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Themost common clinical phenotype of progressive supranuclear palsy is Richardson syndrome, characterized by levodopa unresponsive
symmetric parkinsonism,witha vertical supranuclear gaze palsy, early falls and cognitive impairment.There is currently nodetailed under-
standing of the full sequence of disease pathophysiology in progressive supranuclear palsy. Determining the sequence of brain atrophy in
progressive supranuclear palsy could provide important insights into themechanisms of disease progression, aswell as guide patient strati-
fication and monitoring for clinical trials. We used a probabilistic event-based model applied to cross-sectional structural MRI scans in a
large international cohort, to determine the sequence of brain atrophy in clinically diagnosed progressive supranuclear palsy Richardson
syndrome. A total of 341 people with Richardson syndrome (of whom 255 had 12-month follow-up imaging) and 260 controls were in-
cluded in the study. We used a combination of 12-month follow-up MRI scans, and a validated clinical rating score (progressive supra-
nuclear palsy rating scale) to demonstrate the longitudinal consistency and utility of the event-based model’s staging system. The event-
based model estimated that the earliest atrophy occurs in the brainstem and subcortical regions followed by progression caudally into
the superior cerebellar peduncle and deep cerebellar nuclei, and rostrally to the cortex. The sequence of cortical atrophy progresses in
an anterior to posterior direction, beginning in the insula and then the frontal lobe before spreading to the temporal, parietal and finally
the occipital lobe. This in vivo ordering accords with the post-mortem neuropathological staging of progressive supranuclear palsy and
was robust under cross-validation. Using longitudinal information from 12-month follow-up scans, we demonstrate that subjects consist-
entlymove to later stages over this time interval, supporting the validity of themodel. In addition, both clinical severity (progressive supra-
nuclear palsy rating scale) and disease durationwere significantly correlatedwith the predicted subject event-basedmodel stage (P, 0.01).
Our results provide new insights into the sequence of atrophy progression in progressive supranuclear palsy and offer potential utility to
stratify people with this disease on entry into clinical trials based on disease stage, as well as track disease progression.
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Graphical Abstract

Introduction
Progressive supranuclear palsy (PSP) is a severe neurodegen-
erative condition, with an estimated prevalence of 5–7 per
100 000 and survival of just 5–7 years.1,2 PSP pathology
can present with a range of clinical phenotypes involving
language, behavioural and movement abnormalities.3 This
heterogeneity in clinical presentation has been operationa-
lized in theMovement Disorder Society 2017 PSP diagnostic
criteria.4 The most common clinical phenotype is PSP
Richardson syndrome (PSP-RS), similar to the cases first

described by Steele et al.,5 and characterized by a levodopa
unresponsive parkinsonian syndrome with a vertical supra-
nuclear gaze palsy, early falls and dementia. Natural history
studies of PSP-RS have shown the mean age of symptom
onset is between 65 and 67 years with an average survival
from disease onset of 6–7 years.2,6 PSP pathology is charac-
terized by insoluble aggregates of the 4-repeat (4R) isoform
of the microtubule-associated protein tau in neurons and
glia, predominantly in the subthalamic nucleus (STN), glo-
bus pallidus (GP), striatum, the dentate nucleus of the cere-
bellum, frontal lobes and to a lesser extent in the occipital
cortices.7 The recent pathology staging system for PSP
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defines six sequential stages of progression, starting with
the STN, spreading out caudally to the cortex and rostrally
to the cerebellum.8 This has been validated in an independ-
ent cohort with increasing pathological stage correlating
with clinical severity.9

No effective disease-modifying treatment has yet been pro-
ven for PSP, despite recent successful clinical trials.10,11

Clinical trials in PSP can be complicated by variable disease
stage at trial entry, highlighting the importance of stratifying
patients into homogenous cohorts based on disease stage
with similar rates of disease progression. Although the PSP rat-
ing scale has been shown to be a good independent predictor of
survival,12 and is used as the primary end-point in clinical
trials, such clinical biomarkers are only indirect measures of
the biological stage of disease and are affected by intra- and
inter-rater variability, as well as fluctuation in patients’ clinical
state. Reliable and individualized disease progression markers
are, therefore, required to complement clinical ratings scales.13

StructuralMRI reveals significant atrophy in the brainstem
and subcortical structures in PSP-RS, with additional involve-
ment of the cortical structures.14 Increased rates of atrophy in
these regions can be detected over a 12-month period,15,16 of-
fering a potential biomarker readout for clinical trials.
Although there are new tau-PET tracers emerging that
show potential in the 4R tauopathies, these are not yet vali-
dated for use in the clinic setting,17,18 and in the absence of
a validated tau-PET tracer for PSP, structural MRI offers an
indirect measure of underlying tau pathology in vivo.
Indeed, a previous study in PSP showed that in vivo structural
imaging reflected the independent contributions from tau
burden and neurodegeneration at autopsy,19 while the link
in Alzheimer’s disease is well established.20,21 However, the
order in which brain regions show evidence of increased atro-
phy in vivo is currently unknown.

