Comparison of Automated Brain Segmentation Tools in FTD: Implications for Imaging Biomarker Choice in Clinical Trials Gordon E¹, Neason M¹, Warren JD¹, Cash D¹, Bocchetta M¹, Rohrer JD¹

¹Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom

BACKGROUND

Automated measures of volumetric brain loss are valuable markers of disease progression and commonly used as endpoints in neurodegenerative therapeutic trials. However validation of these techniques within the FTD patient population is currently lacking.

METHODS

We compared six widely used automated segmentation tools to extract whole brain volumes: BMAPS¹, SPM12², GIF³, Freesurfer (6.0)⁴, MALPEM (v1.2)⁵ and SIENAX⁶ in 264 individuals who had undergone 2 same-scanner 3DT1 magnetic resonance imaging (MRI). Minimal MRI interval for inclusion was 6 months (Table 1). All techniques were applied using standard published pipelines and in native space, except SIENAX which was applied to images after transformation into MNI125 space (Figure 1). For techniques that produced multi-label or multi-tissue type parcellations, all relevant regions were summed to produce a single whole brain volume. Annualised rates of change were calculated by subtraction of raw segmented volumes, or application of the boundary shift integral (BSI) in both kn-means (knBSI) and generalised (gBSI) forms. The longitudinal pipelines for VBM and SIENA were also applied to derive annual percentage brain volume change (PBVC).

Col	horts			Clinical				Genetic	Pathological		
	Controls	bvFTD	svPPA	nfvPPA	PPA-NOS	IvPPA	MAPT	C9orf72	GRN	Tau	TDP-43
N	79	66	45	46	7	21	16	10	8	19	33
M:F	35:45	50:16	24:21	26:20	4:3	15:6	9:7	9:1	3:5	12:7	20:13
Age at baseline	62.4 (11.6)	62.6 (8.6)	63.7 (7.8)	66.0 (7.5)	62.6 (7.0)	67.4 (7.4)	55.4 (7.2)	62.5 (6.0)	61.2 (7.2)	56.2 (7.2)	62.8 (6.1)
Age at onset	NA	56.7 (8.8)	59.0 (7.5)	61.6 (7.4)	60.1 (7.5)	63.3 (7.1)	49.1 (5.8)	55.6 (8.6)	58.0 (6.4)	50.7 (7.0)	58.0 (7.1)
Disease duration	NA	5.9 (3.9)	4.7 (1.9)	4.4 (1.9)	2.4 (1.4)	4.1 (1.9)	6.3 (3.9)	6.9 (4.4)	3.2 (3.4)	5.6 (3.7)	4.8 (3.5)
Scan interval	1.6 (0.8)	1.4 (0.8)	1.5 (0.8)	1.3 (0.6)	1.6 (0.7)	1.3 (0.7)	1.9 (1.2)	1.0 (0.4)	1.2 (0.4)	1.8 (1.2)	1.5 (0.9)

Table 1: Patient demographics for all FTD subgroups and healthy controls. Figures are in years for bottom four rows.

Figure 1: Representative slice from the same patient for a) BMAPS b) SPM12 c) GIF d) Freesurfer e) MALPEM f) SIENAX.

RESULTS

Annual rates of change (Table 2) are expressed as percentage loss from baseline volume (mean (standard deviation)). All analyses were performed in STATA 14. Effect sizes with 95%

confidence intervals (CI) were calculated using bootstrapping (2000 replications) and applied to all annual rates of change, comparing controls to each of the patient subgroups for all techniques. Sample size calculations to detect a 25% treatment effect with 80% power were derived based on these effect size analyses (Table 3). Key findings: There were clear qualitative and quantitative differences between techniques with BMAPS, GIF and SPM most often performing best in accurately segmenting the whole brain structures and producing the lowest sample sizes. Raw segmented brain volume difference was overall a poor biomarker with substantial improvements gained once either BSI technique was applied. Subgroups with more homogeneous rates of atrophy (PPA groups clinically, MAPT and GRN genetically, tauopathies pathologically) tended to have lower sample sizes.

