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Segmentation of medial temporal
subregions reveals early right-sided
involvement in semantic variant PPA
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Abstract

Background: Semantic variant of primary progressive aphasia (svPPA) is a subtype of frontotemporal dementia
characterized by asymmetric temporal atrophy.

Methods: We investigated the pattern of medial temporal lobe atrophy in 24 svPPA patients compared to 72
controls using novel approaches to segment the hippocampal and amygdalar subregions on MRIs. Based on
semantic knowledge scores, we split the svPPA group into 3 subgroups of early, middle and late disease stage.

Results: Early stage: all left amygdalar and hippocampal subregions (except the tail) were affected in svPPA
(21–35% smaller than controls), together with the following amygdalar nuclei in the right hemisphere: lateral,
accessory basal and superficial (15–23%). On the right, only the temporal pole was affected among the
cortical regions. Middle stage: the left hippocampal tail became affected (28%), together with the other
amygdalar nuclei (22–26%), and CA4 (15%) on the right, with orbitofrontal cortex and subcortical structures
involvement on the left, and more posterior temporal lobe on the right. Late stage: the remaining right
hippocampal regions (except the tail) (19–24%) became affected, with more posterior left cortical and right
extra-temporal anterior cortical involvement.

Conclusions: With advanced subregions segmentation, it is possible to detect early involvement of the right
medial temporal lobe in svPPA that is not detectable by measuring the amygdala or hippocampus as a whole.
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Introduction
Semantic variant of primary progressive aphasia (svPPA)
is a subtype of frontotemporal dementia (FTD), charac-
terized clinically by anomia and impaired single-word
comprehension. It is associated with a characteristic pat-
tern of asymmetrical antero-inferior temporal lobe atro-
phy [1–3]. Previous studies of svPPA have shown early
left medial temporal lobe involvement, with both hippo-
campal and amygdalar atrophy [4–6]. However, these
studies have investigated the whole hippocampus or
amygdala and no previous studies have looked at the

subregions of the medial temporal lobe. In this study, we
therefore aimed to investigate the pattern of atrophy of
the subregions of the hippocampus and the amygdala in
svPPA, focusing on the involvement at different stages
in order to understand the areas involved early in the
disease process.

Methods
We reviewed the UCL Dementia Research Centre FTD
MRI database to identify patients with a diagnosis of
svPPA [7] and a usable 3 T T1-weighted magnetic reson-
ance (MR) scan. Twenty-four patients were identified, all
with left-temporal predominant disease. Seventy-two
cognitively normal subjects with a usable volumetric 3 T
T1-weighted MRI were identified as controls. The study
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was approved by the local ethics committee, and written
informed consent was obtained from all participants.
The study was conducted in accordance with the
Helsinki Declaration of 1975.
Based on their scores on a test of semantic knowledge

(the British Picture Vocabulary Scale, BPVS, a
word-picture matching task) [8], we split the svPPA pa-
tients into three equal subgroups (n = 8 per group) of
early (BPVS > 110/150), middle (BPVS = 55–110/150)
and late disease stage (BPVS < 55/150). Patients were
negative for mutations in all FTD-related genes. Two pa-
tients received post-mortem confirmation of the under-
lying neuropathology, both TDP-43 type C.
All patients underwent a detailed neuropsychological

