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Abstract: Indoor air quality is an important health factor as we spend more than 80% of our time
indoors. The primary type of indoor pollutant is particulate matter, high levels of which increase
respiratory disease risk. Therefore, air purifiers are a common choice for addressing indoor air
pollution. Compared with traditional filtration purifiers, negative ion air purifiers (NIAPs) have
gained popularity due to their energy efficiency and lack of noise. Although some studies have shown
that negative ions may offset the cardiorespiratory benefits of air purifiers, the underlying mechanism
is still unclear. In this study, we conducted a full-scale experiment using an in vitro airway model
connected to a breathing simulator to mimic inhalation. The model was constructed using computed
tomography scans of human airways and 3D-printing technology. We then quantified the effects
of NIAPs on the administered dose of 0.5–2.5 µm particles in the small airway. Compared with
the filtration purifier, the NIAP had a better dilution effect after a 1-h exposure and the cumulative
administered dose to the small airway was reduced by 20%. In addition, increasing the negative ion
concentration helped reduce the small airway exposure risk. NIAPs were found to be an energy-
efficient air purification intervention that can effectively reduce the small airway particle exposure
when a sufficient negative ion concentration is maintained.

Keywords: indoor air quality; airway replica; inhalation exposure; size distribution

1. Introduction

Many cities in China are continuously affected by smog, and the air is heavily polluted.
As a result, the prevalence of respiratory diseases has been drastically increasing. A World
Health Organization report has shown that respiratory infections cause approximately
four million deaths annually, which account for 7% of deaths worldwide [1]. We spend
more than 80% of our time indoors and indoor particulate matter (PM), particularly fine
particle matter (PM2.5), has been causally linked to respiratory disease [2–4]. Indoor PM is a
complex mixture with varied compositions, origins and adverse health effects; the efficient
control of indoor particulate exposure can substantially improve public health [5].

Indoor air purifiers are the most common intervention strategy adopted to reduce
indoor PM2.5 exposure, with filtration purifiers being the traditional type of indoor air
purifier used [6,7]. Intervention studies have reported the cardiopulmonary benefits of
high-efficiency particulate air (HEPA) filtration purifiers in young, healthy adults in a
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Chinese city with severe ambient particulate air pollution [8]. However, in recent years,
negative ion air purifiers (NIAPs), which boast the advantages of low energy consumption,
no noise and convenient installation, have become increasingly common in residences,
offices, schools and other indoor settings [9].

Negative ions released by NIAPs enhance the coagulation of inhalable airborne par-
ticles. Due to their larger size and consequently larger terminal velocities, coagulated
particles can be more easily sedimented and removed from the air. Previous studies have
confirmed the purification performance of NIAPs, which can more efficiently remove PM2.5
from the air than traditional filtration purification systems [9–13]. Numerous studies have
discussed the health consequences of exposure to airborne ions and reported conflicting
conclusions. Some studies have found that exposure to negative air ions has a beneficial
effect on respiratory health [14–16]. In contrast, other studies have reported that exposure to
ions adversely affects lung function and cardiovascular performance, causes irritation and
potentially exacerbates asthma symptoms [16–20]. Unfortunately, due to limited sample
sizes and/or significant methodology biases in these studies, the health effects of NIAPs
remain unclear and controversial [21].

Recent advantages of low energy consumption and high purification performance
have renewed public interest in NIAPs. A recent systematic review suggested that high
airborne ion exposure is associated with lower depression symptoms but not with anxiety,
mood, relaxation, sleep or personal comfort measures [22]. Furthermore, high airborne ion
exposure is not associated with any therapeutic benefits, changes in respiratory function or
symptomatic outcomes [21]. In summary, some studies have reported pulmonary benefits
after negative ion exposure; however, meta-analyses have not found reliable evidence
supporting the effects of NIAPs on respiratory or metabolic outcomes.

Epidemiological assessments have used the gold standard of randomised controlled
trials instead of observational studies to evaluate the health outcomes of NIAPs.
Wallner et al. [23] quantified the short-term effects of air ions on physiological and psycho-
logical parameters and observed slightly activating and cognitive performance-enhancing
effects of higher indoor air ion concentrations. However, no influences of air ions on lung
function and well-being were detected. In addition, 62 animal studies have been unable to
detect a biological mechanism of interaction and no evident dose–response relationships
between beneficial health effects and negative air ions have been reported [24].

Nevertheless, two recent NIAP intervention studies have yielded different results.
Dong et al. [20] conducted a random double-blind crossover trial on a group of school
children using NIAPs. NIAPs were found to significantly reduce the concentrations of
indoor PM. However, high negative ion concentrations had negative impacts on heart
rate. Liu et al. [19] performed a week-long intervention with NIAPs in the dormitories
of 56 healthy college students. Each student received one real and one sham (NIAP not
activated) intervention in their dormitory. Lung function and cardiovascular biomarkers
were assessed before and after each intervention. The NIAP intervention contributed to
high negative ion concentrations and low PM2.5 concentrations in the indoor environment.
However, an association between negative ion concentration and increased systemic oxida-
tive stress was also observed. Thus, high indoor negative ion concentrations may offset the
beneficial effects associated with reduced PM2.5.

A recent systematic review and meta-analysis comprehensively investigated the car-
diovascular effects of reducing PM2.5 exposure through indoor air purification. Based on
the meta-analysis of 14 independent randomised controlled trials, NIAPs appear to have
short-term cardiovascular benefits [10]. However, the overall certainty of evidence remains
low due to a range of study limitations [10]; more extensive and robust studies are needed
to clarify the health outcomes of NIAPs.

Dose assessments can elucidate causal relationships between environmental exposure,
inhalation doses, small airway doses and associated health outcomes. Due to the limitation
of in vivo methods, the effects of NIAPS on PM2.5 human inhalation doses and small airway
doses have not yet been quantified [25].
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This study establishes an in vitro method for quantifying PM2.5 exposure doses after
air purification interventions (NIAPs and filtration purifiers) in a full-scale cleanroom. A
three dimensional (3D)-printed human replica, including the face, oropharynx, trachea, five
bronchi generations and lung volumes, was developed to mimic natural human exposure
scenarios. We measured the exposure dose in the breathing zone and the administered dose
in the small airways within 1 h of inhalation and compared the doses between NIAPs and
filtration purifiers with the same clean air delivery rate (CADR). In addition, we evaluated
the effects of different negative ion concentrations on particle purification and human
exposure. Our findings provide a specific dose reference for in-depth evaluations of NIAP
effects on human respiratory health.

2. Materials and Methods
2.1. Measuring the Administered Dose in the Small Airway

We developed a 3D-printed human replica (Figure 1) based on computed tomography
(CT) scans of the small airways of a healthy 34-year-old male, who is a non-smoker with
no airway disease, to quantify the administered PM2.5 dose [26]. The model includes the
face, nasopharynx, trachea, G1–G5 bronchi and lung cavities. The surface roughness of the
model is less than 0.1 mm and the electrostatic capacitance is less than 0.002 µC (< 0.4 m/s
flow speed; 25 ◦C, 50% relative humidity). A breathing airflow simulator was connected
with the model to provide periodic inhalation airflow. The airflow rate Q was 13.4 L/min,
which mimicked a healthy standing male [27]. The inhalation frequency f was 15/min. We
calculated the administered dose in the small airway as the accumulated mass of particles
that penetrated the G5 bronchi to enter the lung cavities during the exposure time.
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Figure 1. The in vitro human airway replica. The face and upper airway include the nasal and
oral cavities and the lower airway includes five generations of bronchi and two realistic lung cav-
ities. The nose was blocked during measurement to simplify the oral inhalation exposure. The
breathing simulator was connected to the conducting tubes below the two lung cavities to mimic
periodic inhalation.

2.2. Experimental Set-Up

The full-scale experiment was carried out in an ISO-2 cleanroom (5 × 3.5 × 2.5 m). An
air-conditioning system YSM50M-0713-S-L (YORK Incorporated, Qingdao, China; 380 V,
3 N, 50 Hz), with a rated ventilation rate of 4500 m3/h, a cooling capacity of 30 kW and
a heating capacity of 18 kW, was used to control the indoor temperature and humidity
in the room. The room temperature was adjusted to 24–26 ◦C and the relative humidity
was set to 40–70% (summer condition, thermal comfort level I, −0.5 ≤ Predicted Mean
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Vote ≤ +0.5) [28]. The cleanroom was ventilated by mixing, with an air change rate of 2/h.
Each outlet had a HEPA filter with a filtration efficiency of >99.5% for particles > 0.3 µm.
There was no air recirculation during the measurements.

