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1 	 | 	 INTRODUCTION

Gliomas	are	primary	brain	malignancies	that	are	derived	
from	glial	or	precursor	cells,	accounting	for	approximately	
80.8%	 of	 malignant	 brain	 tumors,	 and	 approximately	
25.1%	of	all	central	nervous	system	tumors.1	Among	the	
deadliest	 forms	 of	 brain	 cancers	 in	 adults,	 glioblastoma	
(GBM)	is	the	most	aggressive	diffuse	glioma	with	a	short	
median	survival	of	14.4 months	after	standard	therapy.1–	3	

The	therapeutic	options	available	to	patients	with	gliomas	
include	 surgery,	 radiotherapy	 (RT),	 and	 chemotherapy;	
however,	these	treatments	are	not	as	effective	as	expected	
considering	 the	 anatomical	 position	 and	 self-	renewing	
tumor	 stem	 cells	 of	 gliomas.4–	6	 For	 instance,	 chemo-
therapy	is	 insufficient	after	penetrating	the	blood–	brain-	
barrier	(BBB).	Moreover,	self-	renewing	tumor	stem	cells	of	
gliomas	lead	to	a	poor	prognosis	after	surgery.	Thus,	thera-
peutic	options	for	those	patients	are	limited	currently.
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Abstract
Gliomas	refer	to	a	group	of	complicated	human	brain	tumors	with	a	low	5-	year	
survival	 rate	 and	 limited	 therapeutic	 options.	 Extremely	 low-	frequency	 pulsed	
electromagnetic	field	(ELF-	PEMF)	is	a	specific	magnetic	field	featuring	almost	no	
side	effects.	However,	the	application	of	ELF-	PEMF	in	the	treatment	of	gliomas	is	
rare.	This	review	summarizes	five	significant	underlying	mechanisms	including	
calcium	 ions,	 autophagy,	 apoptosis,	 angiogenesis,	 and	 reactive	 oxygen	 species,	
and	applications	of	ELF-	PEMF	in	glioma	treatment	from	a	clinical	practice	per-
spective.	In	addition,	the	prospects	of	ELF-	PEMF	in	combination	with	conven-
tional	therapy	for	the	treatment	of	gliomas	are	reviewed.	This	review	benefits	any	
specialists,	especially	oncologists,	 interested	in	this	new	therapy	because	it	can	
help	treat	patients	with	gliomas	properly.
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Over	 the	 past	 decades,	 researchers	 have	 explored	
new	 therapies	 for	 glioma,	 such	 as	 tumor-	treating	 fields	
(TTFields)7;	 the	 application	 of	 magnetic	 field	 (MF)	 and	
electric	 field	 (EF)	has	become	the	 focus	of	oncology.	EF	
is	 widely	 used	 in	 TTFields	 and	 plays	 a	 therapeutic	 role	
in	 GBM	 by	 influencing	 tumor	 cell	 mitosis.8,9	 However,	
the	mechanisms	and	therapeutic	function	of	MF	remain	
ambiguous.

Magnetic	field	and	EF	are	closely	related	according	to	
the	law	of	electromagnetic	induction.	Faraday's	law	states	
that	the	time	rate	of	change	of	an	MF	generates	a	poten-
tial	difference	(or	electric	potential)	in	the	space	wherever	
the	MF	changes,	which	means	MF	of	time-	varying	char-
acters	could	generate	an	EF	and	induce	internal	currents	
in	brain	tissues.	That	is	to	say,	MF	and	EF	might	have	a	
similar	mechanism	such	as	generating	internal	currents.10

Charged	particles	exist	among	DNA,	proteins	and	cells,	
for	 example,	 DNA	 contains	 phosphate	 residues	 that	 are	
negatively	charged,	and	K+	 is	 the	dominant	positive	 ion	
in	cells.	Hence,	applying	an	MF	externally	could	affect	in-
ternal	particles,	and	may	thereby	alter	biological	processes	
in	tumor	cells.	In	view	of	the	high	penetrability	of	MF	in	
high-	resistance	structures	like	the	skull	and	its	association	
with	EF,10,11	some	researchers	are	keen	to	know	the	thera-
peutic	potential	of	MF	in	gliomas.