One approach to estimating the sequence of atrophy pro-
gression is event-based modelling (EBM),22 using a probabil-
istic data-driven generative model to infer the order in which
biomarkers become abnormal. The EBM can be built from
cross-sectional data by combining severity information across
biomarkers and individuals without reference to a given indi-
vidual’s clinical status.23 The EBM allows inference of longi-
tudinal information about disease progression by assuming
there is a monotonic progression of an individual biomarker
from normal to abnormal (even if this progression is non-
linear), so that in a patient cohort containing a spectrum of
disease stages, more individuals will necessarily show abnor-
mality in a biomarker that changes early in the disease course.
This approach has been successfully applied to Huntington’s
disease,23 sporadic and familial Alzheimer’s disease,24–26

Parkinson’s disease,27 multiple sclerosis,28 the posterior cor-
tical atrophy variant of Alzheimer’s disease29 and amyotroph-
ic lateral sclerosis,30 providing a simple and validated method
to investigate temporal disease patterns and estimate indivi-
duals’ disease stage. Recent work has demonstrated the clinic-
al utility of the EBM for screening patients on entry into
clinical trials, to improve cohort homogeneity and increase
the power to detect a treatment effect.31

The aim of this study was to define the progression of
brain atrophy in clinically diagnosed PSP-RS by developing
an EBM that takes cross-sectional structural MR imaging
as input. We hypothesized that there is a consistent sequence
in which brain regions become atrophic in PSP-RS, in keep-
ing with the recent PSP pathology staging system proposed
by Kovacs et al.,8 and predicted that the image-based EBM
stage would be correlated with clinical disease severity as
measured by the PSP rating scale.

Materials and methods
Subjects
Data from individuals with a clinical diagnosis of possible or
probable PSP-RS were collected from six main sources for in-
clusion in the study: the 4R Tauopathy Imaging Initiative
(4RTNI; ClinicalTrials.gov: NCT01804452),16,32 the davu-
netide randomized control trial (DAV; ClinicalTrials.gov:
NCT01056965),33 the salsalate clinical trial (SAL;
ClinicalTrials.gov:NCT02422485),34 the young plasma clin-
ical trial (YP; ClinicalTrials.gov: NCT02460731),34 the
PROgressive Supranuclear Palsy CorTico-Basal Syndrome
Multiple System Atrophy Longitudinal Study (PROSPECT;
ClinicalTrials.gov: NCT02778607) and the University
College London Dementia Research Centre (UCL DRC)
FTD cohort. Control data were collected from three sources:
the Frontotemporal Lobar Degeneration Neuroimaging
Initiative dataset (FTLDNI; http://4rtni-ftldni.ini.usc.edu/)
PROSPECT and the UCL DRC FTD cohort. Controls were
defined as no known diagnosis of a neurological or neurode-
generative condition and no known history of memory com-
plaints. Further details on individual cohorts are included in
the Supplementarymaterial, and a summary of the demograph-
ics of each cohort is included in Supplementary Table 1.
Appropriate ethics was applied for and approved via the rele-
vant trial and research ethics committees. For inclusion in this
study, all patients had to have, as a minimum, a baseline
T1-weighted volumetric MRI on a 1.5 or 3 T scanner, with
basic demographic data (age at time of scan, gender), and dis-
ease duration at time of the scan (time from symptomonset to
MRI scan). Twelve-month follow-up scans, if available, were
also included in the study, as were PSP rating scale scores.
Given original trial analyses failed to show any treatment ef-
fect (including no change in volumetric MRI measurements)
in the davunetide,33 salsalate and young plasma trials,34 we
combined data from each study’s treatment and placebo
groups. Longitudinal data (both 12-month follow-up MRI
and PSP rating scale) were used for validation of the staging
system produced by the baseline EBM.

Magnetic resonance imaging
Raw volumetric T1-weighted MRI images were all processed
by the same pipeline. Scans first underwent visual quality con-
trol (QC) to ensure correct acquisition and the absence of
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major artefacts. Next, raw images that passed QC were
bias field corrected for magnetic field inhomogeneity, and
the whole brain (cortical and subcortical structures) parcel-
lated using the geodesic information flow (GIF) algorithm.35

This automatically extracts regions based on the
Neuromorphometrics atlas (Neuromorphometrics, Inc.),
using an atlas propagation and label fusion strategy.36,37

Subregions of the cerebellum were then automatically ex-
tracted with GIF based on the Diedrichsen cerebellar atlas:
the cerebellar lobules (I–IV, V, VI, VIIa-Crus I, VIIa-Crus II,
VIIb, VIIIa, VIIIb, IX and X), the vermis and the deep nuclei
(dentate, interposed and fastigial).35,38 The whole brainstem,
medulla, pons, superior cerebellar peduncles (SCPs) and mid-
brainwere subsequently segmented using a customized version
of the module available in FreeSurfer to accept the GIF parcel-
lation as input for Freesurfer.39 Total intracranial volume
(TIV) was calculated using SPM12 v6225 (Statistical
Parametric Mapping, Wellcome Trust Centre for
Neuroimaging, London, UK) running under MATLAB
R2012b (Math Works, Natick, MA, USA).40 All segmenta-
tions were visually inspected to ensure accurate segmentation.