examination including tests of fluid intelligence (WASI
Matrices), single-word comprehension (WASI Vocabu-
lary), naming (Graded Naming Test), reading (National
Adult Reading Test), verbal memory (Recognition Mem-
ory Test for Words), visual memory (Recognition Mem-
ory Test for Faces), short-term memory (forwards digit
span), working memory (backwards digit span), calcula-
tion (Graded Difficulty Calculation Test), visuopercep-
tual function (Visual Object and Space Perception
battery Object Decision subtest) and executive function
(inhibition—D-KEFS Color-Word Ink Naming Test; ab-
stract reasoning—WASI Similarities). A percentile score
based on standard norms was generated for each patient,
with a mean percentile score created for the early, mid-
dle and late stage groups. Assessment of behavioural
symptoms was performed using the revised version of
the Cambridge Behavioural Inventory (CBI-R) [9]: six
subscores were used (difficulties with self-care, abnormal
sleep, hallucinations/delusions, disinhibition, abnormal
eating behaviour, obsessive-compulsive behaviour, apathy
and loss of empathy) with a percentage of the total pos-
sible subscore generated for every patient; for each stage,
a mean percentage score was created. We report the
cognitive and behavioural profiles at each stage for illus-
trative purposes (Fig. 1 and Additional file 1: Table S1).
T1-weighted MRIs were acquired using a 3-T scanner,

either a Trio (Siemens, Erlangen, Germany, TR = 2200ms,
TI = 900ms, TE = 2.9 ms, acquisition matrix = 256 × 256,
spatial resolution = 1.1mm) or a Prisma (Siemens, Er-
langen, Germany, TR = 2000ms, TI = 850ms, TE = 2.93
ms, acquisition matrix = 256 × 256, spatial resolution =
1.1 mm). Individuals with moderate to severe vascular dis-
ease or space-occupying lesions were excluded.
Volumetric MRI scans were first bias field corrected

and whole-brain parcellated using the geodesic informa-
tion flow (GIF) algorithm [10], which is based on atlas
propagation and label fusion. The hippocampal subfields
and amygdalar subregions were subsequently segmented
using a customized version of the module available in
FreeSurfer 6.0 [11, 12], to adapt the output of GIF to the

FreeSurfer format. For the hippocampal subfields, we fo-
cused on seven areas: CA1, CA2/CA3, CA4, dentate
gyrus, subiculum, presubiculum and the tail. We ex-
cluded from the analysis the hippocampus-amygdala
transition area, the parasubiculum, the molecular layer
of the hippocampus, the fimbria and the hippocampal
fissure, as they were too small, or not reliably delineated
on T1-weighted images. For the amygdalar subnuclei,
we focused the analysis on five regions, by combining
the smallest subnuclei, based on an anatomical subdiv-
ision [13]: lateral nucleus, basal and paralaminar nu-
cleus, accessory basal nucleus, cortico-amygdaloid
transition area and the superficial nuclei (central nu-
cleus, cortical nucleus, medial nucleus, anterior amyg-
daloid area).
For comparison with the medial temporal subregions, we

extracted volumes of the following cortical regions from
GIF: temporal (medial, lateral, supratemporal, temporal
pole), frontal (orbitofrontal, prefrontal), parietal, occipital,
insular and cingulate (anterior and posterior). We also ex-
tracted volumes of subcortical structures for the pallidum,
putamen, caudate, nucleus accumbens and thalamus.
Left and right volumes were corrected for total intra-

cranial volume (TIV), computed with SPM12 v6470
(Statistical Parametric Mapping, Wellcome Trust Centre
for Neuroimaging, London, UK) running under Matlab
R2014b (Math Works, Natick, MA, USA) [14]. All seg-
mentations were visually checked for quality.
Statistical analyses were performed on brain volumes

(as a percentage of TIV) in STATA v14 (Stata-Corp, Col-
lege Station, TX), between control and patients (early,
middle and late stage groups), using a linear regression
test adjusting for scanner type, TIV, gender and age. The
results were corrected for multiple comparisons (Bonfer-
roni correction): p < 0.006 for amygdalar subnuclei and
subcortical structures, p < 0.005 for hippocampal sub-
fields and p < 0.0035 for cortical regions.

Results
No significant age difference was seen between any of
the svPPA groups and controls [Early: 66.9 (5.5) years,
Middle: 64.5 (9.5), Late: 64.2 (5.5); Controls: 61.0 (12.1)],
p = 0.112, t test. However, there was a significant differ-
ence in gender distribution across stages [Early: 88%
male, Middle: 63% male, Late: 25% male; Controls: 40%
male], p = 0.032, Chi-square test.
Amygdalar subnuclei, hippocampal subfields, cortical

regions, subcortical structures, neuropsychology per-
formance and behavioural symptoms at each stage are
shown in Fig. 1.