Techni	ane	Clinical					Genetic Patholo			logy	Techniqu	e	Clinical					Genetic	Pathology				
Annual	ised (%bl)	Controls	bvFTD	svPPA	nfvPPA	PPA-NO	S Ivppa	MAPT	C9orf72	GRN	Tau	TDP-43	sample siz	ze]	svPPA	nfvPPA	PPA-NOS	Ivppa	MAPT	C9orf72	GRN	Tau	TDP-43
	raw		0.0.4.0			0.0 (4.0)							BMAPS r	raw 151 lumes [95, 290]	83 [49, 158]	74 [40, 169]	42 [2, 91]	103 [44, 260]	75 [40, 178]	166 [71, 619]	130 [15, 48882]	70 [38, 156]	<mark>92</mark> [46, 202]
BMAPS	volumes	0.5 (0.9)	2.0 (1.8)) 2.4 (1.2)	2.8 (1.9)	2.8 (1.0)) 2.5 (1.6)	1.8 (1.4)	2.2 (1.5)	3.0 (2.6)	2.0 (1.3)	2.6 (1.7)	knBSI	nBSI 152	51	81	41	48	69	164	71	71	87
	knBSI	0.5 (0.8)	1.8 (1.3)) 2.2 (0.9)	2.6 (1.4)	2.6 (0.9)) 2.3 (1.0)	1.8 (1.0)	2.0 (1.3)	3.7 (1.8)	1.9 (1.0)	2.5 (1.3)	MALPEMraw volumesMALPEMRaw volumesknBSIgBSI	aw 108663	47513	3809	50	7528470	4567	2925	111505	1597	28499
MALPEM	raw volumes	0.0 (1.8)	0.6 (4.3)	0.5 (1.9)	0.8 (1.9)	1.5 (0.7)	0.9 (4.4)	0.5 (1.0)	0.7 (1.6)	0.0 (4.2)	D.7 (1.1)	0.3 (5.4)		umes [NA, ∞]	[NA/∞] 54	[389, 4610] 82	[16, 226]	[NA/∞] 330	[NA/∞] 127	[NA/∞] 131	[NA/∞] 58	[248, 2628] 129	[NA/∞] 83
	knBSI	0.3 (0.5)	1.0 (0.7)) 1.2 (0.6)	1.4 (0.9)	1.5 (0.5)) 1.0 (0.8)	1.0 (0.7)	0.9 (0.5)	2.1 (0.9)	1.1 (0.7)	1.3 (0.7)		INDESI [89, 291]	[32, 106]	[40, 216]	[9, 200]	[48, 52563]	[49, 503]	[46, 501]	[27, 139]	[57, 375]	[45, 189]
	aBSI		1 6 (1 1)		20(11)	2 3 (0 7)	17(12)	1 5 (0 8)	1 3 (0 0)	3 1 (1 3)	1 5 (0 0)	$2 \cap (1 \ 1)$		BSI [91,237]	47 [29, 96]	80 [40, 187]	39 [17,95]	219 [33, 76750]	86 [35, 268]	167 [77, 441]	54 [11, 287]	90 [43, 238]	90 [54, 172]
	gbol	0.4 (0.7)	1.0 (1.1)	, 1.0 (0.7)	2.0 (1.1)	2.3 (0.7) 1.7 (1.2)	1.5 (0.0)	1.3 (0.7)	5.1 (1.5)	1.5 (0.7)	2.0 (1.1)	SIENAX r	raw 1374 Jumes [358 170376	364 51 [185 1005]	374 [139_4203]	65 [16_312]	347 [101_11464]	8883 [NA/∞]	568 [115_2487]	375 [NA/∞]	4348 [NA/∞]	413 [189_1937]
SIENAX	volumes	0.4 (1.0)	2.3 (9.6)) 1.4 (2.4)	1.0 (5.7)	2.4 (1.1)) 1.7 (1.6)	0.8 (2.9)	1.3 (1.5)	1.5 (1.9)	1.0 (2.7)	1.5 (1.7)	knBSIFreesurferraw volumes	nBSI 220	57	83	35	277	95	194	85	103	122
	knBSI	0.5 (0.7)	1.6 (1.2)	1.9 (0.8)	2.4 (1.3)	2.6 (0.8)) 1.9 (1.4)	1.6 (1.0)	1.7 (1.2)	3.2 (1.6)	1.7 (1.0)	2.2 (1.2)		[135, 453]	[33, 133]	[44, 199] 252	[12, 85]	[42, 910415]	[51, 207]	[71, 1073] 140	[16, 776]	[60, 206] 242	[68, 248]
Freesurfer	raw volumes	0.7 (1.3)	2.3 (3.9)) 2.0 (4.1)	2.5 (3.1)	2.7 (0.9)) 0.8 (3.6)	1.3 (1.8)	2.5 (1.7)	3.7 (1.7)	1.8 (2.3)	2.9 (3.2)		umes [287, 11310	[368, 5196]	[181, 1889]	[11, 210]	[NA/∞]	[72, 9669]	[60, 1036]	[48, 274]	[67, 1806313]	[213, 3683]