Electromagnetic	 field	 (EMF)	 is	 an	 MF	 generated	 by	
electric	currents,	it	has	been	also	regarded	as	a	justifiable	
part	of	physiotherapy	in	tumor	treatment,	of	which	their	
clinical	use	has	been	of	wide	concern	for	the	provision	of	a	
noninvasive,	safe,	and	complementary	method	for	glioma	
treatment11	In	contrast	to	electrical	stimuli	that	may	lead	
to	mild-	to-	moderate	dermatitis	due	to	dermal	exposure	to	
electrode	 patches	 or	 allergic	 etiology,8	 EMF	 could	 avoid	
such	 side	 effects	 by	 using	 coils	 that	 are	 not	 attached	 to	
body.12

Electromagnetic	 field	 is	 subdivided	 into	 pulsed	 EMF	
(PEMF)	and	continuous	EMF,	with	the	former	being	more	
advantageous	than	the	latter	because	compared	with	con-
tinuous	EMF,	PEMF	produces	signals	 that	could	be	per-
ceived	by	brain	more	easily	and	delivers	a	 large	amount	
of	 energy	 in	 short	 bursts	 at	 a	 lower	 level	 of	 average	 en-
ergy.13,14	 Existing	 studies	 have	 revealed	 the	 potential	 of	
PEMF	 in	 treating	 depression,15,16	 osteoarthritis,17	 rheu-
matoid	 arthritis,18	 repairing	 tendons,19	 and	 preventing	
ulcer	 formation	 in	 diabetes	 patients.20	 Moreover,	 PEMF	
has	been	used	to	treat	breast	cancer21	and	melanoma.22

However,	 PEMF	 has	 limited	 clinical	 use	 because	 its	
optimal	 parameters,	 such	 as	 frequencies,	 intensities,	 ex-
posure	 times	 even	 waveforms,	 remain	 uncertain.	 For	
example,	 the	 frequency	 of	 PEMF	 is	 associated	 with	 its	
tissue	penetrability	and	consequent	biological	effects,	and	
PEMF	has	been	found	to	be	effective	when	its	frequency	
ranges	from	0.16	to	480	Hz	and	the	intensity	ranges	from	

0.6	to	250	mT.23	In	this	review,	we	focus	on	extremely	low-	
frequency	 PEMF(ELF-	PEMF),	 a	 subdivision	 of	 PEMF	
with	frequencies	between	0	and	300	Hz,24	which	has	the	
potential	to	penetrate	the	skull10,25	and	inhibit	the	growth	
of	glioma	cell	lines.26,27

Electromagnetic	field	at	high	frequencies,	such	as	radio	
frequencies	 EMF	 (frequencies	 at	 3  kHz–	300	MHz),28,29	
generates	 thermal	damage,	whereas	other	 types	of	EMF	
including	ELF-	PEMF	are	generally	believed	to	cause	neg-
ligible	 thermal	 damage,30–	32	 suggesting	 that	 the	 mech-
anisms	 through	 which	 ELF-	PEMF	 affects	 tumor	 cells	
should	be	further	investigated.

In	 this	 review,	 we	 summarize	 the	 studies	 regarding	
the	mechanisms	of	ELF-	PEMF	and	review	 the	potential	
synergic	 therapeutic	 effects	 of	 ELF-	PEMF	 on	 glioma,	
hoping	to	obtain	an	improved	understanding	of	its	under-
lying	mechanisms	and	provide	new	insights	 into	glioma	
treatment.

2 	 | 	 CALCIUM IONS

The	 relationship	 between	 Ca2+	 and	 gliomas	 began	 to	
draw	attention33	when	T-	type	channels	were	found	to	be	
expressed	in	the	proliferative	stage	of	the	cell	cycle34	and	
that	 the	overexpression	of	T-	type	channels	could	 induce	
the	proliferation	of	glioma	cells.35	Blocking	T-	type	chan-
nels	Cav3.2,	a	target	in	gliomas,	could	reduce	the	survival	
rate	 of	 GBM	 cells	 and	 their	 resistance	 to	 temozolomide	
(TMZ).36	Plus,	calcium-	activated	potassium	channels	are	
found	to	be	overexpressed	in	gliomas	and	are	directly	re-
lated	to	tumor	growth	and	invasiveness.37	However,	ELF-	
PEMF	 appears	 to	 act	 differently	 because	 it	 activates	 the	
T-	type	 calcium	 ion	 pathway,	 and	 has	 an	 impact	 on	 the	
membrane.	During	this	process,	Ca2+	ions	are	observed	to	
move	from	the	outside	to	the	inside	of	cells	via	Ca2+	chan-
nels.	The	increase	in	calcium	concentration	under	expo-
sure	to	different	ELF-	PEMFs	stems	the	growth	of	tumor	
cells,22,27,38	which	may	involve	different	downstream	sign-
aling	pathways.