Early stage
All the left amygdalar and hippocampal subregions (ex-
cept for the tail) were affected (24–35% and 21–27%
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smaller than controls, p < 0.0005) at this stage, together
with the right lateral, accessory basal and superficial nu-
clei of the amygdala (15–23%, p < 0.004) (Table 1).
Outside of the medial temporal lobe, on the left, all

the temporal cortical regions (19–47%, p < 0.0005) were
affected as well as the anterior cingulate (18%, p = 0.001)
and insula (24%, p < 0.0005). The left nucleus accumbens
was the only other subcortical structure affected (13%, p
< 0.0005). Apart from the affected amygdalar subnuclei,
the only other right hemisphere structure affected at this
stage was the temporal pole (13%, p = 0.006).
Cognitively, patients showed severely impaired naming

already, with relatively preserved working memory, ab-
stract reasoning and fluid intelligence. Behavioural
symptoms were mild and mainly related to abnormal
eating behaviour, apathy and abnormal sleep.

Middle stage
At this stage, the left hippocampal tail became affected
(28%, p < 0.0005), together with the other right amygda-
lar nuclei (22–26%, p < 0.0005) and the right CA4 region
of the hippocampus (15%, p = 0.003).
Cortically, the left orbitofrontal lobe was affected at

this stage along with more posterior temporal structures
on the right: lateral and medial temporal cortices (9–
12%, p < 0.0005). Subcortically, the left pallidum and pu-
tamen were affected (12–17%, p < 0.0005) and the right
pallidum (8%).
Cognitively, single-word comprehension and reading

became increasingly impaired, but working memory,
short-term memory and abstract reasoning remained
relatively intact. Behavioural symptoms increased with
the presence of obsessive-compulsive behaviour and loss

Fig. 1 Pattern of atrophy in amygdalar subnuclei, hippocampal subfields, cortical regions and subcortical structures across early, middle and late
stages of svPPA. Colour bar denotes the percent difference in volume from controls that remained significant after correction for multiple
comparisons. For illustrative purposes, we have included the changes in cognition [mean percentile scores] and behavioural changes [mean
percentage score in each Cambridge Behavioural Inventory subscore] that occur at these stages. The length of the segment indicates the severity
of the profile. Specifically, for the cognitive performance, the smaller the segment, the worse the performance, whilst for the behavioural
symptoms, the bigger the segments, the worse the symptoms
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Table 1 Volumetry of amygdalar subnuclei, hippocampal subfields, cortical regions and subcortical structures

Controls Early Middle Controls Early Middle

Left Right

Mean SD % p-value % p-value % p-value Mean SD % p-value % p-value % p-value

Amygdalar Subnuclei

Lateral nucleus

Controls 0.045 0.005 0.047 0.004

Early 0.033 0.010 27 < 0.0005 0.040 0.006 15 0.003

Middle 0.026 0.003 43 < 0.0005 23 < 0.0005 0.035 0.005 25 < 0.0005 12 0.005

Late 0.025 0.003 44 < 0.0005 24 < 0.0005 2 0.723 0.030 0.005 36 < 0.0005 25 < 0.0005 14 0.017

Basal and paralaminar nucleus

Controls 0.033 0.004 0.034 0.003

Early 0.024 0.006 29 < 0.0005 0.029 0.006 15 0.012

Middle 0.018 0.003 46 < 0.0005 24 < 0.0005 0.026 0.004 22 < 0.0005 8 0.092

Late 0.017 0.002 48 < 0.0005 27 < 0.0005 4 0.483 0.021 0.003 39 < 0.0005 29 < 0.0005 22 < 0.0005

