Presymptomatic abnormal perception of pain in C9orf72 expansion carriers: early autonomic changes in the GENFI cohort

Convery R¹, Bocchetta M¹, Woollacott IOC¹, Shafei R¹, Moore K¹, Neason M¹, Cash D¹, Thomas D¹, Greaves C¹, van Swieten J², Borroni B³, Galimberti D⁴, Sanchez-Valle R⁵, Laforce R⁶, Moreno F⁷, Synofzik M⁸, Graff C⁹, Masellis M¹⁰, Tartaglia C¹¹, Rowe J¹², Vandenberghe R¹³, Finger E¹⁴, Tagliavini F¹⁵, de Mendonça A¹⁶, Santana I¹⁷, Butler C¹⁸, Ducharme S¹⁹, Gerhard A²⁰, Danek A²¹, Levin J²¹, Otto M²², Rohrer JD¹ on behalf of GENFI

¹Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, United Kingdom, ²Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands,³Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Barcelona, Spain, ⁵Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy,⁶Clinique Interdisciplinaire de Mémoire Département des Sciences Neurologiques University of Toronto, Canada, ⁸Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada, ⁹Department of Clinical Brain Research and Centre of Neurology, University of Cambridge, Ca

INTRODUCTION

Frontotemporal dementia (FTD) is typically associated with changes in behaviour and/or language. However, studies have shown that patients with FTD can also present with autonomic symptoms: cardiac, urinary, gastrointestinal, and thermoregulatory dysfunction^{1,2} as well as altered pain perception³ have been reported in patients with FTD. Central autonomic structures, including the thalamus and the insula, have also been shown to undergo early anatomical and pathological changes⁴. Despite this, the relationship between autonomic symptoms and anatomical changes in FTD has not been widely explored.

METHODS

Participants

We investigated autonomic symptoms in 281 FTD mutation carriers (104 *C9orf72*, 128 *GRN*, 49 *MAPT*) from the Genetic FTD Initiative (GENFI) cohort and 181 mutation-negative controls. Patients were grouped by mutation type, and into early presymptomatic, late presymptomatic (<5 years to estimated onset), and symptomatic stages. Patient demographics are reported in Table 1.

Analysis

Autonomic symptoms were assessed via a questionnaire. Participants reported changes in blood pressure (BP), gastrointestinal symptoms (gastro), thermoregulation (thermo), urinary symptoms, and pain perception. A score of 0 (absent), 0.5 (questionable/very mild), 1 (mild), 2 (moderate) and 3 (severe) was given for each symptom. A Kruskal-Wallis test was used to detect differences in symptoms between genetic groups and controls, followed by a Mann-Whitney *U* test for pairwise comparisons. Using SPM12, T1-weighted images were segmented into grey matter (GM) maps that were registered to MNI space, modulated and smoothed. GM tissue maps were fitted to several multiple regression models, incorporating mutation-carriers only, for each genetic group and for each autonomic symptom. Age, gender, TIV, and scanner type were included in the regression as nuisance variables. A significance threshold was set at p<0.001, uncorrected.

C9orf72	GRN	MAPT							
				Disease stage	Ν	Age	Gender (%M)	FTLD-CDR	Disease duration, y
			Control		181	45.9 (12.5)	44	0.19 (0.66)	N/A
				Early	62	43.1 (10.6)	40	0.15 (0.48)	N/A
			C9orf72	Late	11	59.5 (7.2)	9	0.68 (1.23)	N/A
	0			Affected	31	62.5 (7.9)	65	8.89 (6.01)	5.5 (4.5)
3.5 R				Early	79	41.7 (9.0)	29	0.07 (0.19)	N/A
			GRN	Late	25	61.6 (6.7)	48	0.16 (0.51)	N/A
				Affected	24	61.7 (10.6)	42	8.60 (6.33)	1.7 (5.5)
			MAPT	Early	29	37.4 (8.1)	35	0.29 (0.66)	N/A
0				Late	10	52.1 (11.3)	50	0.05 (0.16)	N/A
				Affected	10	58.6 (6.8)	50	7.80 (5.64)	5.8 (6.2)

GENETIC FTD INITIATIVE

Figure 1. Association of GM atrophy with autonomic symptom score by mutation type. Statistical parametric maps are thresholded at *p*<0.001 uncorrected. Images are shown with the right hemisphere on the right of the image for the coronal and axial sections, for sagittal sections R=right sided, L=left sided. Blank boxes indicate symptoms that displayed no significant associations with GM atrophy.

Table 1. Patient demographics. Early=Early Presymptomatic (>5 years to symptom onset), Late=Late Presymptomatic (<5 years to symptom onset), Affected=Symptomatic. Bracketed values represent standard deviations.