We selected a commonly used filtration purifier AC4025 (PHILIPS Incorporated, Ams-
terdam, The Netherlands) and a NIAP Bentax®A6E (Varionix GmbH, Cham, Switzerland)
for comparison. The Clean Air Delivery Rates (CADRs) of the filtration purifier and NIAP
were 148 m3/h and 142 m3/h, respectively. The standard particulate source was a Hong-
tashan cigarette (tar amount = 8 mg) [29]. Two cigarettes were placed near the ventilation
outlet and two five-blade fans (FG11-42D, 0.42 m diameter, 20 W) were placed above
the particulate source. The particulate pollutants were evenly mixed in the room to a
concentration of ~1000 pt/cm3.

The negative ion concentration CNIAP was detected using an atmospheric negative
oxygen ion device COM-3500C (Grows Instrument, Shanghai, China). The measurement
range was 0–1 million/cm3 with an error of ±5%. We used an Aerodynamic Particle Sizer
(APS) model 3321 (TSI Incorporated, Shoreview, MN, USA) to monitor the particulate size
distribution and concentration in real-time. The APS provides count size distributions for
particles with aerodynamic diameters ranging from 0.523 to 19.810 µm. The administered
dose in the small airway of the in vitro model was measured by connecting the APS to the
lung cavity sampling port.

We measured the PM environmental exposure dose in the breathing zone and the
administered dose in the small airway. We compared three interventions: no purifier,
filtration purifier and NIAP. The in vitro model was placed 1.0 m away from the purifiers.
In addition, we quantified the influence of negative ion concentrations on the administered
dose by changing the distance between the NIAP and the in vitro model to achieve concen-
trations of 7.0× 105 pt/cm3, 3.0× 105 pt/cm3 and 1.5× 105 pt/cm3. Each condition was
repeated three times. The experimental set-up is illustrated in Figure 2 and experimental
parameters are listed in Table 1.
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transport of particles dominated the inhalation exposure mechanism in the well-mixed condition.
Transport via entrainment of the body thermal boundary layer was omitted.
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Table 1. Experimental parameters.

Index Value

Supply air temperature Ts (◦C) 18 ± 1
Air change rate ACH (per hour) 2
Cleanroom temperature T0 (◦C) 25 ± 1

Cleanroom relative humidity RH (%) 60 ± 10

2.3. Particulate Matter Exposure Dose

The APS was used to measure the PM concentration in real-time and the particle dose in
the breathing zone and small airway was calculated as the cumulative mass (Equation (1)).

M =
t=3600

∑
t=1

dN(t)
(π

6

)
(Da

√
ρ0

ρ1
)

3
ρ0qinhTsample (1)

where dN(t) is the total number of particles per unit volume of sampled air (pt/cm3); Da is
the particle aerodynamic diameter (µm); ρ0 is the particle density, 1.18 g/cm3 of cigarette
smoke; ρ1 is the unit density, 1.0 g/cm3; qinh is the inhalation airflow rate, 13.4 L/min;
Tsample is the sampling time, 1 s.

2.4. Blank Measurement

We measured the PM10 concentration in the breathing zone in the no-purifier, filtration
purifier and NAIP purifier conditions. The particle concentration decay within 1 h was
recorded, as shown in Figure 3. The first-order exponential decay equation (Equation (2))
was used to obtain the best-fitting curve of the particle concentration. The constant decay
(k), which represents the purification ability of purifiers, was then calculated.

CN = C0 exp(−kt) (2)

where CN is the particle concentration at time t, pt/cm3; C0 is initial particle concentration,
pt/cm3; k is the dimensionless decay constant; t is sampling time, min.

1 
 

 

Figure 3. The PM10 concentration decay in the breathing zone during the 1 h exposure. Gray dots
show the natural decay (no purifier); blue dots show the decay with the filtration purifier; red dots
show the decay with coagulation by the NIAP. The dilution coefficient of NIAP was the largest at
0.079, followed by 0.064 for the filtration purifier and 0.037 for natural decay.
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Figure 3 shows the concentration decay fitting curves for the three conditions (fitting
constant R2 > 0.99). The particle concentration within the same exposure time in the
breathing zone of either filtration purifier or NAIP was significantly lower than in the no-
purifier condition. Thus, both the filtration purifier and NAIP exerted purification effects
on environmental particulates. The constant decay k of NIAP was 0.079 and 1.23 times that
of the filtration purifier, indicating a better purification ability for PM10.

3. Results
3.1. Inhalation Exposure

Without air purification, the potential inhalation dose of PM2.5 was 19.25 ± 1.87 µg
(Figure 4). We expected particle concentrations to be rather uniform outside the regions
adjacent to the particle sources because the particles were well-mixed by the ceiling-
mounted fans. Once inhaled, particles were deposited on the inner surfaces of the airway
replica. Particles that penetrated the partial bronchi then entered the lung cavities.