Biomarker selection
In this study, we use the term biomarker to refer to image-
based regional brainvolumes that showa significant difference
between cases and healthy controls (HCs) (two-tailed t-test of
mean difference in covariate-adjusted volumes). Given the fo-
cus of this studywas to test the hypothesis that the sequence of
atrophy in PSP-RS is in keeping with the sequence of tau path-
ology at post-mortemas shownbyKovacs et al.,8 19 regionsof
interest (ROIs) were chosen for inclusion that most closely
matched those used in their study; four brainstem (medulla,
pons, SCP and midbrain), three cerebellar (cerebellar cortex,
deep nuclei and vermis), seven subcortical [thalamus, GP, stri-
atum (caudate andputamen), ventral diencephalon (DC), thal-
amus, hippocampus and amygdala] and five cortical (frontal,
insula, temporal, parietal and occipital) regions. Regions that
had a right and left label were combined. All ROIs were con-
trolled for the following covariates using linear regression on
the control cohort: age at scan, sex, scanner type and TIV.
Linear regressions of age against predicted EBM stage were
also performed (after EBM model fitting) for cases and con-
trols separately to confirm that there was no residual correl-
ation after adjustment. All regions selected for inclusion
showed a significant difference in covariate-adjusted volumes
between cases and controls (Bonferroni-corrected threshold
of p, 3× 10−3) under a two-tailed t-test.

The event-based model
The EBM is designed to infer a data-driven, probabilistic
sequence in which biomarkers become abnormal from cross-
sectional data. The strengths of the EBM are firstly that it
requires no a priori biomarker cut-offs (thresholds) to define
abnormality; secondly, it requires no a priori staging and final-
ly it can produce meaningful results using only moderately

sized cross-sectional data. Its reliability with moderately sized
data sets makes it ideally suited for analysing biomarkers in
rare diseases such as the primary tauopathies.

The EBM is based on the assumptions of homogeneous
disease progression and monotonicity: that is all patients
have a broadly similar disease progression pattern with a
unimodal distribution of orderings, and biomarker change
is unidirectional from normal to abnormal i.e. no remission.
An ‘event’ is considered to have occurred when a biomarker
(in this study an MRI-derived regional volume), has an ab-
normal value (‘atrophy’) in comparison with the expected
values measured in HCs. The model then estimates the se-
quence S= S(1), S(2), …, S(l ) in which the biomarkers be-
come abnormal, where S(1) is the first biomarker and S(l)
is the last. Conceptually, if biomarker A is usually abnormal
when biomarker B is abnormal, but B is often abnormal
without A, we infer that B occurs before A in the sequence.

The estimation procedure first fits a mixture model to con-
trol and patient data for each biomarker. In this study, we
decided to use a recent version of the EBM that incorporates
a non-parametric method, kernel density estimation
(KDE),29 for estimating the mixture models. This approach
has been shown to perform at a similar level to the classic
EBM (that incorporates Gaussian mixture modelling) with
parametric input data, while demonstrating superiority
when the data are skewed.29 Themixturemodel obtainsmod-
els for the distribution of normal and abnormal values
for each biomarker, providing likelihoods P(xij|Ei) and
P(xij|¬Ei) of observing the value, xij, of biomarker i for subject
j, given that biomarker i has or has not become abnormal,
respectively. The EBMcombines these likelihoods to then cal-
culate the likelihood of the full data set X= xij: i= 1, …, Z;
j= 1,…,N for a given sequence, S:

P(X|S) =
∏N
j=1

∑Z
k=0

P(k)
∏k
i=1

P(xij|Ei)
∏Z

i=k+1

P(xij|Ei)

( )[ ]
(1)

j iterates over the number of subjects N and i iterates over the
number of events Z. P(k) refers to the prior likelihood of being
at stage k and in the absence of prior information is treated as
uniform to impose as little information as possible on estimated
orderings. The estimation procedure then searches for the char-
acteristic ordering, S

′
, which is the sequence that maximizes the

likelihood of P(X|S) in equation (1).23 This is found through a
combination of a multiply initialized greedy ascent and
Markov Chain Monte Carlo (MCMC) sampling, which sam-
ples from the posterior distribution on S, to find S

′
, which is sim-

ply the sequencewith thehighest (maximum) likelihood.The set
of samples from the MCMC sampling also provides informa-
tion on the uncertainty of the maximum likelihood sequence,
which can be visualized on a positional variance diagram.22,23

Patient staging
Once the characteristic sequence, S, has been obtained via the
EBM, an individual sample Xj (a vector of all measurements
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across biomarkers i for a patient j), can be staged by evalu-
ating the stage k that maximizes the likelihood in equation
(2) below25:

argmaxkP Xj| S
′
, k

( )
= argmaxkP(k)

∏k
i=1

P(xij|Ei)

×
∏Z

i=k+1

P(xij|¬Ei) (2)

As before P(k), the prior likelihood of being at stage k, is
treated as uniform i.e. no a priori information on a particu-
lar stage. The EBM stage (Z ), between 1 and the number of
biomarkers, l, of subject j, is, therefore, given by the stage k
that maximizes equation (2). Each subject (case and con-
trol) had their EBM-predicted stage calculated for their
baseline MRI scan and for those that had them, their
12-month follow-up scan.