Accessory basal nucleus

Controls 0.018 0.002 0.018 0.002

Early 0.012 0.004 32 < 0.0005 0.015 0.004 21 < 0.0005

Middle 0.010 0.002 46 < 0.0005 20 0.002 0.014 0.002 24 < 0.0005 4 0.373

Late 0.009 0.001 49 < 0.0005 25 < 0.0005 6 0.482 0.011 0.002 42 < 0.0005 27 < 0.0005 24 0.002

Cortico-amygdaloid transition area

Controls 0.012 0.002 0.012 0.001

Early 0.009 0.002 24 < 0.0005 0.011 0.003 12 0.157

Middle 0.007 0.001 44 < 0.0005 27 < 0.0005 0.009 0.002 24 < 0.0005 14 0.025

Late 0.006 0.001 48 < 0.0005 32 < 0.0005 7 0.339 0.008 0.002 36 < 0.0005 28 < 0.0005 16 0.049

Superficial nuclei (Ce, Co, Me, AAA)

Controls 0.011 0.002 0.012 0.002

Early 0.007 0.002 35 < 0.0005 0.009 0.002 23 0.004

Middle 0.006 0.001 47 < 0.0005 18 0.005 0.009 0.001 26 < 0.0005 4 0.341

Late 0.005 0.001 51 < 0.0005 25 < 0.0005 9 0.275 0.007 0.002 41 < 0.0005 24 0.002 21 0.024

Hippocampal Subfields

CA1

Controls 0.044 0.005 0.047 0.006

Early 0.035 0.005 22 < 0.0005 0.045 0.008 5 0.995

Middle 0.031 0.007 31 < 0.0005 11 0.020 0.043 0.007 8 0.138 3 0.267

Late 0.029 0.004 36 < 0.0005 18 0.001 7 0.268 0.036 0.006 24 < 0.0005 19 < 0.0005 17 0.003

CA2/CA3

Controls 0.016 0.002 0.017 0.002

Early 0.012 0.002 24 < 0.0005 0.016 0.004 6 0.931

Middle 0.011 0.002 27 < 0.0005 3 0.460 0.015 0.003 12 0.064 7 0.184

Late 0.012 0.002 26 < 0.0005 2 0.518 −1 0.945 0.013 0.002 24 < 0.0005 19 0.002 13 0.054

CA4

Controls 0.018 0.002 0.019 0.002

Early 0.013 0.002 27 < 0.0005 0.017 0.004 10 0.281

Middle 0.013 0.001 27 < 0.0005 1 0.342 0.016 0.002 15 0.003 5 0.156

Late 0.012 0.001 34 < 0.0005 9 0.007 9 0.066 0.015 0.002 21 < 0.0005 13 0.004 8 0.111
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Table 1 Volumetry of amygdalar subnuclei, hippocampal subfields, cortical regions and subcortical structures (Continued)

Controls Early Middle Controls Early Middle

Left Right

Mean SD % p-value % p-value % p-value Mean SD % p-value % p-value % p-value

Dentate gyrus

Controls 0.021 0.002 0.021 0.002

Early 0.016 0.002 25 < 0.0005 0.020 0.005 7 0.759

Middle 0.015 0.002 27 < 0.0005 4 0.183 0.019 0.003 13 0.021 6 0.132

Late 0.014 0.002 32 < 0.0005 10 0.011 6 0.185 0.017 0.003 19 < 0.0005 14 0.003 8 0.117

Subiculum

Controls 0.028 0.003 0.029 0.003

Early 0.022 0.002 21 < 0.0005 0.028 0.006 1 0.425

Middle 0.020 0.003 28 < 0.0005 10 0.048 0.026 0.005 8 0.116 8 0.074

Late 0.020 0.004 31 < 0.0005 13 0.005 4 0.338 0.022 0.005 23 < 0.0005 23 < 0.0005 16 0.004

Presubiculum

Controls 0.023 0.003 0.022 0.003

Early 0.017 0.002 27 < 0.0005 0.023 0.006 −2 0.173

Middle 0.016 0.002 30 < 0.0005 5 0.362 0.021 0.007 5 0.942 6 0.267

Late 0.016 0.003 33 < 0.0005 8 0.045 3 0.245 0.018 0.005 19 0.001 20 0.001 15 0.015