	Disease stage	BP		Gastro		Thermo		Urinai	ry	Pain		
		Mean (SD)	p-value	Mean (SD)	p-value	Mean (SD)	p-value	Mean (SD)	p-value	Mean (SD)	p-value	
Control		0.03 (0.14)		0.05 (0.24)		0.05 (0.26)		0.03 (0.16)		0.00 (0.04)		
C9orf72	Early	0.05 (0.20)	0.637	0.03 (0.15)	0.834	0.03 (0.18)	0.482	0.02 (0.13)	0.259	0.02 (0.13)	0.422	
	Late	0.00 (0.00)	0.450	0.00 (0.00)	0.425	0.00 (0.00)	0.425	0.00 (0.00)	0.450	0.20 (0.06)*	0.007	
	Affected	0.16 (0.43)	0.076	0.27 (0.56)*	<0.001	0.48 (0.84)*	<0.001	0.74 (0.99)*	<0.001	0.40 (0.71)*	<0.001	
GRN	Early	0.02 (0.10)	0.668	0.02 (0.10)	0.543	0.01 (0.08)	0.280	0.04 (0.24)	0.684	0.00 (0.00)	0.509	
	Late	0.00 (0.00)	0.255	0.00 (0.00)	0.230	0.00 (0.00)	0.230	0.02 (0.10)	0.821	0.00 (0.00)	0.710	
	Affected	0.04 (0.20)	0.891	0.12 (0.48)	0.164	0.27 (0.68)*	0.035	0.48 (0.71)*	< 0.001	0.04 (0.20)	0.089	
MAPT	Early	0.09 (0.27)	0.229	0.03 (0.19)	0.657	0.03 (0.19)	0.651	0.00 (0.00)	0.221	0.03 (0.19)	0.134	
	Late	0.00 (0.00)	0.471	0.00 (0.00)	0.446	0.00 (0.00)	0.447	0.00 (0.00)	0.471	0.00 (0.00)	0.814	
	Affected	0.05 (0.16)	0.498	0.05 (0.16)	0.570	0.15 (0.34)	0.069	0.15 (0.34)*	0.045	0.10 (0.32)*	0.004	
<i>Table 2.</i> Mean autonomic symptom score of mutation groups in comparison to controls. BP=blood pressure, * <i>p</i> -values <0.05.												

DISCUSSION

Here we show that symptomatic individuals with FTD display significant autonomic problems, especially individuals with *C9orf72* mutations. *C9orf72* carriers displayed presymptomatic altered pain perception, associated with bilateral atrophy in the posterior thalamus. Afferents conveying pain information relay via postero-lateral thalamic nuclei to the somatosensory cortex⁵, indicating an early disruption of central somatosensory and homeostatic signal processing in *C9orf72*. Given the diverse presentation of *C9orf72*-associated disease, we have shown that autonomic problems are prominent and early, and may be underpinned by the disruption of a cortico-thalamic network.

RESULTS

Autonomic symptoms were frequently reported in symptomatic individuals with FTD (Table 2) with C9orf72 carriers being significantly more affected than controls by all symptoms (p<0.001) except for blood pressure changes. From the presymptomatic groups, only the late presymptomatic C9orf72 carrier group showed a significant difference from controls, in altered pain perception

(p=0.007).

Pain symptoms in *C9orf72* were associated with atrophy in the posterior thalamus and ventral striatum bilaterally, as well as the right amygdala, right temporal pole, right orbitofrontal cortex (OFC), and right cerebellum (Figure 1). Autonomic symptoms across all mutations were generally associated with a pattern of atrophy involving the OFC, ventral striatum, temporal lobe, and the cerebellum.

Autonomic problems were also frequently reported in people with *GRN* and *MAPT* mutations and associated with a network of cortical and subcortical regions. The findings suggest that the presence of autonomic problems is an important issue in FTD, with wider implications for the clinical management of symptoms.

GENFI DE CENTIA CENTRE DEMENTIA CENTRE DEMENTIA

REFERENCES: ¹Ahmed, R. et al. (2015) Journal of Neurology, Neurosurgery and Psychiatry, 86(9), pp.1048–1049. ²Diehl-Schmid, J. et al., (2007) Fortschritte der Neurologie-Psychiatrie, 75(12), pp.708-713. ³Fletcher, P. D. et al. (2015) Brain, 138(11), pp. 3360–3372. ⁴Seeley, W.W. (2010) Brain Structure and Function, 214(5-6), pp.465-475. ⁵Craig, A.D. (2002) Nature reviews neuroscience, 3(8), p.655.

ACKNOWLEDGMENTS: The Dementia Research Centre is supported by Alzheimer's Research UK, Brain Research Trust, and The Wolfson Foundation. This work was supported by the NIHR Queen Square Dementia Biomedical Research Unit, the NIHR UCL/H Biomedical Research Centre and the Leonard Wolfson Experimental Neurology Centre (LWENC) Clinical Research Facility as well as an Alzheimer's Society grant (AS-PG-16-007). JDR is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH).