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Abstract 

Study design: Level 4: Controlled laboratory study. 1	
  

Background: Little is known regarding potential differences between treadmill and  2	
  

overground running in regards to patellofemoral joint and Achilles tendon loading 3	
  

characteristics.  4	
  

Objectives: We sought to compare measures of loading to the patellofemoral joint and 5	
  

Achilles tendon across treadmill and overground running in healthy, uninjured runners. 6	
  

Methods:  Eighteen healthy runners ran at their self-selected speed on an instrumented 7	
  

treadmill and overground while three-dimensional running mechanics were sampled. A 8	
  

musculoskeletal model derived peak load, rate of loading and estimated cumulative load 9	
  

per 1 kilometer of continuous running for the patellofemoral joint and Achilles tendon for 10	
  

each condition. Data were analyzed via paired T-tests and Pearson’s correlations to 11	
  

detect differences and assess relationships, respectively, between the two running 12	
  

mediums. 13	
  

Results:  No differences (p>0.05) were found between treadmill and overground running 14	
  

for the peak, the rate of loading, or estimated cumulative patellofemoral joint stress per 15	
  

1 kilometer of continuous running. However, treadmill running resulted in 21.5% greater 16	
  

peak Achilles tendon force (p<0.001), 15.6% greater loading rate of Achilles tendon 17	
  

force (p<0.001) and 14.2% greater estimated cumulative Achilles tendon force per 1 18	
  

kilometer of continuous running (p<0.001) compared with overground running. There 19	
  

were strong (r>0.70) and moderate agreements (r>0.50) for most patellofemoral joint 20	
  

and Achilles measures, respectively, between treadmill and overground running. 21	
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Conclusions: No differences were observed in loading characteristics to the 22	
  

patellofemoral joint between running mediums, yet treadmill running resulted in greater 23	
  

Achilles tendon loading compared with overground running, Future investigations 24	
  

should determine if sudden bouts of treadmill running places the Achilles tendon at risk 25	
  

for mechanical overload in runners who habitually train overground.  26	
  

Key words: Knee, ankle, biomechanics, musculoskeletal model 27	
  

28	
  

Jo
ur

na
l o

f 
O

rt
ho

pa
ed

ic
 &

 S
po

rt
s 

Ph
ys

ic
al

 T
he

ra
py

®
 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.jo

sp
t.o

rg
 a

t T
he

 U
ni

ve
rs

ity
 o

f 
M

el
bo

ur
ne

 -
 F

ac
ul

tie
s 

on
 J

un
e 

15
, 2

01
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 N

o 
ot

he
r 

us
es

 w
ith

ou
t p

er
m

is
si

on
. 

 C
op

yr
ig

ht
 ©

 $
{y

ea
r}

 J
ou

rn
al

 o
f 

O
rt

ho
pa

ed
ic

 &
 S

po
rt

s 
Ph

ys
ic

al
 T

he
ra

py
®

. A
ll 

ri
gh

ts
 r

es
er

ve
d.



Overground	
  and	
  treadmill	
  comparison	
  of	
  patellofemoral	
  joint	
  and	
  Achilles	
  tendon	
  loads,	
  Page	
  5	
  
	
  

Introduction 29	
  

The patellofemoral joint and Achilles tendon are among the most common sites of 30	
  

injuries sustained by runners. More specifically, patellofemoral pain and Achilles 31	
  

tendinopathy represents up to 25% and 9.5% of all running injuries, respectively. 31, 46  32	
  

As a result of the high prevalence associated with these injuries, it is not surprising that 33	
  

individuals with these injuries make up a large portion of patients in sports medicine 34	
  

clinics.15, 35 35	
  

Factors previously related to patellofemoral pain and Achilles tendinopathy in runners 36	
  

include injury history, age, strength deficits, training errors, structural issues, biological 37	
  

sex and biomechanical overloading.12, 19, 32, 33, 37, 39, 54 Biomechanical loading of 38	
  

anatomical structures during running is complex and multifaceted. Specifically, large 39	
  

biomechanical loads (i.e., peak loads) are generally applied at a rapid rate (i.e., loading 40	
  

rate) and in a highly repetitive manner (i.e., cumulative loads) to articular structures and 41	
  

tendons through the course of a run.1, 9, 12  Thus, measures of peak loads, the loading 42	
  

rate and total cumulative loads of the patellofemoral joint cartilage and Achilles tendon 43	
  

should all be considered in biomechanical investigations of these structures. 44	
  

Treadmills are commonplace in training and rehabilitation settings. Treadmills are 45	
  

convenient, particularly during inclement weather or when options for outdoor running 46	
  

are restricted. Treadmills are also routinely used in clinical gait analysis and gait 47	
  

retraining programs due to the ability to evaluate and retrain running mechanics in a 48	
  

controlled environment.4, 13, 43 Further, treadmills are often a fixture in training programs 49	
  

and return to running programs after injury to the patellofemoral joint or Achilles tendon. 50	
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Instrumented treadmills are now commonly used in biomechanical studies of ankle and 51	
  

knee mechanics during running.8, 29, 30, 40, 52 In particular, instrumented treadmills enable 52	
  

the study of repetitive gait cycles and facilitate more in-depth analyses, such as exertion 53	
  

and gait modification studies.23, 51 Despite their common use in either of these 54	
  

applications, little is known regarding the potential differences of loading to the 55	
  

patellofemoral joint and the Achilles tendon during overground and treadmill running.  56	
  