Buckner22	 exposed	 various	 cancer	 cell	 lines	 or	 nor-
mal	cells	to	ELF-	PEMF	(25–	6 Hz,	2–	10 μT)	at	1 h/day	for	
5	days	as	listed	in	Table 1.	The	proliferation	of	tumor	cells	
in	the	treatment	group	was	suppressed	by	30%–	50%	com-
pared	 with	 that	 of	 the	 tumor	 cells	 in	 the	 control	 group.	
Interestingly,	 non-	malignant	 cell	 lines	 were	 unaffected.	
The	difference	was	attributed	 to	 the	 inappropriate	 intra-
cellular	levels	of	calcium	resulting	from	the	aberrant	ex-
pression	of	T-	type	Ca2+	channels	in	many	malignant	cell	
lines.39	They	proved	that	a	specific	ELF-	PEMF	affected	T-	
type	channels	related	to	Ca2+	influx.	In	addition,	the	ELF-	
PEMF	 pattern22	 reached	 similar	 results	 in	 mice	 injected	
with	melanoma	cells.
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Crocetti38	 corroborated	 a	 hypothesis	 that	 DNA	 breaks	
in	 tumor	 cells	 are	 related	 to	 the	 elevation	 of	 intracellular	
Ca2+.	Malignant	cell	lines	and	human	non-	tumorigenic	cells	
(Table 1)	were	exposed	to	ELF-	PEMF	(20–	50	Hz,	2–	5 mT),	
for	 30–	90	min/day	 for	 up	 to	 3	days.	 Malignant	 cells	 were	
vulnerable	 to	 ELF-	PEMF	 (20	Hz,	 3  mT),	 and	 this	 pattern	
offered	mild	protection	to	non-	tumorigenic	cells	simultane-
ously.	DNA	break-	ups	prior	to	cell	death	and	downstream	of	
calcium-	stimulated	caspase	activation	were	discovered,	and	
the	 changes	 detected	 in	 mitochondrial	 metabolism	 were	
found	to	be	related	to	changes	in	calcium	concentration.

Overall,	ELF-	PEMF	showed	the	potential	to	affect	Ca2+	
in	 tumors,22,27,38	as	Ca2+	pathway	has	been	proven	 to	be	
related	to	glioma	growth	and	invasiveness.34,35,37	The	role	
of	Ca2+	ions	in	ELF-	PEMF	might	be	another	topic	worth	
researching	in	studies	on	gliomas.

3 	 | 	 AUTOPHAGY

Autophagy,	a	degradative	process,	occurs	in	most	cells	at	
low	 basal	 levels,	 it	 maintains	 homeostasis,	 and	 its	 regu-
lation	 is	 closely	 related	 to	 tumorigenesis	 pathways.40,41	
Its	 role	 in	 cancer	 treatment	 remains	 controversial.42	
Meanwhile,	studies	on	its	functional	relevance	in	the	for-
mation	and	progression	of	gliomas	have	 focused	mainly	
on	GBM,	a	type	of	glioma	and	the	most	aggressive	primary	
brain	tumor.

Autophagy	might	be	 involved	 in	both	promotion	and	
inhibition	 of	 GBM	 progression.	 It	 has	 been	 observed	 to	
participate	in	the	mediation	of	cell	death	in	GBM	by	on-
colytic	 adenovirus43	 and	 rapamycin,44	 and	 its	 activation	
potentially	impairs	the	migration	and	invasion	of	GBM.45	
However,	available	 researches	also	 indicate	 that	autoph-
agy	might	impair	the	efficacy	of	chemotherapy,46	and	in-
hibiting	autophagy	stems	the	development	of	and	induces	
senescence	of	GBM.47

Marchesi48	illustrated	that	autophagy	in	human	neuro-
blastoma	cell	lines	SH-	SY5Y,	SK-	N-	SH	and	GBM-	derived	
cell	 lines	 U87-	MG	 and	 T98G	 affected	 gene	 expression	
that	 might	 be	 induced	 by	 ELF-	PEMF	 (75	Hz,	 2  mT)	 via	
the	modulation	of	specific	regulatory	miRNA	sequences.	
A	previous	study48	indicated	that	ELF-	PEMF	with	a	spe-
cific	pattern	could	decrease	miR-	3a	 levels	 in	GBM	cells.	
Moreover,	miR-	3a	could	target	BECN1,	a	Beclin1	coding	
gene,	to	repress	Beclin1	expression.49	Beclin1	is	a	positive	
regulator	 of	 autophagy	 and	 functions	 as	 a	 tumor	 sup-
pressor	in	GBM,50,51	which	might	be	associated	with	the	
poor	prognosis	of	patients	with	GBM.52	This	means	that	
specific	ELF-	PEMF	can	cause	tumor	death	by	activating	
autophagy.