We assumed that the particle concentrations in the joint conducting tube were equal
to the average concentration in the lung cavity by neglecting the particle deposition on the
inner surface of the lung boundaries, the outer surface of the partial bronchi and the inner
surface of the conducting tubes attached to the breathing airflow simulator. The dose of
particles in the small airway, where the bronchi have a diameter less than 1.5 mm, was
15.70 ± 1.07 µg, as estimated by Equation (1). The average deposition ratio of particles
on the upper and central airway was 1–15.70/19.25 = 18.44%, which is consistent with
previous studies based on casting models of the human airway [30].
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Figure 4. Comparison of air purification interventions on the potential inhalation dose of PM2.5 (in
blue) and the administered dose of PM2.5 to the small airway (in red) after the 1 h exposure.

The two air purification interventions had quite similar removal abilities with respect
to the potential inhalation dose in the well-mixed condition in the test room. The filtration
purifier’s higher CADR value (148 m3/h) resulted in a slightly higher potential inhalation
dose (11.07 ± 0.26 µg) compared to the NIAP (10.07 ± 0.72 µg), which had a CADR
value of 142 m3/h. The performance of the NIAP was slightly less consistent than that
of the filtration purifier, which could be due to the potential variation in negative ion
concentrations between repetitions.
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The inhaled particles were smaller after filtration, which reduced the deposition ratio
in the upper airway, i.e., most inhaled particles reached the small airway. In contrast, NIAP
reduced the dose delivered to the small airway by coagulating fine particles into coarse
particles, as shown in Figure 5. NIAP effectively reduced the small airway exposure dose
by 20.3% compared to the filtration purifier with a similar CADR.
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to 1.981 µm. η = CD/CTotal × 100%, where CD is the particle concentration in a specific size bin; CTotal

is the total particle concentration of all size bins; ηon is the particle number ratio when the NIAP is
turned on; ηoff refers to the particle number ratio when the NIAP is turned off. Bars in blue and red
show the particle number ratio variation in the breathing zone and small airway, respectively.

3.2. Effect of Negative Ion Concentration on Coagulation Size

The coagulation effect of the NIAP was evaluated as the particle number ratio variation,
i.e., how the size distribution varied based on the NIAP condition (on or off). In the
presented setup, the number of particles below 0.626 µm decreased and the number of
particles between 0.626 and 1.596 µm increased, revealing a shift in the size distribution
towards larger particles when the NIAP was on. Notably, the variations in particle number
ratio were less than 3% for all size bins; the variations in dose reached 47.69% in the
breathing zone and 45.35% in the small airway (Figure 4). Thus, a small shift in size
distribution via coagulation resulted in a significant reduction in exposure.

The relative number density between negative ions and particles determines how
many particles in specific size ranges can coagulate into larger particles, as shown in
Figure 6. We adjusted the distance between the NIAP and the subject to adjust the negative
ion concentration in the breathing zone and airway. The effect of relocating the NIAP on
the particle source was omitted due to the overwhelming levels of particle emission and
fan mixing.

Low and high concentrations of negative ions affect particle adhesion, consequently
shifting the particle size distributions. Particles larger than 0.835 µm were insensitive to
the negative ion concentration change from 0 to 1.5 × 105 pt/cm3 as the particle number
ratio variation between NIAP being on and off was negligible. The critical size bin that
differentiated the ratio decrease from the ratio increase revealed the effect of negative ions
on particle coagulation. Increasing the negative ion concentration increased the larger
particle coagulation, i.e., the critical size bin was larger. In the breathing zone, the critical
size bin was 0.583 µm at a negative ion concentration of 1.5 × 105 pt/cm3. The critical size
bin increased to 0.626 µm when the negative ion concentration doubled but remained at
0.626 µm when the ion concentration was doubled again. In the airway, the critical size
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bin was 0.583 µm at negative ion concentrations of 1.5 × 105 and 3.0 × 105 pt/cm3 and
increased to 0.626 µm at a negative ion concentration of 7.0 × 105 pt/cm3.
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3.3. Effect of Negative Ion Concentration on Inhalation Exposure

Figure 7 illustrates the reverse linear correlation between the negative ion concen-
tration and particle dosage. The potential inhalation dose was reduced by 12.7% and the
small airway dose was reduced by 19.7% when the negative ion concentration increased
from 1.5 × 105 to 7.0 × 105 pt/cm3. As shown in Figure 6, the shifts in size distribution
by coagulation were below 5% in all size bins, but these changes resulted in significant
reductions in exposure.
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4. Discussion

Many countries around the world are experiencing a heavy disease burden due to air
pollution. Traditionally, air purification is expensive both economically and in terms of en-
ergy consumption. The latter factor is complicated as energy production and consumption
also produce particle emissions. In our measurements, NIAPs required less than one-sixth
of the energy consumed by filtration purifiers. This advantage is attractive as it offers a
potential solution to meet health demands without creating an additional energy burden.