Seminal biomechanical comparisons between treadmill and overground running 57	
  

suggest that these running mediums have largely similar knee and ankle kinematics, 58	
  

particularly in the sagittal plane.20, 40 However, potential differences in joint kinetics exist, 59	
  

suggesting that there are differences in loading characteristics of the patellofemoral joint 60	
  

and Achilles tendon between overground and treadmill running. For instance, treadmill 61	
  

running has been reported to result in an approximately 27% lower peak internal knee 62	
  

extensor moment compared with overground running.40  The peak knee extensor 63	
  

moment likely closely relates to peak quadriceps force 2 which in turn greatly influences 64	
  

patellofemoral joint reaction force.52  However, as knee flexion may also be less during 65	
  

treadmill running,20, 40 a corresponding reduction in patellofemoral contact area would 66	
  

also occur.5 Therefore, it is unclear if there are differences in patellofemoral joint stress 67	
  

(patellofemoral joint stress= patellofemoral joint reaction force/patellofemoral contact 68	
  

area) between treadmill and overground running. Conversely, the peak plantar flexor 69	
  

moment and eccentric ankle joint power may be as much as 14% and 16% higher, 70	
  

respectively, during treadmill running 40 suggesting greater Achilles tendon demands.   71	
  

Previous work has also investigated temporospatial differences between treadmill and 72	
  

overground running that can have an important effect on cumulative loading for the 73	
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patellofemoral joint and Achilles tendon. Compared with overground, runners tend to 74	
  

adopt 1-5% shorter step length during treadmill running.18, 40  This potentially important 75	
  

temporospatial difference may have consequences for patellofemoral joint and Achilles 76	
  

tendon loading. Firstly, a shorter step length during treadmill running may indicate a 77	
  

shorter stance phase which may, in turn, result in a greater loading rate of the 78	
  

patellofemoral joint and Achilles tendon if peak loads are of the same or greater 79	
  

magnitude as overground running.  Secondly, the shorter step length associated with 80	
  

treadmill running may result in a greater number of steps i.e., loading cycles, to cover a 81	
  

given distance which may in turn increase cumulative loading on the patellofemoral joint 82	
  

and Achilles tendon during a sustained run.  83	
  

The purpose of this study was to assess peak loads, rate of loading and cumulative 84	
  

loading of the patellofemoral joint and the Achilles tendon during treadmill and 85	
  

overground running. Due to a reduced knee extensor moment, we hypothesized that 86	
  

treadmill running would result in reduced peak patellofemoral joint stress and 87	
  

patellofemoral joint stress loading rate. Conversely, we hypothesized that there would 88	
  

be greater Achilles tendon loading and loading rate during treadmill running. Finally, we 89	
  

hypothesized that greater cumulative patellofemoral joint stress and Achilles tendon 90	
  

loading would result due to a reduced step length during treadmill running.   91	
  

Methods 92	
  

Prior to study initiation, the research protocol was approved by the East Carolina 93	
  

University Institutional Human Subjects Research Board. An a priori sample size 94	
  

estimate was conducted to determine the number of participants necessary to detect 95	
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differences between conditions. Using α = 0.05, β = 0.2, and means and variability of 96	
  

the peak knee extensor and plantarflexor moments between running overground and on 97	
  

a treadmill from Riley and colleagues40, 18 participants were conservatively determined 98	
  

to be necessary to adequately power this study. For this investigation, we recruited 18 99	
  

recreational runners (9 males, 9 females) from a large university and area running 100	
  

clubs.  101	
  

All participants provided written and verbal consent prior to enrollment. In order to 102	
  

qualify, all participants were required to be habitual runners (defined as at least 10 103	
  

km/week for at least the previous 6 months), free of any lower extremity surgeries and 104	
  

injury-free for at least the previous 3 months. Participants were limited to 18-35 years of 105	
  

age to limit heterogeneity in biomechanics and Achilles tendon properties that may be 106	
  

introduced by a greater age range.16, 41 Comfort with treadmill running can affect running 107	
  

mechanics. 38 Therefore, only volunteers who were comfortable with treadmill running, 108	
  

defined as a score of at least “8” on a visual analog scale (“0” and “10” corresponding to 109	
  

completely uncomfortable versus completely comfortable, respectively), were enrolled. 110	
  

While not an inclusion/exclusion criterion, continuous involvement in endurance running 111	
  

(“running experience”) was also collected. Please see TABLE 1 for demographics of the 112	
  

cohort of runners in this investigation.  113	
  

Fifty-six retroreflective markers were affixed to the bilateral lower extremities, pelvis and 114	
  

trunk of each participant. Static calibration and dynamic hip trials28 were collected. The 115	
  

pelvis coordinate system was defined by markers placed on the midline of the iliac 116	
  

crests and the greater trochanters. The thigh coordinate system was defined proximally 117	
  

by the calculated hip joint center from the dynamic hip trial and distally by the femoral 118	
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condyles. The shank coordinate system was defined proximally by the tibial condyles 119	
  

and distally by the malleoli. Finally, the foot was defined proximally by the malleoli and 120	
  

distally by the 1st and 5th metatarsal heads and the distal aspect of the shoe. Tracking 121	
  

markers consisted of markers placed on the anterior superior iliac spines and shell-122	
  

mounted clusters on the sacrum, posterolateral aspect of the thigh and shank, and a 123	
  

cluster of three markers on the rearfoot. This is a common marker set configuration and 124	
  

was similar to the marker set used by Fellin et al. (2010), a study of comparison for the 125	
  

present investigation.20  126	
  

After a 6-minute treadmill accommodation period,34 3-dimensional running mechanics 127	
  

were sampled for 10 seconds at each participant’s self-selected running speed. 128	
  