Interestingly,	protective	effects	were	observed	in	human	
neuroblastoma	cells,48	which	are	known	as	neuronal-	like	

cells.53	The	ELF-	PEMF	pattern	that	induced	the	autoph-
agy	of	tumor	cells	might	protect	neurons	simultaneously.

It	 is	of	great	value	 to	 learn	 the	complex	role	of	auto-
phagy	in	TTFields	which	may	help	us	study	the	effects	of	
ELF-	PEMF	 on	 gliomas	 in	 terms	 of	 autophagy.	 Blocking	
autophagy	 attenuated	 the	 tumor	 cell	 death	 induced	 by	
TTFields,54	 while	 another	 study	 reported	 that	 the	 up-
regulation	 of	 autophagy	 in	 a	 certain	 degree	 response	 to	
TTFields	 could	 increase	 the	 resistance	 of	 tumor	 cells.55	
More	 experiments	 are	 needed	 to	 learn	 how	 ELF-	PEMF	
applications	affect	autophagy	in	gliomas.

4 	 | 	 APOPTOSIS

ELF-	PEMF	 is	 predicted	 to	 intrigue	 apoptosis	 in	 cancer	
cells.56,57	 Cyclin-	D1,	 P53,	 and	 caspase-	3	 are	 thought	 to	
play	a	pivotal	role	in	pathways	concerning	apoptosis.58–	62	
This	 role	 may	 account	 for	 the	 effects	 of	 ELF-	PEMFs	 on	
gliomas.

Akbarnejad26	attempted	to	explore	how	ELF-	PEMF	in-
fluences	 GBM,	 a	 malignant	 and	 aggressive	 brain	 tumor.	
The	 author	 exposed	 the	 human	 GBM	 U87	 cell	 line	 to	 4	
ELF-	PEMF	patterns	with	different	frequencies	and	inten-
sities.	 The	 overexpression	 of	 cleaved	 caspase-	3	 and	 P53	
proteins	after	exposure	to	ELF-	PEMF	(100	Hz,	10 mT)	or	
ELF-	PEMF	 (10  Hz,	 5  mT)	 demonstrated	 that	 a	 specific	
ELF-	PEMF	pattern	could	promote	differentiation	and	in-
duce	apoptosis	 in	U87	cells	by	affecting	the	cell	cycle	or	
cell	division.

Akbarnejad	 further	 studied	 the	 relationship	 between	
PEMF	(100	Hz,	10	mT)	and	TMZ63	and	proved	that	PEMF	
induced	the	overexpression	of	caspase-	3	directly	and	P53	
indirectly,	 with	 both	 effects	 correlated	 with	 apoptosis	
induction.58–	62	 Furthermore,	 they	 observed	 apoptosis-	
related	morphological	changes.	In	this	context,	ELF-	PEMF	
enhanced	 the	 anti-	tumor	 effects	 of	 adenosine	 receptors	
(ARs)	that	might	be	related	to	P53	and	caspase-	3.64	These	
findings	 indicated	 that	 ELF-	PEMF	 could	 lead	 to	 tumor	
suppression	by	influencing	apoptosis.

5 	 | 	 ANGIOGENESIS

In	 1971,	 Folkman	 reported	 that	 angiogenesis	 is	 related	
to	 tumor	 growth,	 and	 described	 the	 prospects	 of	 anti-	
angiogenic	 cancer	 treatment	 for	 the	 first	 time.65	 Drugs	
for	 angiogenesis	 like	 bevacizumab	 for	 glioma	 treatment	
have	undergone	clinical	trials.	Although	overall	survival	
(OS)	of	patients	with	GBM	was	not	prolonged	in	the	tri-
als,66	epidemiological	data	implied	that	OS	was	prolonged	
because	 of	 bevacizumab's	 effects,67	 indicating	 that	 anti-	
angiogenic	 treatment	 has	 the	 potential	 to	 treat	 tumors	
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including	GBM.	ELF-	PEMF	 is	also	 thought	 to	have	vas-
cular	effects.23

A	 study68	 assessed	 the	 effects	 of	 ELF-	PEMF(60	Hz,	
10  min/day	 with	 0,	 10,	 15,	 or	 20	mT)	 on	 C3H/HeJ	 mice	
implanted	 with	 murine	 16/C	 mammary	 adenocarci-
noma	 cells,	 and	 found	 that	 ELF-	PEMF	 could	 lead	 to	 a	
reduction	in	the	extent	of	angiogenesis	along	with	tumor	
necrosis.	 Another	 work23	 used	 a	 device	 providing	 ELF-	
PEMF(120	Hz,	 10–	20	mT)	 to	 mice	 implanted	 with	 the	
same	cells	and	determined	 the	vascularization,	necrosis,	
and	 viable	 area	 of	 tumors.	 ELF-	PEMF	 was	 proposed	 to	
be	 capable	 of	 suppressing	 tumor	 angiogenesis,	 which	 is	
widely	known	as	an	 important	 factor	 in	 tumor	develop-
ment.69	That	 ELF-	PEMF	 could	 lead	 to	 tumor	 regression	
remains	 poorly	 documented,	 but	 this	 experiment	 veri-
fied	 its	potential	 to	 increase	 the	doubling	 time	of	 tumor	
growth.	Therefore,	ELF-	PEMF	could	retard	tumor	growth.