Cross-validation of event sequence
Although the MCMC sampling gives some information on
the uncertainty of the event ordering in ordering of events de-
rived from the EBM, previous work shows it tends to under-
estimate this uncertainty.25 Bootstrapping is an additional
method that tends to give a more liberal estimate of the un-
certainty in the ordering.We first performed cross-validation
of the maximum likelihood sequence generated by the EBM,
by re-estimating the model on 100 bootstrap samples of the
original data (sampling with replacement). We then per-
formed repeated stratified 5-fold cross-validation as an add-
itional check on the robustness of the model. This involved
refitting the model on 80% of the cohort data and testing ac-
curacy on the held out 20% for each of 10 5-fold random
partitions, giving a total of 50 cross-validation folds/models,
which are averaged to find the final model sequence.

Longitudinal validation
We investigated the longitudinal consistency of the staging
produced by the EBM, based on the predictions that, firstly,
given PSP is a progressive disease, the EBM stage should in-
crease over time, and secondly that increasing EBM stage
should be associated with both increasing PSP rating scale
score (the main clinical measure of disease severity) and
also disease duration, especially during later model stages
where there is more widespread atrophy. We staged patients
using the baseline EBM based on their 12-month follow-up
scan (255 cases) and compared this with predicted stage
based on their baseline scan. The follow-up data were pro-
cessed using the same pipeline as the baseline scans to pro-
duce the same ROI biomarkers at 12 months. To test for
the relationship of PSP rating scale score with baseline
EBM stage, a linear mixed effects model was fit to the data
using the lme4 package41 in R Studio (version 1.4.1106),
with EBM-defined stage as the independent variable and
PSP rating scale score as the dependent variable. Two

hundred and forty-one baseline and 232 12-month follow-
up scans (473 total) had a corresponding PSP rating scale
score. Subject Id was modelled as a random effect (random
intercept) due to some subjects having twoMRI scans at dif-
ferent time points. Significance was calculated using the
lmerTest package42 which applies Satterthwaite’s method
to estimate degrees of freedom and generate P-values for
mixed models. In addition, we analysed disease duration
(time from first symptom to MRI scan) as a function of pre-
dicted EBM stage (87 baseline and 43 12-month follow-up
scans had disease duration recorded) using the samemethod.
To confirm that baseline EBM stage was also correlated with
both PSP-RS score and disease duration we fitted a linear
model for each as a function of EBM stage.

Data availability
Source data are not publicly available but non-commercial
academic researcher requests may be made to the Chief
Investigators of the six source studies, subject to data access
agreements and conditions that preserve participant ano-
nymity. The underlying EBM code is publicly available at
https://github.com/noxtoby/kde_ebm.

Results
Subject characteristics
Table 1 summarizes the key demographic data for the cohort
included in the study. 929 MRI images were processed from
a total of 654 subjects: 365 with a clinical diagnosis of
PSP-RS (of which 275 had 12-month follow-up scans) and
289 controls. Of the PSP-RS cases, 26 (8%) had a patho-
logical diagnosis after coming to post-mortem: 24 (92%)
showed tau pathology consistent with PSP, whereas 2 cases
had non-PSP tau pathology [one corticobasal degeneration
(CBD) and one globular glial tauopathy (GGT)] and were,
therefore, excluded from the analysis. After stringent QC
with visual inspection of all images for the remaining 363
cases (pre- and post-processing), 341 PSP-RS cases (of which

Table 1 PSP-RS EBM baseline demographics

Baseline demographics PSP-RS Controls P-value

N (12 months) 365 (275) 289 –

Post-QC—N (12 months) 341 (255) 260 –

Gender (M/F) 176/165 112/148 0.03a

Age at first MRI [years (SD)] 67.9 (6.8) 62.8 (9.4) ,0.001b

Time symptom onset to first
MRI [years (SD)]

4.1 (3.1) – –

Pathology (% PSP) 24 (92%)c – –

PSP rating scale (SD) 38.9 (12.9)d – –

UPDRS (SD) 30.6 (15.1) – –

MOCA (SD) 20.7 (5.1) – –

PSP-RS, progressive supranuclear palsy Richardson syndrome.
aχ2.
bUnpaired two-tailed t-test.
c% of all cases pre-QC.
d70% (241/341) of baseline cases included had a PSP rating scale score.
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255 had 12-month follow-up scans) and 260 control scans
were included for the analysis. Reasons for scans failing
QC included poor quality of the raw T1 image (usually due
to movement artefacts) or inaccurate segmentations with
the GIF or/and SPM algorithms. Around 70% (241/341) of
the cases included had a PSP rating scale score at baseline
and follow-up, as well as recorded age, gender, scanner
type and TIV. At baseline, the PSP-RS cohort had an older
average age [67.9 years, standard deviation (SD)+ 6.8]
compared with HCs (62.8 years, SD+ 9.4, t=−7.4, p,
0.01). Disease duration data [time from diagnosis to baseline
visit (average years, + SD)] was available for 87 of 341 cases
and showed an average length of 4.1 years (SD+ 3.1).
There was a higher proportion of females in the control
group compared with the PSP-RS group (male/female,
112/148 versus 176/165, respectively, χ2= 4.3, p= 0.04).

