are at risk for disease, such biomarkers

will be increasingly important in the future.

Novel clinical endpoints, possibly acquired through new wearable

and other mobile technologies may further increase sensitivity and

power to detect treatment effects, and might also be sensitive to early

features of disease before the onset of overt clinical symptoms.128

To make best use of these novel technologies, improved technologi-

cal infrastructure and ironclad policies to ensure sharing of clinical and

biomarker data and remaining biological specimens from completed

clinical trials will also be necessary. Efforts to incorporate such policies

into new treatment trials facilitated by or conducted within the North

American ARTFL/LEFFTDS consortium and the European and Cana-

dian GENFI project are an important first step to an improved publica-

tion and data sharing approach for FTLD clinical trials. Although there

is much work to be carried out, the rapid pace of clinical therapeutic

development for FTLD bodes well for the imminent development of

effective therapies.
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