6 	 | 	 REACTIVE OXYGEN SPECIES

Reactive	oxygen	species	(ROS),	including	oxygen	anions;	
superoxide;	hydroxyl	radicals;	and	peroxides	such	as	hy-
drogen	peroxide	(H2O2),	have	been	regarded	to	be	crucial	
in	cancers,	including	gliomas.70	ROS	are	thought	to	con-
tribute	 to	 the	 occurrence	 and	 development	 of	 cancer	 by	
inflicting	DNA	damage.71	Given	that	cancer	cells	tend	to	
be	 highly	 sensitive	 to	 elevated	 ROS,72	 the	 accumulation	
of	ROS	to	a	certain	extent	can	be	cytotoxic	to	cancer	cells	
without	 affecting	 normal	 cells,	 thus	 enabling	 the	 use	 of	
ROS	in	selective	anti-	cancer	therapy.73,74

Akbarnejad63	 carried	 out	 an	 experiment	 to	 explore	 the	
effect	of	ELF-	PEMF	(100	Hz,	10 mT)	exposure	with	100	μM	
TMZ	on	U87	and	T98G	cells.	In	the	experiment,	the	heme	
oxygenase-	1	gene	(HO-	1),	which	generates	oxidative	cellular	
stress	via	ROS	production,	was	found	to	be	overexpressed,75	
and	cell	viability	decreased	as	ROS	production	increased.

A	 study21	 observed	 that	 actin	 affected	 by	 ELF-	PEMF	
led	to	morphological	changes	in	T47D	human	breast	can-
cer	cells	while	apoptosis	was	not	observed.	These	effects	
might	be	explained	by	 the	parameters	of	ELF-	PEMF	 in-
cluding	 frequency	 and	 duration.	The	 study	 showed	 that	
the	effects	of	ELF-	PEMF	on	cellular	growth	and	ROS	gen-
eration	depended	on	time	and	frequency.

A	system	with	ELF-	PEMF(max.	35	μT)	was	employed	in	
multiple	sclerosis	with	fatigue76	and	was	found	to	improve	
organ	blood	flow.77	In	another	research,78	the	system	was	
applied	to	cells	from	different	solid	tumors	(Table 1).	The	
results	illustrated	that	ELF-	PEMF	exerted	some	effects	on	
glycolysis	and	TCA	cycle	pathways	and	increased	ROS	lev-
els.	The	researchers	performed	a	single	ELF-	PEMF	treat-
ment	followed	by	RT	at	short	intervals	and	observed	the	
potential	 of	 ELF-	PEMF	 to	 mediate	 radiosensitization	 by	

increasing	the	levels	of	ROS	and	the	subsequent	genera-
tion	of	DNA	damage	to	explore	the	therapeutic	 implica-
tions	of	these	changes.

Two	experiments79,80	studied	the	effects	of	ELF-	PEMF	
(75	Hz,	2 mT)	exposure	on	the	stress	and	oxidative	path-
ways	of	human	neuroblastoma	SH-	SY5Y	cells,	neuronal-	
like	 cells,53	 which	 are	 often	 used	 to	 determine	 cellular	
responses	on	redox	basis.81	They	observed	that	ELF-	PEMF	
could	 exert	 a	 cytoprotective	 effect	 by	 altering	 redox	 sta-
tus,	 such	 as	 by	 increasing	 the	 free	 radical	 scavenger	 su-
peroxide	 dismutase-	1	 enzyme	 (SOD-	1)	 and	 decreasing	
mitochondrial	 activity.	 Furthermore,	 a	 growing	 body	 of	
evidence	shows	that	increasing	SOD	may	act	as	a	tumor	
suppressor.82	 A	 further	 study	 indicated	 that	 ELF-	PEMF	
treatment	 could	 increase	 the	 activity	 of	 Mn-	dependent	
superoxide	dismutase	(MnSOD)	which	is	an	essential	an-
tioxidant	enzyme	that	is	believed	to	reduce	ROS	levels.83	
They	summarized	that	exposure	to	ELF-	PEMF	could	act	
as	a	catalyst	for	the	major	antioxidant	enzymatic	defense.