Hippocampal tail

Controls 0.041 0.005 0.041 0.005

Early 0.034 0.006 18 0.019 0.043 0.010 −4 0.055

Middle 0.030 0.005 28 < 0.0005 12 0.026 0.042 0.010 −2 0.371 2 0.41

Late 0.029 0.006 29 < 0.0005 13 0.009 2 0.624 0.037 0.008 8 0.084 12 0.008 10 0.054

Cortical Regions

Orbitofrontal

Controls 0.697 0.047 0.716 0.048

Early 0.682 0.045 2 0.934 0.727 0.057 −2 0.158

Middle 0.629 0.089 10 0.001 8 0.015 0.716 0.046 0 0.806 1 0.362

Late 0.637 0.063 9 0.009 7 0.062 −1 0.612 0.697 0.078 3 0.647 4 0.166 3 0.604

Prefrontal cortex

Controls 4.216 0.230 4.322 0.224

Early 4.087 0.337 3 0.691 4.299 0.379 1 0.545

Middle 4.045 0.529 4 0.112 1 0.373 4.380 0.369 −1 0.506 −2 0.977

Late 3.806 0.250 10 0.002 7 0.047 6 0.245 4.119 0.269 5 0.201 4 0.168 6 0.153

Anterior cingulate

Controls 0.382 0.039 0.283 0.042

Early 0.315 0.041 18 0.001 0.289 0.046 −2 0.339

Middle 0.300 0.068 22 < 0.0005 5 0.311 0.318 0.069 −13 0.008 −10 0.204

Late 0.255 0.026 33 < 0.0005 19 0.002 15 0.023 0.288 0.058 −2 0.968 0 0.457 9 0.047

Posterior cingulate

Controls 0.359 0.038 0.343 0.035

Early 0.350 0.020 3 0.609 0.368 0.019 −7 0.009

Middle 0.332 0.025 7 0.065 5 0.320 0.365 0.028 −6 0.022 1 0.747

Late 0.337 0.028 6 0.169 4 0.535 −1 0.728 0.361 0.047 −5 0.150 2 0.348 1 0.523

Bocchetta et al. Alzheimer's Research & Therapy           (2019) 11:41 Page 5 of 9



Table 1 Volumetry of amygdalar subnuclei, hippocampal subfields, cortical regions and subcortical structures (Continued)

Controls Early Middle Controls Early Middle

Left Right

Mean SD % p-value % p-value % p-value Mean SD % p-value % p-value % p-value

Parietal

Controls 3.224 0.211 3.186 0.229

Early 3.143 0.229 3 0.538 3.216 0.248 −1 0.049

Middle 3.147 0.249 2 0.709 0 0.450 3.272 0.200 −3 0.053 −2 0.944

Late 2.993 0.234 7 0.003 5 0.008 5 0.046 3.142 0.213 1 0.793 2 0.096 4 0.105

Occipital

Controls 2.473 0.207 2.564 0.205

Early 2.393 0.227 3 0.835 2.538 0.195 1 0.575

Middle 2.395 0.155 3 0.552 0 0.776 2.552 0.175 0 0.697 −1 0.887

Late 2.432 0.148 2 0.733 −2 0.926 −2 0.853 2.572 0.147 0 0.796 −1 0.817 −1 0.924

Insula

Controls 0.370 0.035 0.381 0.039

Early 0.281 0.032 24 < 0.0005 0.343 0.049 10 0.110

Middle 0.260 0.036 30 < 0.0005 7 0.064 0.337 0.038 12 0.007 2 0.425

Late 0.229 0.021 38 < 0.0005 18 < 0.0005 12 0.013 0.267 0.039 30 < 0.0005 22 < 0.0005 21 < 0.0005