Participants were cued to choose this speed based on perception of their running pace 129	
  

during the middle of a standard training run. The self-selected running speed was 130	
  

established, based on the participant’s feedback, during the final 4 minutes of the 131	
  

treadmill accommodation period. Ground reaction forces and marker trajectories were 132	
  

sampled at 1000 Hz by the instrumented treadmill (Bertec, Worthington, Ohio, USA) 133	
  

and 200 Hz by a 10-camera motion capture system (Qualysis Corp., Gothenburg, 134	
  

SWE), respectively. Prior to study initiation, treadmill speed calibration during running 135	
  

was performed using a digital tachometer every 0.2 m/sec up to 4.0 m/s. (HT-5500, Ono 136	
  

Sokki Corp., Yokohama, Japan).  The treadmill running trial was not longer than 5 137	
  

minutes of sustained running and an approximately 10-minute rest period was provided 138	
  

to each runner between the end of treadmill testing and initiation of overground testing 139	
  

to minimize fatigue.  140	
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Next, 3-D overground running mechanics were sampled as runners traversed a 25-141	
  

meter runway at their same self-selected running speed (±3%) used during the treadmill 142	
  

running. Each runner practiced execution of the overground trials for several minutes to 143	
  

accommodate to the overground collection procedures, including establishment of 144	
  

running speed and runway starting position. Displacement of a single marker attached 145	
  

to the sacrum has previously been demonstrated to correspond to the displacement of a 146	
  

runner’s estimated center of mass.21, 22 Therefore, we tracked the anterior velocity of a 147	
  

sacral marker in real-time to measure running speed as the runner traversed force 148	
  

plates flush with the runway floor (AMTI, Watertown, Mass, USA). In post-processing, 149	
  

this method for tracking overground running velocity was highly correlated to the 150	
  

anterior velocity of the runner’s estimated center of mass (correlation between anterior 151	
  

velocity of the sacral marker and estimated center of mass: Pearson’s r= 0.96 p<0.001 152	
  

with a root mean square error= 0.1 m/sec). Any trials that fell outside the velocity range, 153	
  

in which the participant was visibly changing velocity in the capture volume or when the 154	
  

force plates were targeted by the participant were discarded. The rationale for excluding 155	
  

trials in this manner was that different gait velocities and force plate targeting can have 156	
  

marked effects on the magnitudes of segmental velocities, joint moments and powers.3, 157	
  

7 Marker trajectories (Qualysis) and ground reaction forces were sampled with the exact 158	
  

same parameters as those utilized during the treadmill trial (200 Hz and 1000 Hz for 159	
  

kinematics and kinetics, respectively).  160	
  

The order of testing (treadmill first followed by overground testing) was chosen to 161	
  

determine each participant’s safe self-selected running speed for the treadmill trials. In 162	
  

testing during protocol development, pilot subjects tended to self-select a running speed 163	
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for overground trials that was faster and not representative of a running speed that 164	
  

could be sustained by the runner on the treadmill. We felt that this mismatch in speeds 165	
  

was due to the fact that sustained running is not tested in overground trials, whereas 166	
  

treadmill running requires sustained running.   167	
  

Data processing and musculoskeletal model 168	
  

Using a sagittal-frontal-transverse plane Euler angle sequence, joint coordinates were 169	
  

calculated with a 6-degree of freedom model (The MotionMonitor, Chicago, Ill, USA). 170	
  

Marker and ground reaction forces were filtered with 15-Hz cutoff frequency via a low 171	
  

pass, fourth order Butterworth recursive filter. Matched cutoff filter frequencies are 172	
  

recommended to minimize non-physiological signal artifacts during inverse dynamic 173	
  

routines that might occur in high impact activities, such as running.6, 26  Internal joint 174	
  

moments were then derived using an inverse dynamic routine with published segmental 175	
  

inertial parameters14 and reported in the coordinate system of the distal segment.  The 176	
  

dominant limb was used for all subsequent analyses. Separate, time-synchronized files 177	
  

of the vertical ground reaction force data were digitally filtered at 50 Hz using a low 178	
  

pass, fourth order Butterworth recursive filter and used for the purpose of identifying 179	
  

stance. Initial contact during the running trials was defined as the time when the vertical 180	
  

ground reaction force exceeded 20 N. Five stance phases of the dominant lower 181	
  

extremity (limb used to kick a ball) were analyzed from both the treadmill and 182	
  

overground running trials. We retained the first 5 complete stance phases from the 10 183	
  

second treadmill trial for analysis. For the overground trials, we chose the 5 trials with 184	
  

gait velocities that were closest to the treadmill gait speed to minimize the potential error 185	
  

that may be introduced by differing speeds between the two testing modes 186	
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To calculate patellofemoral joint stress and Achilles tendon forces, we utilized a 187	
  

musculoskeletal model that has been described fully elsewhere17, 52, 53 but will briefly be 188	
  

described here. This model uses an inverse dynamics approach to calculate 189	
  

hamstrings, quadriceps, gastrocnemius and soleus muscle forces. As such, this 190	
  

procedure accounts for knee joint co-contraction from the hamstrings and 191	
  

gastrocnemius.52  From the net hip extensor moment, hamstring force was calculated 192	
  

utilizing published hamstring and gluteus maximus cross sectional areas and muscle 193	
  

moment arms as a function of hip angle.36, 50  The net plantarflexor moment and the 194	
  