All	in	all,	ELF-	PEMF	is	likely	to	act	on	the	redox	status	
of	cells.	Some	experiments	showed	the	possibility	of	its	pro-
tective	effect	on	normal	neurons.	Despite	different	modes,	
ELF-	PEMF	has	promising	prospects	in	terms	of	clinical	use.

7 	 | 	 OTHERS

7.1	 |	 Bio- energy transport

Pang84	 made	 an	 attempt	 to	 discover	 the	 mechanism	 of	
energy	transport	 in	protein	molecules	under	EMF.	After	
analyzing	 Davydov's	 theory	 on	 energy	 transport,	 they	
changed	 the	Hamiltonian	and	 the	wave	 function	of	 sys-
tems	simultaneously	and	built	a	Pang's	soliton	model	on	
the	basis	of	Davydov's	model.	They	confirmed	that	Pang's	
soliton	could	transport	hundreds	of	amino	acid	residues	
and	 that	 it	 varied	 with	 the	 external	 EMF.	 That	 is,	 EMF	
could	 target	 amino	 acid	 residues	 in	 protein	 molecules	
and	 influence	 soliton	 energy	 transport,	 thus	 affecting	
bio-	energy.	In	the	article,	the	term	“bio-	energy	transport”	
indicates	bio-	energy	flows	along	protein	molecules,	a	pro-
cess	 that	 sustains	 life	 activities.	 Physical	 models84	 have	
been	employed	to	explain	this	biological	process.	Such	an	
approach	 may	 be	 a	 new	 trend	 of	 studies	 on	 ELF-	PEMF	
mechanisms.	 In	 addition,	 the	 variation	 in	 the	 biological	
effects	of	EMFs	with	strength	and	direction	points	out	a	
feasible	direction	for	follow-	up	research.

7.2	 |	 Epigenetic modulation

ELF-	PEMF	could	mediate	the	level	of	miR-	30a	to	affect	
autophagy	 by	 targeting	 specific	 genes.48	 In	 2016,	 Pasi85	
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used	the	same	ELF-	PEMF	(75	Hz,	2 mT)	on	the	chemo-
		 and	 radioresistant	 human	 GBM	 cell	 line	 T98G.	 Their	
results	showed	that	ELF-	PEMF	could	decrease	miR-	421,	
miR-	21,	and	miR-	17	levels,	which	were	found	to	be	over-
expressed	in	tumor	cells	and	to	lead	to	apoptosis	resist-
ance	in	an	epigenetic	manner.86–	89	They	also	showed	that	
a	combination	of	TMZ	and	ELF-	PEMF	could	decelerate	
tumor	proliferation	epigenetically.85

7.3	 |	 Adenosine receptors

Recent	 studies	 were	 conducted	 to	 examine	 the	 in-
fluence	 of	 ARs	 changed	 by	 ELF-	PEMF.	 ARs,	 which	
are	receptors	in	the	G-	protein	signaling	pathway,	are	
considered	to	have	an	effect	on	cell	death	and	prolif-
eration,	and	they	are	classified	into	A1,	A2A,	A2B,	and	
A3	 ARs.	 In	 gliomas,	 A1ARs	 are	 suggested	 to	 impair	
tumor	 cell	 growth	 and	 play	 an	 anti-	tumor	 role90,91	
and	may	be	associated	with	apoptosis	via	caspase-	3.91	
A2AARs	have	been	found	in	many	tumor	cells	includ-
ing	GBM	cells.92	Through	the	underlying	influence	of	
ARs	 on	 gliomas	 is	 poorly	 understood,	 the	 activation	
of	A2AARs	may	offer	considerable	protection	to	neu-
rons.93,94	 A2BARs	 are	 found	 to	 contribute	 to	 cancer	
cell	 proliferation,95	 while	 the	 changes	 in	 ARs	 under	
ELF-	PEMF	 require	 further	 study.	 A3ARs	 are	 consid-
ered	to	be	associated	with	the	cell	cycle	and	are	highly	
expressed	 in	 tumor	 cells.96	 The	 activation	 levels	 of	
A3ARs	have	been	thought	to	be	related	to	their	effects	
on	apoptosis.

In	2011,	Varani97	performed	saturation	binding	experi-
ments	and	mRNA	expression	analysis	to	identify	the	influ-
ence	of	ELF-	PEMF	(75	Hz,	1.5 mT)	exposure	on	A2AARs	
in	 the	 rat	 brain	 and	 cortex	 membranes.	 The	 density	 of	
A2AARs	 in	 cerebral	 cortex	 membranes	 was	 upregulated	
after	2 h	of	exposure	to	ELF-	PEMF,	suggesting	that	ELF-	
PEMF	might	have	the	potential	to	protect	neurons	by	af-
fecting	A2AARs.