This study provides new evidence of particle dosages delivered to small airways
with different air purification interventions. In this context, the NIAP outperforms the
filtration purifier at similar CADRs, provided negative ion concentration is fixed. The
effects of relocating the NIAP on the particle source may in turn affect the particle dosage,
but we include this possibility in the discussion of negative ion concentrations, as shown in
Figure 6. In Figure 6a, the variation in the particle number ratio has a bimodal distribution
with the particle size. The first peak between 0.626 and 0.835 µm was probably formed
due to the coagulation of particles around the breathing zone, whereas the second peak
between 1.037 and 1.596 µm might have been formed by the coagulation of particles at
the emission phase due to the proximity of the particle source to the NIAP. The protective
effect of the NIAP was more pronounced when it was located closer to the subject than to
the source. This observation requires further examination with the inclusion of additional
factors such as the subject’s lung function, room size and ventilation rate.

Recent research that assessed the potentially harmful effects of negative ions on the
cardiovascular system by examining biomarkers has added new cause for caution in
implementation. Although the present study demonstrated the benefit of reduced PM2.5
dosage using the NIAP, the overall health consequences may not be reflected in our model.
The dose we measured was the administered dose and not the biological effective dose,
which quantifies the particles entering the inner microenvironment of the airway and
lung epithelium cells. The charge of the particle added by ions may also enhance the
permeability of fine particles, thereby increasing the biological effective dose.

The in vitro airway replica adopted in this experiment was reconstructed from CT
scans of the airways of a human subject using 3D-printing technology. Thus, the geometric
boundary was similar to real airways and could restore periodic inhalation airflow and
particle movement. Due to the limitation of CT-scan resolution, only the first five gener-
ations of the bronchial structure were reconstructed. The lack of the remaining bronchi
introduced uncertainty in both airflow and particle movement in the fifth-generation
bronchi as the subsequent boundary conditions were absent. The effect of this limitation is
not significant as we specifically aimed to measure the total quantity of particles leaving
the fifth-generation bronchi or the total quantity of particles arriving at sixth-generation
bronchi, i.e., the small airway denoted in this study [31]. In addition to the missing bronchi,
we did not reconstruct airway cilia or mucous membranes. This simplification should not
result in significant error in terms of particle deposition as the boundary roughness of the
replica was specifically improved to less than 1 µm. However, the lack of mucous affects
the mucous clearance mechanisms that can relocate physical and biological dosages.

Our airway model simulated steady-state exposure without lung contraction and
expansion and lacked the temperature and humidity environment inside the human body.
Therefore, variations in the interception and inertial impaction caused by the narrowing of
airway boundaries and condensation growth could not be mimicked by our airway recon-
struction model. However, the deposition mechanisms of turbulent transport, gravitational
settling and Brownian transport were well-represented in this study.

5. Conclusions

This study established a novel method for evaluating the effects of air purification
interventions on the dosage delivered to the small airway. An in vitro airway replica was de-
veloped by 3D-printing a reconstruction of CT images of a 34-year-old healthy male subject.
A breathing airflow simulator was connected to the replica to mimic periodic inhalation.
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Although both had similar CADRs, the NIAP diluted airborne particles slightly faster
than the filtration purifier in the test room. Although the potential inhalation doses were
similar between the purification methods, the NIAP reduced the dose delivered to the
small airway by up to 20% compared to the filtration purifier due to particle coagulation,
even though the NIAP shifted the particle size distribution by less than 5% for all size bins.
The coagulation effect of the NIAP was strongest on particles less than 0.686 µm. Higher
negative ion concentrations lead to lower dosages delivered to both the breathing zone and
the small airway.

To conclude, NIAPs represent an energy-efficient air purification intervention that can
effectively reduce particle exposure to the small airway, provided sufficient negative ion
concentration is maintained around the subject. Further studies on the health consequences
of NIAPs that assess detailed and systematic molecular mechanisms will enhance the search
for air purification interventions and meet both health and energy demands.
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