Achilles tendon muscle moment arm were then used to derive the Achilles tendon 195	
  

force.25, 45  Achilles tendon force was further proportioned to the gastrocnemius and the 196	
  

soleus based on the physiological cross sectional area of each muscle.50  To account 197	
  

for co-contraction about the knee, hamstring and gastrocnemius torque was calculated 198	
  

using their respective moment arms at the knee and then summed with the internal 199	
  

knee extension moment.24, 44, 45, 49  Quadriceps force was then derived as the quotient of 200	
  

the adjusted quadriceps moment and the quadriceps moment arm.24, 48 Patellofemoral 201	
  

joint reaction force was then calculated utilizing the quadriceps force as a function of 202	
  

knee joint angle.47 See FIGURE 1 for a comparison of patellofemoral joint reaction force 203	
  

output for our model compared with published values from other musculoskeletal 204	
  

models of varying complexities.10, 29, 42 Finally, patellofemoral joint stress was estimated 205	
  

as the quotient of the patellofemoral joint reaction force and sex-specific patellofemoral 206	
  

contact areas.5  207	
  

A custom written LabVIEW code (National Instruments, Austin TX, USA) was used to 208	
  

calculate discrete variables. First, step length (m) was calculated. For patellofemoral 209	
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joint stress and Achilles tendon force, we calculated the peak, the loading rate and the 210	
  

impulse (time integral) for each stance phase.  Loading rates were calculated as the 211	
  

middle 60% of the rising curve between initial contact and for the respective peaks of 212	
  

patellofemoral joint stress and Achilles tendon force (FIGURE 2 and FIGURE 3) for 213	
  

each stance.  Cumulative patellofemoral joint stress and cumulative Achilles tendon 214	
  

force were estimated as the load per 1 km of continuous running as the product of 215	
  

impulse per stance and number of strides to complete 1 km of continuous running (500 216	
  

m/step length). To assist with interpreting our results, we also included peak knee 217	
  

extensor moment and peak plantar flexor moment in our analysis.  Additionally, we 218	
  

calculated eccentric and concentric power for the ankle plantar flexors (joint power= 219	
  

sagittal plane angular velocity x joint moment) as these measures likely relate closely to 220	
  

energy storage and release of the plantarflexors.    221	
  

All statistical analyses were performed with SPSS Version 20 (IBM, Houston, TX, USA).  222	
  

To detect differences between the two running modes, motion data were analyzed with 223	
  

a series of paired, two-tailed T-Tests (α=0.05). Effect sizes (d) were also calculated to 224	
  

assess the magnitude of any differences, with a small effect corresponding to d=0.2-0.4, 225	
  

a moderate effect corresponding with d=0.4-0.8 and a large effect corresponding with 226	
  

d≥0.8.11 To assess the relationship between two running modes, discrete variables of 227	
  

interest were analyzed with Pearson’s r (α=0.05). 228	
  

Results 229	
  

We found no differences and there was excellent correlation for gait speed between 230	
  

overground and treadmill running for our participants (TABLE 2).  All overground trials 231	
  

Jo
ur

na
l o

f 
O

rt
ho

pa
ed

ic
 &

 S
po

rt
s 

Ph
ys

ic
al

 T
he

ra
py

®
 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.jo

sp
t.o

rg
 a

t T
he

 U
ni

ve
rs

ity
 o

f 
M

el
bo

ur
ne

 -
 F

ac
ul

tie
s 

on
 J

un
e 

15
, 2

01
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 N

o 
ot

he
r 

us
es

 w
ith

ou
t p

er
m

is
si

on
. 

 C
op

yr
ig

ht
 ©

 $
{y

ea
r}

 J
ou

rn
al

 o
f 

O
rt

ho
pa

ed
ic

 &
 S

po
rt

s 
Ph

ys
ic

al
 T

he
ra

py
®

. A
ll 

ri
gh

ts
 r

es
er

ve
d.



Overground	
  and	
  treadmill	
  comparison	
  of	
  patellofemoral	
  joint	
  and	
  Achilles	
  tendon	
  loads,	
  Page	
  14	
  
	
  

utilized in the analysis were inside ±2.6% of the treadmill running speed. However, step 232	
  

length was significantly shorter (p<0.001, d=-0.62) during treadmill running compared 233	
  

with overground running. This difference was associated with a moderate effect size 234	
  

(d=-0.62), yet had an excellent correlation (p<0.001, r=0.86) between the two running 235	
  

modes.  Interestingly, stance duration was not different and was highly correlated 236	
  

between the two running conditions.  237	
  

Regarding all knee and patellofemoral joint measures, we found no differences between 238	
  

overground and treadmill running (TABLE 2, FIGURE 1, FIGURE 2). We also found 239	
  

moderate to excellent correlations for all knee measures, except for patellofemoral joint 240	
  

stress loading rate, which was not correlated. Specifically, peak knee flexion (p=0.96, 241	
  

d=0.01; r=0.58, p=0.01) and peak knee extensor moment (p=0.28, d=0.19; r=0.77, 242	
  

p<0.001) were not different between the two running modes. Peak patellofemoral joint 243	
  

reaction force (p=0.99, d= 0.00; r=0.81, p<0.001), peak patellofemoral joint stress 244	
  