In	 another	 study,64	 human	 GBM	 cell	 lines	 (U87MG)	
were	exposed	to	ELF-	PEMF	(75	Hz,	1.5 mT)	with	rat	cor-
tical	neurons	as	a	comparison.	The	findings	showed	that	
ELF-	PEMF	 exposure	 could	 enhance	 the	 expression	 and	
density	 of	 A3ARs.	 The	 study64	 also	 reported	 that	 ELF-	
PEMF	 worked	 in	 sync	 with	 2-	chloro-	N6-	(3-	iodobenzyl)	
adenosine-	5′-	N-	methyl-	uronamide	 (Cl-	IB-	MECA),	 an	
A3ARs	agonist	that	could	release	the	inhibition	of	tumor	
growth	by	the	NF-	KB	pathway	to	lead	to	tumor	cell	apop-
tosis,98	and	finally	 induced	G1	cell	cycle	arrest	 in	 tumor	
cells.64,99

In	 conclusion,	 ELF-	PEMF	 influenced	 ARs	 and	 aug-
mented	their	anti-	tumor	effects.

8 	 | 	 COMBINATION OF PEMF AND 
RADIO/CHEMOTHERAPY

The	 application	 of	 ELF-	PEMF	 in	 gliomas	 is	 drawing	 at-
tention	after	the	application	of	TTFields.

A	 review	 in	 2013100	 intriguingly	 suggested	 that	 adju-
vant	 EMF	 treatment	 may	 increase	 RT	 effectiveness,	 im-
plying	 that	 different	 cell	 lines	 and/or	 species	 respond	
variably	to	EMF	and/or	ELF-	MF,	but	did	not	specify	ELF-	
PEMF.100	Thus,	whether	ELF-	PEMF	in	combination	with	
RT	could	be	applied	to	cancer	treatment,	especially	glioma	
treatment,	requires	further	evaluation.

The	 potential	 benefits	 of	 adjuvant	 EMF	 treatment	
during	 RT	 in	 several	 cell	 lines	 and	 models,	 including	
hepatoma-	implanted	 mice101	 and	 the	 human	 lung	 car-
cinoma	 cell	 line	 A549,78	 have	 also	 been	 identified.	 One	
study78	explored	the	radiation-	related	mechanisms	under	
ELF-	PEMF	exposure	and	proposed	that	ELF-	PEMF	could	
mediate	radiosensitization,	which	is	associated	with	can-
cer	cell	resistance	to	anticancer	drugs,	by	affecting	ROS.73

An	exploratory	study102	in	2019	attempted	to	combine	
RT	and	ELF-	PEMF,	and	exposed	epithelial	breast	cancer	
cell	 lines	 to	 ELF-	PEMF	 (50	Hz,	 10  mT)	 then	 to	 ionizing	
radiation.	The	evaluation	of	cell	cycle	progression	and	free	
radical	production	revealed	 that	co-	treatment	with	ELF-	
PEMF	before	RT	was	 likely	 to	enhance	the	effectiveness	
of	breast	cancer	therapy.	The	combination	therapy	of	gli-
omas	needs	further	study	which	could	shed	light	on	the	
new	perspectives	for	glioma	treatment.

Given	that	drug	delivery	could	be	promoted	by	an	exter-
nal	trigger	such	as	MF,103	ELF-	PEMF	application	is	likely	
to	enhance	chemotherapy.	A	specific	ELF-	PEMF	pattern	
has	been	proposed	to	be	capable	of	enhancing	breast	can-
cer	 cell	 therapy	 by	 normalizing	 tissue	 microcirculation	
effectively.21	This	mechanism	might	also	work	in	gliomas.