Sequence of atrophy progression
Supplementary Figure 1 shows histograms of the HC and
covariate-adjusted PSP-RS ROI biomarker distributions,
with KDE mixture model fits and line showing probability of
an event. These fits provide the parameters for the normal

and abnormal likelihoods, P(xij|Ei) and P(xij|¬Ei), respectively,
that are then used to calculate the maximum likelihood se-
quence of the full data set. At baseline, all 19 ROI selected
for inclusion in the model showed a significantly smaller
covariate-adjusted volume in PSP-RS compared with controls.

The positional variance diagram in Fig. 1A shows themost
likely sequence in which these regions become atrophic, as
estimated by the EBM, as well as the uncertainty in this se-
quence (based onMCMC sampling of the posterior distribu-
tions). The maximum likelihood sequence was estimated
using PSP-RS cases only, based on the rationale that PSP is
a rare disease, and it is very unlikely for our cohort of con-
trols to have asymptomatic PSP. Indeed, it is more likely
the controls would have a common disorder such as
Alzheimer’s disease rather than PSP, and we did not want
this to confound the sequence estimation hence the exclu-
sion. The EBM estimated that the earliest atrophy occurs
in the brainstem and subcortical regions followed by pro-
gression caudally into the SCP and deep cerebellar nuclei
and rostrally to the cortex. The sequence of cortical atrophy
progresses in an anterior to posterior direction, beginning
in the insula and then frontal lobe before spreading to the
temporal, parietal and finally the occipital lobe (Fig. 1C).

Figure 1 Sequence of atrophy progression in PSP-RS. (A) Regional volume biomarker positional variance diagram showing the sequence of
atrophy progression in PSP-RS. (B) Re-estimation of positional variance after cross-validation of the maximum likelihood event sequence by
bootstrap resampling (100 bootstraps). For (A) and (B), the vertical ordering on the y-axis (from top to bottom) shows the maximum likelihood
sequence estimated by the EBM (earliest to latest event). The bottom x-axis shows EBM stage while the top x-axis represents the percentage of
regions atrophic (abnormal) at each stage. Colour intensity of the squares represents the posterior confidence in each biomarker’s position in the
sequence, from either (A) MCMC samples of the posterior or (B) bootstrapping. SCP, superior cerebellar peduncle; ventral DC, ventral
diencephalon. Note that because these volumes are covariate-adjusted the control distribution will be centred at zero. (C) Graphic
representation of the event sequence with relevant region transitioning from healthy (grey) to unhealthy (coloured). Dark red denotes first
regions to atrophy, light yellow denotes last regions to atrophy. Created with BioRender.com.
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The high colour intensity of each square and their presence
predominantly on the diagonal of the positional variance dia-
gram indicates that the model has a high degree of certainty
regarding their positions in the overall sequence.

Cross-validation of event sequence
Figure 1B shows positional variance of the maximum likeli-
hood sequence re-estimated by bootstrapping of the data
(random resampling with replacement 100 times) and refit-
ting the model. The positional variance diagram for the
bootstrapped results represents the proportion of boot-
strap samples in which the event i (y-axis) appears at pos-
ition k (x-axis) of the maximum likelihood sequence. The
sequence ordering is generally preserved, although as one
would expect with this more conservative estimate of un-
certainty, there is increased uncertainty in the relative posi-
tions early in the sequence from Stage 2 (midbrain) to Stage
4 (ventral DC), and in the middle from Stage 9 (striatum) to
Stage 13 (pons). Using repeated stratified 5-fold cross-
validation (Supplementary Fig. 2) as an alternative method
to assess model robustness (both in terms of the sequence

and uncertainty in the sequence), the maximum likelihood
sequence is preserved with similar uncertainty in relative
positions when visually compared with the bootstrapping
method (Fig. 1B).

Patient staging
Figure 2 shows the proportion of subjects at eachEBM-defined
stage (PSP-RS and HC). Patient staging results were evalu-
ated using the maximum likelihood sequence (Fig. 1A) of re-
gional atrophy for PSP-RS subjects as described in the
Methods section. As one would expect the HC cohort is
clustered at the early stages with .80% at Stage 0 (i.e. no
event occurred), while the PSP-RS cases are distributed
more evenly across stages with the highest proportion in
the middle to late stages. This suggests that the cohort of
PSP cases gathered frommultiple different studies were tem-
porally heterogeneous which supports the importance of ac-
curately staging patients using objective biomarkers.