(p=0.73, d=0.04; r=0.86, p<0.001) and loading rate of patellofemoral joint stress 245	
  

(p=0.09, d=0.55) were also not different between conditions. However, there was a 246	
  

nonsignificant correlation between the running modes for the loading rate of 247	
  

patellofemoral joint stress (r=0.39, p=0.11). Despite the additional 23 strides estimated 248	
  

to run 1 km continuously during treadmill running, estimated cumulative patellofemoral 249	
  

joint stress per 1 kilometer of continuous running (p=0.21, d=0.21; r=0.88, p<0.001)  250	
  

during treadmill running was not different than the overground condition.  251	
  

In contrast, we found moderate to large differences at the ankle between overground 252	
  

and treadmill running (TABLE 3, FIGURE 3).  With the exception of peak plantarflexor 253	
  

moment and estimated cumulative Achilles tendon force per 1 kilometer of continuous 254	
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running, all ankle and Achilles values were moderately to strongly correlated between 255	
  

the two running modes. While we found no difference in peak dorsiflexion angle 256	
  

(p=0.32, d= -0.15; r=0.81, p<0.001), the peak plantar flexor moment (p=0.001, d=-1.17) 257	
  

was significantly greater and not correlated (r=0.36, p=0.14) during treadmill running 258	
  

compared with overground running. Additionally, peak Achilles tendon force (p<0.001, 259	
  

d=1.01; r=0.52, p=0.03), Achilles tendon loading rate (p<0.001, d=0.61; r=0.62, 260	
  

p=0.006), Achilles tendon force impulse per stance (p=0.02, d=0.63; r=0.52, p=0.02) 261	
  

and estimated cumulative Achilles tendon force per 1 kilometer of continuous running 262	
  

(p<0.001, d=1.04; r=0.39, p=0.12) were all significantly greater during treadmill running. 263	
  

Treadmill running was also associated with greater concentric ankle joint power 264	
  

(p=0.001, d=1.18; r=0.69, p<0.001), but there was no significant difference in eccentric 265	
  

joint power (p=0.25, d=0.23; r=0.69, p<0.001) between the two modes of running.  266	
  

Discussion 267	
  

We sought to determine if there were differences between running overground and 268	
  

running on a treadmill in regards to patellofemoral joint loading and Achilles tendon 269	
  

forces. We found no differences in peak patellofemoral joint reaction force or any 270	
  

measure of patellofemoral joint stress between overground and treadmill running.  Due 271	
  

to moderate to strong correlations, this study suggests that findings from studies that 272	
  

utilize instrumented treadmills to assess loading of the patellofemoral joint may be 273	
  

largely applied to overground running and vice versa. In contrast, ankle concentric 274	
  

power and all measures of Achilles tendon force and were greater during treadmill 275	
  

running. While the Achilles tendon loads were moderately proportional between 276	
  

treadmill and overground running, caution should be used when extrapolating absolute 277	
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values of Achilles tendon loads obtained via instrumented treadmill running to 278	
  

overground running.  279	
  

The cohort of runners in the present investigation was a sample of convenience and 280	
  

was fairly representative of a typical university setting. However, the enrolled runners 281	
  

reported a relatively long length of continuous participation in endurance running of 282	
  

greater than 7 years. While the study was open to runners who ran as few as 283	
  

10km/week, the range for running volume was 13.0-96.6 km/week. Overall, we felt the 284	
  

length of continuous participation in endurance running, coupled with a high level of 285	
  

comfort with treadmill running (9.6/10), was the best representation of running skill level. 286	
  

In contrast, running volume likely fluctuates throughout the year. 287	
  

Counter to our hypothesis, we found no differences between overground and treadmill 288	
  

running in respect to sagittal knee joint mechanics, which are major influences on 289	
  

patellofemoral joint reaction force and stress. Based on the previous literature, we 290	
  

expected reduced knee flexion kinematics and reduced knee extensor moments during 291	
  

treadmill running.20, 40  There are several potential reasons for the discrepancy with the 292	
  

previous literature. Firstly, the kinematic differences reported by Fellin et al. were small 293	
  

(~1.3° less knee flexion during treadmill running) and may simply be due to small 294	
  

differences in running speed between overground and treadmill modes. Secondly, the 295	
  

only previous comparison of knee joint kinetics utilized different signal filtering 296	
  

parameters when processing treadmill and overground trials.40 The present 297	
  

investigation utilized identical filtering parameters when processing overground and 298	
  

treadmill trials. The lower low pass filter cutoff utilized by Riley et al. during treadmill 299	
  

running when compared to their overground running data may have attenuated the knee 300	
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extensor moment signal, resulting in the slightly lower peak knee extensor moment 301	
  

during treadmill running reported in their study.40  Finally, the present study examined 302	
  

runners during their normal endurance training pace (2.9 m/sec), whereas previous 303	
  

investigations used the estimated 10 km race pace(~3.8 m/sec) 40 or a standardized 304	
  