After	 the	 effects	 of	 ELF-	PEMF	 on	 U87	 cells	 were	
identified,26	 an	 experiment	 employed	 the	 same	 device	
to	explore	the	effect	of	ELF-	PEMF	(100	Hz,	10 mT)	ex-
posure	with	100	μM	TMZ	on	U87	and	T98G	cells.63	As	
mentioned	 in	 the	 context,	 the	 expression	 of	 P53,	 Bax,	
and	 Caspase-	3	 increased,	 whereas	 that	 of	 Bcl-	2	 and	
Cyclin-	D1	 decreased,	 and	 both	 of	 these	 effects	 pro-
moted	 the	 apoptosis	 of	 U87	 and	 T98G	 cells	 together.	
Apoptosis-	related	morphological	changes	were	also	ob-
served.	ELF-	PEMF	(100	Hz,	10 mT)	exposure	was	found	
to	strengthen	the	effects	of	TMZ	in	inducing	U87	cells	to	
die	 and	 differentiate,27	 thus	 enabling	 the	 combination	
of	ELF-	PEMF	with	TMZ	in	GBM	treatment.	Therefore,	
ELF-	PEMF	could	enhance	TMZ-	induced	apoptosis	even	
when	 the	 cell	 line	 is	 TMZ-	resistant,	 indicating	 that	 a	
combination	 of	 ELF-	PEMF	 and	 low	 TMZ	 doses	 could	
achieve	the	same	anticancer	efficacy	as	high	TMZ	doses	
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while	 reducing	 side	 effects	 of	 chemotherapy.	 The	 effi-
cacy	 of	 the	 co-	treatment	 was	 also	 corroborated	 in	 the	
experiment,	as	 tumor	cell	viability	decreased	evidently	
after	the	exposure.

Zhang104	 and	 Ding105	 explored	 BBB	 permeability	 or	
brain	 microvascular	 permeability	 changes	 induced	 by	
ELF-	PEMF.	 Despite	 its	 mild	 vascular	 injury,	 changes	 in	
vascular	permeability	may	allow	chemotherapy	drugs	 to	
cross	 BBB	 and	 act	 on	 the	 brain.	 If	 combined	 with	 che-
motherapy	 and	 extracorporeal	 RT,	 ELF-	PEMF	 may	 help	
reduce	drug	doses	and	 improve	efficacy.	This	effect	pro-
vides	new	insights	into	and	lays	the	groundwork	for	exper-
iments	on	intracranial	tumor	treatment.

9 	 | 	 DISCUSSION

As	 considerable	 achievements	 have	 been	 recorded	 for	
various	physical	therapies,	MF	therapy,	a	potential	ad-
juvant	 therapy,	has	become	widely	known,	because	of	
its	defining	features,	such	as	painlessness,	invasiveness,	
and	 the	 potential	 for	 repeated	 application.	 Given	 that	
MF	can	kill	cancer	cells	selectively	by	 influencing	cell	
cycle	stages,38	its	prospects	for	the	treatment	of	intrac-
ranial	 tumors	 like	 gliomas	 are	 promising.	 Several	 re-
searchers	have	explored	the	mechanisms	of	ELF-	PEMF,	
in	 which	 glioma	 cell	 lines	 are	 influenced	 through	 cal-
cium	 ions,	 autophagy,	 and	 apoptosis,	 and	 suggested	
that	ELF-	PEMF	is	likely	to	augment	the	effects	of	chem-
otherapy	and	RT.

There	are	several	directions	worthy	of	future	work:
First,	 further	 studies	 on	 the	 appropriate	 ELF-	PEMF	

parameters,	such	as	intensities,	frequencies,	wave	forms,	
and	pulse	duration,	could	be	conducted	to	improve	the	ef-
ficiency	of	ELF-	PEMF.

Second,	the	type	of	equipment	used	for	ELF-	PEMF	for	
intracranial	tumors	is	forthcoming.	PEMFs	are	delivered	
mainly	via	two	means:	capacitive	coupling	and	inductive	
coupling.	 The	 former	 requires	 direct	 contact	 with	 skin,	
while	 the	 latter	does	not.12	ELF-	PEMF	has	been	used	 to	
treat	 depression	 by	 placing	 a	 helmet	 on	 the	 head	 of	 pa-
tients.15	 It	 has	 also	 been	 used	 to	 treat	 osteoarthritis	 by	
placing	sets	of	coils	near	the	knee17	or	air-	coil	devices	that	
are	designed	to	be	non-	contact.106	ELF-	PEMF	could	also	
be	 applied	 by	 stimulating	 acupuncture	 points	 to	 reduce	
peritumoral	edema.107	Although	trials	on	gliomas	are	in-
sufficient,	 the	design	of	appropriate	equipment	 is	 in	 the	
pipeline.	Perhaps	similar	approaches	to	depression	treat-
ment	could	be	taken.

Finally,	 in	 vivo	 experiments,	 prospective	 studies,	 and	
well-	organized	randomized	controlled	trials	remain	inad-
equate.	Moreover,	 the	safety	of	 the	use	of	ELF-	PEMF	in	
the	long	term	requires	in-	depth	investigation.

Due	 to	 the	 development	 of	 electromagnetics,	 the	 up-
grading	 of	 devices,	 and	 the	 advancement	 of	 the	 inter-
disciplinary	 combination	 of	 medicine	 and	 engineering	
science,	ELF-	PEMF	would	be	applied	successfully	in	gli-
oma	treatment.
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