Medial temporal

Controls 1.012 0.062 1.041 0.067

Early 0.785 0.057 22 < 0.0005 0.981 0.070 6 0.076

Middle 0.730 0.056 28 < 0.0005 7 0.042 0.915 0.070 12 < 0.0005 7 0.044

Late 0.743 0.058 27 < 0.0005 5 0.088 −2 0.787 0.791 0.074 24 < 0.0005 19 < 0.0005 14 < 0.0005

Lateral temporal

Controls 2.304 0.153 2.345 0.143

Early 1.652 0.201 28 < 0.0005 2.231 0.134 5 0.133

Middle 1.554 0.150 33 < 0.0005 6 0.084 2.137 0.099 9 < 0.0005 4 0.105

Late 1.384 0.159 40 < 0.0005 16 < 0.0005 11 0.026 1.864 0.217 21 < 0.0005 16 < 0.0005 13 < 0.0005

Temporal pole

Controls 0.488 0.056 0.477 0.055

Early 0.261 0.066 47 < 0.0005 0.413 0.071 13 0.006

Middle 0.231 0.035 53 < 0.0005 12 0.187 0.352 0.049 26 < 0.0005 15 0.019

Late 0.228 0.029 53 < 0.0005 13 0.324 1 0.766 0.287 0.038 40 < 0.0005 30 < 0.0005 18 0.048

Supratemporal

Controls 0.430 0.050 0.369 0.039

Early 0.348 0.037 19 < 0.0005 0.357 0.045 3 0.910

Middle 0.336 0.046 22 < 0.0005 4 0.359 0.368 0.040 0 0.718 −3 0.855

Late 0.301 0.056 30 <0.0005 14 0.017 10 0.122 0.322 0.054 13 0.004 10 0.028 12 0.016

Subcortical Structures

Nucleus accumbens

Controls 0.040 0.003 0.038 0.003

Early 0.035 0.003 13 <0.0005 0.035 0.003 9 0.048

Middle 0.034 0.005 15 <0.0005 3 0.235 0.036 0.004 5 0.155 −4 0.638

Late 0.030 0.003 24 <0.0005 13 0.001 10 0.019 0.032 0.004 15 <0.0005 7 0.026 11 0.007
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of empathy as well as abnormal eating behaviour, apathy
and disinhibition.

Late stage
In the late stage, the remaining right hippocampal re-
gions (except the tail) (19–24%, p < 0.001) became
affected.
Cortically, spread to the left prefrontal and parietal

cortices was seen whilst on the right, the insula (30%)
and supratemporal cortex (13%, p < 0.004) were affected.
Subcortically, the left caudate, thalamus and right nu-
cleus accumbens, caudate and putamen were affected
(12–15%).
At this stage, all cognitive domains were severely

impaired except for short-term and working memory,
abstract reasoning and fluid intelligence. Severe be-
havioural symptoms were seen.

Discussion
Using advanced subregional segmentation, we were able
to detect early involvement in the right hemisphere in
svPPA, with progression of atrophy through the medial
temporal lobes as the disease moves from early to mid-
dle to late stage.

Extensive medial temporal atrophy is seen on the left
in most amygdalar and hippocampal subregions at the
earliest stage of svPPA, co-incidental with the involve-
ment of all of the temporal cortices on the left. This is
consistent with previous studies showing that even at
first clinical presentation, significant left temporal lobe
atrophy is present [1, 15].
Previous studies have not shown early involvement

of the right medial temporal structures. In this study,
the earliest subnuclei affected on the right were the
accessory basal, lateral and superficial nuclei of the
amygdala. These subnuclei are interconnected and re-
ceive input from the temporal pole and the hippo-
campus (also affected on the right in the early stage)
as well as other parts of the temporal and frontal cor-
tices and the nucleus accumbens [13, 16]. The ability
to use advanced subregional segmentation techniques
in this study allows early detection of right medial
temporal atrophy.
The cognitive and behavioural correlates of the in-

dividual right amygdalar subnuclei are poorly stud-
ied, but prior studies of the whole amygdala
implicate the right side as being important in the
processing of emotional information [17, 18]. In our