pace (3.35 m/sec).20 Therefore, differences in sagittal plane knee and patellofemoral 305	
  

joint kinetics between overground and treadmill running may occur at higher running 306	
  

speeds than what were sampled in the present investigation. 307	
  

There were no differences for the peak, loading rate and estimated cumulative 308	
  

patellofemoral joint stress per kilometer of continuous running. We estimated that 23 309	
  

additional strides were required to run 1 km continuously on a treadmill which was 310	
  

insufficient to increase the estimated cumulative patellofemoral joint stress per kilometer 311	
  

of continuous running.  It has been suggested that the measures of peak, loading rate 312	
  

and cumulative joint stress play independent roles in the degradation of articular 313	
  

structures.9 Therefore, future study should be undertaken to determine if return to 314	
  

running programs for the treatment of patellofemoral pain result in similar outcomes if 315	
  

conducted on a treadmill or overground. Further, strong relationships (r≥0.85) were 316	
  

found between overground and treadmill running for peak patellofemoral joint reaction 317	
  

force, peak and impulse patellofemoral joint stress as well as the estimated cumulative 318	
  

patellofemoral joint stress to run 1 km continuously. Thus, treadmill and overground 319	
  

running appear to yield similar estimates of patellofemoral joint reaction force and stress 320	
  

measures.  321	
  

In contrast to the patellofemoral joint, measures of Achilles tendon loading and 322	
  

concentric ankle joint power were considerably greater during treadmill running. 323	
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Interestingly, peak ankle dorsiflexion was not different during treadmill running.  Rather, 324	
  

the peak plantarflexion moment was greater during treadmill running and this difference 325	
  

was associated with a large effect size. Thus, measures of peak and loading rate of 326	
  

Achilles tendon force as well as estimated cumulative Achilles tendon force to run 1 km 327	
  

continuously were correspondingly greater (d=0.62-1.04) during treadmill running. As 328	
  

stance duration was not different between overground and treadmill running, the greater 329	
  

peak Achilles tendon force was most likely responsible for the higher loading rate of the 330	
  

Achilles tendon. The sagittal ankle power data revealed that concentric ankle joint 331	
  

power was also greater during treadmill running whereas eccentric ankle joint power 332	
  

was not. This finding contrasts with the previous investigation of ankle joint powers 333	
  

during treadmill and overground running that found greater eccentric ankle joint power 334	
  

during treadmill running but similar concentric ankle joint power with overground 335	
  

running.40 Potential reasons for this difference between investigations include 336	
  

differences in tested gait velocity (present study: ~2.8 m/sec vs, Riley et al.: 3.8 m/sec) 337	
  

and differences in overground runway length (present study: 25 meters vs. Riley et al.: 338	
  

15 meters). Nevertheless, we found moderate correlations for most of the Achilles, 339	
  

ankle joint power and ankle kinematic measures between the two running modes. 340	
  

However, the moderate to large absolute differences that we found at the ankle suggest 341	
  

that caution should be exercised when interpreting Achilles data collected during 342	
  

treadmill running and extrapolating it to overground running and vice versa.   343	
  

The greater estimated cumulative Achilles tendon force to run 1 km continuously during 344	
  

treadmill running may have implications for future study and potential clinical 345	
  

applications.12, 27  We estimated that treadmill running would expose the Achilles tendon 346	
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to an additional 45 body weights of cumulative force to run 1 km continuously compared 347	
  

with overground running. Tendon’s well-documented response to acute bouts of loading 348	
  

suggests further investigation may be warranted to determine if an acute bout of 349	
  

treadmill running results in greater collagen turnover in the Achilles tendon when 350	
  

compared to an equal volume of overground running. Further study is necessary to 351	
  

determine if there are differences in Achilles tendon qualities or greater prevalence of 352	
  

Achilles tendinopathy in individuals who run solely on a treadmill versus solely 353	
  

overground. 354	
  

Limitations  355	
  

There are several limitations to the present investigation that should be kept in mind 356	
  

when interpreting these results. Firstly, all participants were tested first on the treadmill 357	
  

followed by overground. This testing order was deliberate so that a realistic self-358	
  

selected running speed could be established that could then be maintained both 359	
  

overground and during treadmill running. Regardless, an order effect may have been 360	
  

introduced. Secondly, the musculoskeletal model used in this investigation was not 361	
  

entirely subject-specific, utilized muscle architectural parameters from the literature, and 362	
  

represents estimates of in vivo tissue loads. However, any added benefit of a subject-363	
  

specific model inputs would be negligible due to the within-subject design. As implanted 364	
  

strain gauges are not presently feasible to measure in vivo joint and tendon loads, 365	
  

musculoskeletal models are generally accepted as estimates of these loads. 366	
  

Patellofemoral joint reaction force and Achilles tendon loads found in the present 367	
  

investigation are within those in recently published investigations using different 368	
  

musculoskeletal models.1, 29, 42 Secondly, the overground runway utilized in this 369	
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investigation was 25-meters in length with the force plates imbedded at approximately 370	
  

the half-way point. Due to the relatively short runway distance, it is possible that 371	
  

participants were not at a constant speed when traversing the capture volume. This 372	
  

laboratory design is fairly standard and ubiquitous across gait laboratories that study 373	
  

running mechanics. The key papers of comparison for this investigation used 15-374	
  