	knBSI	0.3 (0.6)	1.6 (1.3)) 1.9 (0.9)	2.4 (1.3)	2.5 (0.8)) 1.8 (1.4)	1.7 (1.0)	1.6 (1.2)	2.6 (2.1)	1.8 (1.0)	2.1 (1.4)	kr	n BSI 158 [101, 284]	77 [46, 160]	86 [50, 182]	35 [18, 68]	207 [36, 11046]	68 [29, 154]	200 [82, 1018]	125 [14, 11037]	<mark>69</mark> [35, 144]	142 [77, 293]
GIF	raw	0.2 (0.6)	1 1 (1 2)	1 1 (0 7)	1 4 (0 8)	1 7 (0 8)) 1 2 (1 7)	1 0 (0 6)	1 4 (1 0)	1 2 (1 8)	1 1 (0 6)	1 3 (1 1)	GIF r	-aw 306	109 [49_430]	101	70 [28_210]	512 [58_13665]	69 [35_190]	180	291	57 [30_139]	154 [72 496]
U	volumes	0.2 (0.0)		,	1.4 (0.0)	1.7 (0.0)	, 1.2 (1.7)	1.0 (0.0)		1.2 (1.0)			kr	nBSI 164	48	83	43	212	65	198	63	67	95
	knBSI	0.5 (0.7)	1.7 (1.2)) 1.9 (0.8)	2.1 (1.1)	2.4 (0.8)) 1.9 (1.2)	1.6 (0.8)	1.6 (1.1)	3.1 (1.4)	1.6 (0.8)	2.2 (1.1)		[101, 316] 149	[30, 94] 47	[42, 192] 75	[17, 84] 42	[30, 26350] 39	[27, 136] 59	[72, 1131] 193	[13, 397] 63	[33, 138] 60	[53, 194] 91
	gBSI	0.3 (0.6)	1.7 (1.2)) 1.9 (0.7)	2.3 (1.1)	2.4 (0.8)) 2.0 (0.8)	1.7 (0.8)	1.5 (1.1)	3.5 (1.5)	1.7 (0.8)	2.1 (1.2)	g	[91, 279]	[29, 100]	[39, 167]	[17, 78]	[20, 83]	[27, 115]	[72, 1049]	[11, 435]	[32, 117]	[51, 190]
SPM	raw volumes	0.6 (1.0)	2.8 (2.4)	3.7 (4.2)	3.2 (2.3)	3.3 (1.0)	3.6 (2.7)	2.1 (1.7)	2.6 (3.0)	4.2 (3.7)	2.4 (1.6)	3.2 (2.5)	SPM rol	umes [118, 355]	[38, 130]	[83, 467]	[16, 113]	240 [67, 75516]	[39, 313]	[180, 8653506]	[37, 224]	[33, 261]	[76, 437]
	knBSI	0.5 (0.6)	1.9 (1.5)) 2.1 (1.0)	2.6 (1.5)	2.7 (1.0)) 2.2 (1.4)	1.8 (1.0)	1.7 (1.5)	3.7 (2.0)	1.9 (1.0)	2.5 (1.5)	kr	nBSI 193 [128, 342]	57 [33, 116]	91 [48, 209]	52 [22, 84]	198 [36, 33512]	83 [42, 178]	293 [115, 2118]	68 [14, 390]	82 [45, 171]	110 [63, 216]
	gBSI	0.5 (0.8)	2.1 (1.6)) 2.4 (0.9)	2.8 (1.5)	2.8 (0.8)) 2.3 (1.5)	2.0 (1.1)	1.7 (1.3)	3.9 (2.1)	2.1 (1.1)	2.6 (1.6)	g	BSI [108, 282]	43	72	34	204	66	219 [90_811]	64	69 [33_146]	94 [53 181]
SIENIA	PRVC		2 4 (1 0)		3 3 (2 0)	3 2 (1 2)		2 2 (1 2)	22 (1 1)		2 4 (1 2)	2 9 (1 8)	SIENA PI	BVC 186	35	83	55	44	80	99	90	74	126
		0.0 (0.7)	2.7 (1.7)		0.0 (2.0)	0.2 (1.2)	, 5.0 (1.5)	2.2 (1.2)	2.2 (1.1)	T.T (2.4)		2.7 (1.0)		[119, 326] 175	[24, 56] 207	[50, 165] 248	[26, 94] _51	[23, 118] 60	[30, 383] 158	[36, 394] 174	[24, 671] 5618	[31, 297]	[68, 279] 356
Long VBM	PBVC	0.2 (0.6)	1.0 (0.9)) 1.0 (0.7)	1.2 (1.0)	1.6 (0.6)) 1.5 (0.7)	1.0 (0.9)	1.2 (0.8)	0.6 (1.2)	1.0 (0.8)	0.9 (0.9)	LONG_VPM PBVC	[107, 327]	[94, 1016]	[102, 2430]	[26, 137]	[28, 179]	[59, 915]	[61, 849]	[NA/∞]	[NA/∞]	[NA/∞]
Table 2: Mean (standard deviation) annual rates of atrophy as a percentage loss from baseline volume. Table										seline v	olume.	Table 3: Sample size estimates per treatment arm to detect a 25% reduction in volume loss at 80% power with 95% confidence intervals in parentheses.											