Using a threshold of Stage 2 (medulla and midbrain atro-
phic) the model was able to correctly classify subjects as
PSP-RS versus HC with an overall accuracy of 90% (with

Figure 2 Histogram of event-based model staging results for PSP-RS. Healthy controls in blue and PSP-RS cases in orange. Each bar
represents the proportion of patients in each category at each EBM stage. Each EBM stage on x-axis represents the occurrence of a new biomarker
transition event. Stage 0 corresponds to no events having occurred and Stage 19 corresponds to all events having occurred. Events are ordered by
the maximum likelihood sequence for the whole PSP-RS population as shown in Fig. 1A.
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a sensitivity and specificity of 91% and 90%, respectively).
Although not the focus of this model, the high classification
accuracy provided by the EBM further demonstrates its clin-
ical validity.

Outliers were present in both the HC and PSP-RS groups:
specifically, 10 (4%) of PSP-RS cases were at Stage 0, whereas
14 controls were at Stage 10 or greater (5%). Visual inspec-
tion of these HCs suggested that the segmentations were ac-
curate, but that there were non-specific covariate-adjusted
decreased volumes in regions including the hippocampus
with relative sparing of the brainstem and subcortical struc-
tures, suggesting that these could potentially represent people
with preclinical Alzheimer’s disease.

Longitudinal consistency
To test the validity of the EBM, we first tested the hypothesis
that a valid model will produce non-decreasing disease stages
for individuals from baseline to follow-up, within the bounds
of model uncertainty. Figure 3 compares each PSP-RS sub-
ject’s EBM stage at baseline with their stage at 12-month
follow-up (255 cases had both a baseline and 12-month
follow-up scan). Overall, on this metric the EBM shows

good longitudinal consistency with each subjects EBM stage
generally increasing or remaining stable at 12-months
follow-up: 245/255 cases (96%) either stayed at the same
stage or progressed. For these cases, the average stage pro-
gression over 12 months was 1 stage. Of the 10 PSP cases
that reverted in stage, nine only dropped one stage whereas
one dropped two stages.

To further validate the EBM, we first modelled PSP rating
scale as a function of predicted EBM stage using a linear
mixed model (Fig. 4A). EBM stage was modelled as a fixed
effect, whereas Subject Id was modelled as random effect
due to some subjects having two MRI scans at different
time points. We found a significant fixed effect of EBM stage
on predicted PSP rating scale (β= 1.46, 95% CI: 1.2–1.8,
P, 0.001) and a conditional R2 of 0.56. We then modelled
disease duration (years) as a function of predicted EBM
stage, which showed a significant fixed effect (β= 0.29,
95% CI: 0.24–0.34, P, 0.001) and a conditional R2 of
0.68 (Fig. 4B). When fitting linear models for PSP-RS score
and disease duration versus predicted EBM stage on baseline
scans only (Supplementary Fig. 3A and B, respectively), there
was also a significant association albeit with a lower adjusted
R2 (PSP-RS versus EBM stage at baseline: β= 1.14, 95%

Figure 3 Longitudinal consistency of baseline EBM. Scatter plot showing predicted stage at baseline (x-axis) versus predicted stage at 12
months (y-axis) for those PSP-RS subjects with a follow-up scan (n= 255). The area of a circle is weighted by the number of subjects at each point.
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CI: 0.84–1.44, P, 0.001), adjusted R2 of 0.18, disease dur-
ation versus EBM stage at baseline: (β= 0.25, 95%CI: 0.20–
0.30, P, 0.001, adjusted R2 of 0.39). To check that we had
adequately adjusted for agewe also ran linearmodels of age as
a function of predicted EBM stage for cases (Supplementary
Fig. 4A) and controls separately (Supplementary Fig. 4B).
There was no association between EBM stage and age in either
the case (β= 0.19, 95% CI: 0.13–0.25, P= 0.12, adjusted R2

of 0.017) or control group (β=−0.27, 95% CI: −0.66–0.12,
P= 0.18, adjusted R2 of 0.003).

Discussion
The principal result of this study is that a probabilistic data-
driven method reveals, in vivo, the sequence in which brain
regions become atrophic in PSP-RS. We established this se-
quence from cross-sectional data and went on to demon-
strate the validity of this model longitudinally. Ninety-six
per cent remained in the same stage or progressed to a later
stage over 12 months. The model derived staging correlated
with both clinical severity and disease duration.

Ordering of biomarkers
The order of regional atrophy revealed by the EBM (Fig. 1)
broadly mirrors the sequential spread of tau pathology in
PSP proposed by Kovacs et al.8 The earliest atrophy in our
model occurs in the brainstem and subcortical regions fol-
lowed by progression caudally into the SCP and deep cere-
bellar nuclei and rostrally to the cortex. The sequence of
cortical atrophy progresses in an anterior to posterior direc-
tion, beginning in the frontal lobe before then spreading to

the temporal, parietal and finally the occipital lobe. In the ab-
sence of external data to validate the model, we explored the
generalizability and robustness of the model using two dif-
ferent validation methods: bootstrap cross-validation and
5-fold repeated stratified 5-fold cross-validation. These dem-
onstrate that even with a more conservative estimate of un-
certainty, the sequence of atrophy is largely conserved
(Fig. 1B and Supplementary Fig. 2). There remains uncer-
tainty early on between the relative positions of the mid-
brain, thalamus, ventral DC and SCP, in the middle
between the striatum, frontal, parietal, and cingulate lobes,
and the pons, and at the end of the sequence between the tem-
poral lobe, amygdala and hippocampus. This heterogeneity
is of interest and a motivation for future work.