meter(Riley et al., 2008)40 and 25-meter runways (Fellin et al., 2010).20 As a longer 375	
  

track-based laboratory is neither common nor practical for most settings, the use of 376	
  

emerging wearable technologies during continuous outdoor running may provide the 377	
  

most practical comparison with continuous treadmill running. Additionally, the horizontal 378	
  

velocity of the sacral marker was used to provide feedback on running velocity during 379	
  

overground running trials whereas the treadmill controller was used to control gait 380	
  

speed during treadmill trials. As a result, undetected variations in treadmill gait velocity 381	
  

may have occurred if subjects’ positions drifted anterior-posterior on the treadmill during 382	
  

data collection. However, we only collected data when subjects’ positions were 383	
  

stationary on the treadmill in an effort to minimize this potential influence. Finally, our 384	
  

participants were injury-free and young and there was a relatively wide range in habitual 385	
  

weekly running volume among the cohort. Therefore, care should be exercised when 386	
  

applying the results of this study to injured or older populations.  387	
  

Conclusions 388	
  

In conclusion, treadmill and overground running yielded similar estimates of 389	
  

patellofemoral joint reaction force and stress. In contrast, treadmill running resulted in 390	
  

greater Achilles tendon loads when compared to overground running. Further study is 391	
  

necessary to determine the clinical implications of these findings in return to running 392	
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programs or in assessing the risk of Achilles tendon injury in runners who undergo 393	
  

acute bouts of treadmill running. These findings also suggest that measures of 394	
  

patellofemoral joint reaction force and stress during instrumented treadmill running are a 395	
  

reasonable representation of those same loads during overground running. In contrast, 396	
  

Achilles tendon force estimates obtained during instrumented treadmill running appear 397	
  

to be moderately proportional to, yet greater than overground running. 398	
  

Conflict of interest: None 399	
  

Key Points 400	
  

Findings: Estimates of patellofemoral joint loading did not differ between treadmill and 401	
  

overground running. However, Achilles tendon loads and concentric ankle power were 402	
  

significantly greater during treadmill running compared with overground running.  403	
  

Implications: Patellofemoral joint loading during treadmill running appears to be 404	
  

consistent with overground running. Therefore, the findings of studies examining 405	
  

patellofemoral joint loading during treadmill running can be applied to overground 406	
  

running. Conversely, measures of Achilles tendon loading during treadmill running were 407	
  

moderately correlated, yet greater than overground running. Future study should 408	
  

determine if acute bouts of treadmill running places the Achilles tendon at risk for 409	
  

mechanical overload in runners who customarily perform their training overground.  410	
  

Caution: Caution should be exercised when extrapolating these results to individuals 411	
  

with patellofemoral pain or Achilles tendinopathy.  412	
  

 413	
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FIGURES 540	
  

 541	
  

FIGURE 1. Patellofemoral joint reaction forces from both overground and treadmill 542	
  

running in the present study (hash marks correspond to ±1 standard deviation) 543	
  

contrasted with other published values of patellofemoral joint reaction forces during 544	
  

running.9,29,42 Chen and Powers (2014) utilized faster running velocity (present 545	
  

investigation:2.9 m/sec, Chen and Powers: 3.33 m/sec) which may partly explain the 546	
  

higher values.9 In contrast, Lenhart et al., (2015) utilized nearly identical running 547	
  

velocities as those in the present investigation (2.8 m/sec).29  Both the Chen and 548	
  

Powers (2014) 9 and the Lenhart et al. (2015) 29  models accounted for co-contraction of 549	
  

the knee musculature, as did the model utilized in the present investigation. In contrast, 550	
  

the model used by Sinclair and colleagues (2015)42 did not account for co-contraction of 551	
  

the knee musculature which may have contributed to their lower patellofemoral joint 552	
  

reaction force values. 553	
  

 554	
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 555	
  

FIGURE 2. Time series data for group mean data for sagittal plane knee kinematics and 556	
  

kinetics and patellofemoral joint stress during treadmill and overground running. 557	
  

Abbreviations: mPA= megaPascals. 558	
  

559	
  

Jo
ur

na
l o

f 
O

rt
ho

pa
ed

ic
 &

 S
po

rt
s 

Ph
ys

ic
al

 T
he

ra
py

®
 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.jo

sp
t.o

rg
 a

t T
he

 U
ni

ve
rs

ity
 o

f 
M

el
bo

ur
ne

 -
 F

ac
ul

tie
s 

on
 J

un
e 

15
, 2

01
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 N

o 
ot

he
r 

us
es

 w
ith

ou
t p

er
m

is
si

on
. 

 C
op

yr
ig

ht
 ©

 $
{y

ea
r}

 J
ou

rn
al

 o
f 

O
rt

ho
pa

ed
ic

 &
 S

po
rt

s 
Ph

ys
ic

al
 T

he
ra

py
®

. A
ll 

ri
gh

ts
 r

es
er

ve
d.