Table 1 Volumetry of amygdalar subnuclei, hippocampal subfields, cortical regions and subcortical structures (Continued)

Controls Early Middle Controls Early Middle

Left Right

Mean SD % p-value % p-value % p-value Mean SD % p-value % p-value % p-value

Caudate

Controls 0.237 0.026 0.248 0.024

Early 0.221 0.020 7 0.508 0.235 0.026 5 0.598

Middle 0.222 0.026 6 0.350 0 0.851 0.237 0.024 4 0.507 −1 0.929

Late 0.207 0.030 12 0.001 6 0.037 7 0.053 0.217 0.036 12 0.001 8 0.044 8 0.050

Pallidum

Controls 0.129 0.014 0.130 0.013

Early 0.114 0.007 12 0.010 0.119 0.007 8 0.123

Middle 0.113 0.008 12 <0.0005 1 0.160 0.119 0.008 8 0.004 0 0.303

Late 0.104 0.009 19 <0.0005 9 0.016 8 0.270 0.111 0.011 14 <0.0005 6 0.054 7 0.336

Putamen

Controls 0.307 0.031 0.305 0.031

Early 0.268 0.018 13 0.011 0.289 0.016 5 0.981

Middle 0.255 0.023 17 <0.0005 5 0.044 0.277 0.023 9 0.019 4 0.081

Late 0.237 0.018 23 <0.0005 11 0.001 7 0.144 0.261 0.022 14 <0.0005 10 0.002 6 0.142

Thalamus

Controls 0.400 0.035 0.392 0.039

Early 0.357 0.024 11 0.024 0.380 0.032 3 0.279

Middle 0.362 0.029 9 0.008 −2 0.791 0.387 0.036 1 0.258 −2 0.992

Late 0.364 0.027 9 <0.0005 −2 0.169 −1 0.255 0.388 0.027 1 0.226 −2 0.093 0 0.086

Values denote mean and standard deviation (SD) volumes as the percentage of the total intracranial volume (TIV) or difference (%). p values denote significance
on linear regression test. Bold represents a significant difference between the groups after correcting for multiple comparisons
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study, loss of empathy is mildly affected at the earli-
est stage (Fig. 1): this is likely to represent an im-
pairment of self-knowledge, a process that requires
the linking of emotions with semantics, and has pre-
viously been shown to be associated with right tem-
poral lobe atrophy including the amygdala [19]. The
particular amygdalar subnuclei affected early are part
of the limbic network and therefore likely to be in-
trinsically involved in emotion processing [16].
Of all the medial temporal subregions, the hippocam-

pal tail is preserved until the later stages of svPPA. This
is in line with previous studies, where the posterior tem-
poral lobe is spared and an antero-posterior gradient is
present [20, 21]. Indeed, svPPA patients typically show
intact episodic memory and spatial navigation, functions
typically linked to the hippocampal tail. Consistent with
the theory of svPPA as a network-opathy [22], the first
hippocampal region to become affected on the right is
CA4, an area highly connected to the temporal cortex
and amygdala [23].
Limitations of the study include using cross-sectional

data with staging of the disease by impairment on a task
of semantic knowledge and the small number of svPPA
cases. Further studies would benefit from the analysis of
longitudinal data from a larger sample to see whether
the same pattern is seen. Despite the gold standard still
being manual segmentation of dedicated MRIs or on
brain tissue post-mortem, these automated methods in-
cluded in this study have been previously validated and
proven reliable to delineate the subregions on T1-MRI
(Dice coefficients > 0.86; ICC 0.88–0.93) [10–12, 24, 25].
Moreover, in this study, we carefully excluded small sub-
regions and combined together groups of nuclei to im-
prove the anatomical validity. Automated segmentations
will play a key role in the future, as manual segmenta-
tions are likely to be unfeasible for large cohorts of
patients.

Additional file
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