It is difficult, however, to make a direct comparison be-
tween our in vivo findings and post-mortem tau histopath-
ology staging for two reasons: first, in this study, we are
measuring atrophy rather than tau pathology directly, and
although there is evidence that atrophy on structural imaging
is associated with tau pathology,19,20 it is unlikely to directly
correlate with histopathological scores of tau accumulation
across neuronal and glial cell populations. Second, two of
the regions identified to have the earliest tau pathology in
Kovacs’ study are the STN and the substantia nigra (SN), re-
gions that are not individually segmented by the GIF algo-
rithm used in this study. These are subsumed within the
ventral DC segmentation in the neuromorphometrics atlas,
along with the hypothalamus. Although not specific for the
STN and SN, reassuringly this region does occur early in
the sequence (Fig. 1A), and after cross-validation one can
see (Fig. 1B and Supplementary Fig. 2) that after the medulla
there is uncertainty as to the exact ordering of the midbrain,
thalamus and ventral DC.

Figure 4 Association between predicted EBM stage, PSP rating scale score and disease duration. (A) PSP rating scale score versus
EBM stage* (β= 1.46, 95%CI: 1.2–1.8, P, 0.001, conditional R2 of 0.56 (marginal 0.22) (B) Disease duration (years) versus EBM stage** (β= 0.29,
95% CI: 0.24–0.34, P, 0.001 and a conditional R2 of 0.68 (marginal 0.41). For both (A) and (B), the line represents the linear fixed effect model fit
to all subjects, and 95%CIs. Subject Id was modelled as a random effect (random intercept) due to some subjects having twoMRI scans at different
time points. Significance was calculated using Satterthwaite’s method to estimate degrees of freedom and generate P-values. * 473 scans (241
baseline and 232 12-month follow-up) with PSP-RS score. ** 130 scans (87 baseline and 43 12-month follow-up) with disease duration.
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The majority of cross-sectional imaging studies in PSP-RS
have focused on the clinical utility of structural MRI as a
diagnostic biomarker to differentiate PSP from both
Parkinson’s disease and other atypical parkinsonian disor-
ders.13 These studies usually only give a group-level over-
view of regional atrophy at baseline, as opposed to the
sequence of atrophy changes that we have demonstrated in
this study. Even so midbrain atrophy is commonly seen in
PSP-RS at baseline, with relative sparing of the pons,43–45

and the pons-to-midbrain ratio has high specificity and sen-
sitivity for the diagnosis of pathogically confirmed PSP.46

SCP atrophy is also evident early in the disease course47

and has led to the development of the MR parkinsonism
index for differentiation PSP-RS from other causes of
parkinsonism.48 Atrophy of subcortical structures including
the striatum, GP and thalamus has also been observed in
group-level studies,49–54 as well as involvement of frontal
lobe.55–57 Together, these findings are consistent with the
sequence of atrophy that the EBM produces, but our study
is the first in PSP-RS, to the best of our knowledge, that
orders these regions relative to each other.

The placement of the medulla first in the sequence is inter-
esting as the medulla is not widely mentioned in the PSP im-
aging literature. It is, however, clear that tau pathology is
consistently seen in the medulla at post-mortem,58,59 with
Kovacs et al.8 placing it at Step 2 in their pathological staging
system. More recently, perhaps due to the advent of auto-
mated segmentation techniques for the brainstem, its in-
volvement has been shown in PSP-RS using MRI.44,45,60,61

The early involvement of the thalamus in our EBM se-
quence is also supported both by pathological studies8

where tau pathology been shown to occur in all cases,
and structural MRI studies that demonstrate atrophy: in
particular the pulvinar, dorsomedial and anterior nu-
clei.62,63 In future work, it will be interesting to investigate
differential involvement of the thalamic nuclei in the differ-
ent PSP subtypes, and their position in the event ordering
relative to downstream atrophy events.

Patient staging
This EBM demonstrates that there is significant variability in
terms of the stage of PSP-RS patients at baseline (Fig. 2) and
provides an intrinsic staging mechanism by which to stratify
patients more accurately in terms of their temporal position
in the disease course. This is supported by the association be-
tween EBM stage and disease duration (both at all time-
points and only at baseline) in those subjects for which
disease duration was recorded (Fig. 4B).

Uncertainty in the model assigned stage is dependent on
the degree of overlap between theHC and PSP-RS biomarker
distributions, as well as the accuracy of a given person’s bio-
marker measurement.23 Imaging biomarkers are known to
be associated with a high degree of variance, some of which
can be explained by different scanners used, the age and gen-
der and variation in individual TIV. We tried to control for
this by regressing these out as covariates. Linear modelling

of age against predicted EBM stage for cases and controls
(Supplementary Fig. 4A and B) showed no association sup-
porting the validity of this approach.