CONCLUSIONS

Automated whole brain segmentation techniques are applicable across the full FTD spectrum. However performance qualitatively and quantitatively varies, so careful selection of tools will be important in upcoming FTD therapeutic trials. Application of the BSI substantially improves the variability of measures of volume loss and should be used preferentially to raw volume change as an imaging biomarker. Enrolment targeting more stratified and homogeneous groups will also prove helpful in lowering sample sizes required.

Acknowledgments: The Dementia Research Centre is supported by Alzheimer's Research UK, Brain Research Trust, and The Wolfson Foundation. This work was supported by the NIHR Queen Square Dementia Biomedical Research Unit, the NIHR UCL/H Biomedical Research Centre and the Leonard Wolfson Experimental Neurology Centre (LWENC) Clinical Research Facility as well as an Alzheimer's Society grant. JDR is supported by an MRC Clinician Scientist Fellowship and has received funding from the NIHR Rare Disease Translational Research Collaboration. EG is supported by an Alzheimer's Society PhD Studentship. <u>References</u>:¹ Leung et al., (2011);' ²Friston and Ashburner et al., (1997/2000); ³ Cardoso et al;. (2015); ⁴ Fischl, B (2012); ⁵ Ledig et al., (2015); ⁶ Smith et al., (2002); ⁷ Leung et al., (2010); ⁸ Pradas et al., (2015).