Although the purpose of this study was to identify the se-
quence of regional atrophy in PSP-RS from cross-sectional
data, rather than classify subjects as cases versus controls,
using a threshold of Stage 2 (medulla andmidbrain atrophic),
the model was able to correctly classify subjects as PSP-RS
versus HC with an overall categorization accuracy of 90%.
This accuracy is similar to that seen in other MRI studies
using simple groupwise comparisons of midbrain volume be-
tween cases and controls60 and gives confidence that the EBM
sequence is a valid representation of disease progression. This
is further supported by the fact that 96% of cases either
stayed at the same stage or progressed to a higher stage
over a 12-month period. In addition, predicted subject
EBM stage is significantly correlated (P, 0.01) with a vali-
dated measure of clinical disease severity (PSP rating scale),
as well as disease duration (P, 0.01), demonstrating the clin-
ical relevance of our MRI-based fine-grained staging system.
However, unlike a clinical rating score, the EBM also pro-
vides insights into the underlying progression of brain volume
changes, and given it is probabilistic, a natural way to incorp-
orate uncertainty into the staging.

Limitations
There are several assumptions made when building an EBM,
which must be considered when interpreting our results. The
EBM assumes that all patients have a broadly similar disease
progression pattern with a unimodal distribution of order-
ings We restricted analysis to those patients with a diagnosis
of PSP-RS, to try and exclude some of the heterogeneity in
clinical phenotype associated with PSP pathology.4 Those
cases included from the 4RTNI1, Davunetide and SAL/YP
cohorts were diagnosed with probable PSP-RS according to
the NINDS criteria, though it is possible that at least some
of these cases may meet the 2017 diagnostic criteria for
non-RS clinical phenotypes. In the Prospect study, 10% of
PSP cases diagnosed under the NINDS criteria were re-
labelled as a non-RS phenotype when the 2017MDS criteria
were applied.61 Given the sensitivity of the EBM to sample
heterogeneity, and the variation in pathology staging by
phenotype,8,9 investigation of PSP phenotype heterogeneity
using subtype and stage inference64 may provide finer
grained patient stratification and is worth pursuing.

The EBM staging has no explicit timescale,23 although it
can predict what stage the patient is within the sequence of
biomarker abnormalities, it is unable in itself to extract in-
formation on the time taken to transition between states.
When given longitudinal data, the model currently treats re-
peated measures as if they are independent i.e. from separate
individuals, thus losing information on temporal covariance
that could further inform on the ordering of events. Recently,
a new generative model called the temporal event-based
model (TEBM) has been developed65 to accommodate longi-
tudinal data, which is able to learn both individual-level
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trajectories within the sequence of biomarker abnormalities
as well as the time to transition between each event. Applied
to our data set, the TEBMmay provide insights into the tran-
sition times between each stage defined by this study.

Although PSP-RS has been shown to be highly correlated
with underlying PSP pathology,66 in rare cases other path-
ologies such as CBD can present with PSP-RS and imaging
is unable to differentiate the underlying pathology.67

Of the 365 PSP-RS cases selected for image processing,
24/26 (92%) of cases that came to post-mortem had PSP
pathology, whereas one had GGT and the other CBD path-
ology (these were excluded from the analysis). Although a
small sample size, this correlation between PSP-RS and
underlying PSP pathology is in keeping with previous
studies.66 In the absence of a sensitive and specific
tau-PET ligand, or indeed any other biomarker, for PSP
pathology, there is not an easy way around this clinical–
pathological disconnect, and until such time the inclusion
of patients in clinical trials based on a clinical diagnosis
of PSP-RS is likely to continue.

Another limitation, although not unique to this study, is
that the MRIs of different patients were acquired across a
range of centres and on different scanners. It is well known
that scanners can differ from each other in relation to im-
aging quality, signal homogeneity and image contrast which
can lead to bias.15 Stringent visual QCs were applied to both
the raw images and post-segmentation scans, the GIF algo-
rithm bias corrects for field inhomogeneity, and we also con-
trolled for scanner type by introducing it as a covariate in the
linear regression. In addition, previous analyses on the davu-
netide data set (which had the highest number of different
scanners) scanner type showed no significant effect on atro-
phy rates.68 Furthermore, the use of different scanners at
multiple sites is a realistic scenario for clinical trials in rare
diseases such as PSP, and so scanner heterogeneity combined
with the large sample size in this study supports stronger gen-
eralizability of the findings.

Conclusion
In this study, we have uncovered the in vivo sequence of
brain atrophy in a large series of individuals with PSP-RS
using a probabilistic data-driven model of brain volume
changes that mirrors the recent post-mortem brain histo-
pathology staging proposed by Kovacs et al.1 It provides
an objective, in vivo staging system that is longitudinally
consistent and correlates with clinical measures of disease se-
verity and disease duration. This approach has potential util-
ity to stratify PSP patients on entry into clinical trials based
on disease stage, and complement existing clinical outcome
measures to track disease progression.
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