Overground	
  and	
  treadmill	
  comparison	
  of	
  patellofemoral	
  joint	
  and	
  Achilles	
  tendon	
  loads,	
  Page	
  27	
  
	
  

 560	
  

 561	
  

FIGURE 3. Time series data for group mean data for sagittal plane ankle kinematics 562	
  

and kinetics and Achilles tendon loading during treadmill and overground running. 563	
  

**Significant at p<0.005 . Abbreviations: mPA= megaPascals. 564	
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 Mean (SD), n=18  

Age (years) 23.6 (3.5) 

BMI (kg/m
2
) 22.2 (2.6) 

Running Volume (km/week) 36.7 (26.5) 

Running experience (years) 7.4 (3.6) 

Self-paced running velocity 
(m/s) 2.9 (0.3) 

Treadmill comfort score 
(x/10) 9.6 (0.5) 

Tegner Score (x/10) 6.9 (0.6) 

TABLE	
  1:	
  Demographics	
  for	
  participants.	
  Mean	
  (SD).	
  
Abbreviations:	
  BMI=	
  body	
  mass	
  index. 

Jo
ur

na
l o

f 
O

rt
ho

pa
ed

ic
 &

 S
po

rt
s 

Ph
ys

ic
al

 T
he

ra
py

®
 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.jo

sp
t.o

rg
 a

t T
he

 U
ni

ve
rs

ity
 o

f 
M

el
bo

ur
ne

 -
 F

ac
ul

tie
s 

on
 J

un
e 

15
, 2

01
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 N

o 
ot

he
r 

us
es

 w
ith

ou
t p

er
m

is
si

on
. 

 C
op

yr
ig

ht
 ©

 $
{y

ea
r}

 J
ou

rn
al

 o
f 

O
rt

ho
pa

ed
ic

 &
 S

po
rt

s 
Ph

ys
ic

al
 T

he
ra

py
®

. A
ll 

ri
gh

ts
 r

es
er

ve
d.



	
   	
  
TABLE	
  2.	
  Group	
  mean	
  data	
  (SD)	
  during	
  treadmill	
  (TM)	
  and	
  overground	
  (OG)	
  running	
  for	
  temporospatial	
  and	
  knee	
  
measures.	
  Abbreviations:	
  m/sec=	
  meters	
  per	
  second,	
  m=meters,	
  ms=milliseconds,	
  BW=	
  body	
  weights,	
  N=	
  Newtons,	
  PFJ=	
  
patellofemoral	
  joint,	
  mPA=	
  megaPascals,	
  Cumulative	
  PFJ	
  Stress	
  1km=	
  estimated	
  patellofemoral	
  joint	
  stress	
  to	
  run	
  1	
  
kilometer	
  continuously.	
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  Discrete Variables TM OG p Effect Size Pearson's r 
Gait speed                           

(m/sec) 2.88 (0.26) 2.89 (0.27) 0.50 -0.04 0.97** 

Step Length                                  
(m) 1.04 (0.10) 1.10 (0.12) <0.0001** -0.62 0.86** 

Stance duration                       
(ms) 273.1 (30.6) 277.3 (26.1) 0.23 -0.15 0.88** 

Peak Knee Flexion Angle            
(°) -34.2 (3.5) -34.3 (3.8) 0.96 0.01 0.58* 

Peak Knee Ext. Moment 
(N*m/m*Kg) 1.18 (0.20) 1.14 (0.27) 0.28 0.19 0.77** 

Peak PFJ reaction force             
(BW) 4.0 (1.0) 4.0 (0.8) 0.99 0.00 0.81** 

Peak PFJ Stress                     
(mPA) 6.2 (1.4) 6.1 (1.5) 0.73 0.04 0.86** 

PFJ Stress Avg Loading Rate 
(mPA/sec) 131.5 (26.9) 155.6 (61.3) 0.09 -0.55 0.17 

PFJ Stress Impulse       
(mPA*sec) 0.71(0.22) 0.71(0.16) 0.84 -0.03 0.85** 

Cumulative PFJ Stress 1km        
(mPA*sec/km) 344.5 (118.5) 324.7 (73.3) 0.21 0.21 0.88** 

 
*
Significant	
  at	
  p<0.05	
   

**
Significant	
  at	
  p<0.005
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Discrete Variables TM OG t-test Effect Size Pearson’s r 
Peak Dorsiflexion Angle   

(°) 22.4 (3.0) 22.8 (3.0) 0.32 -0.15 0.81** 

Peak Plantarflexor Moment 
(N*m/m*Kg) -1.52(0.20) -1.33(0.12) 0.001** 1.17 0.36 

Peak Achilles Force        
(BW) 5.35 (0.782) 4.68 (0.533) <0.001** 1.01 0.52* 

Achilles Loading Rate 
(BW/sec) 65.1 (10.8) 54.7 (10.5) <0.001** 0.61 0.62** 

Achilles Impulse         
(BW*sec) 0.66(0.13) 0.59(0.08) 0.02* 0.63 0.53* 

Cumulative Achilles Force 
(BW/km) 315.8 (44.4) 270.8 (41.8) <0.001** 1.04 0.39 

Eccentric Ankle Power 
(W/kg*m) -3.15 (0.82) -3.32 (0.67) 0.25 0.23 0.69** 

Concentric Ankle Power  
(W/kg*m)     6.19 (1.54)    4.84 (0.75)     0.001** 1.18 0.69** 

TABLE	
  3.	
  	
  Group	
  mean	
  data	
  (SD)	
  during	
  treadmill	
  (TM)	
  and	
  overground	
  (OG)	
  running	
  for	
  ankle	
  and	
  Achilles	
  tendon	
  discrete	
  
variables.	
  Abbreviations:	
  °=	
  degrees,	
  m=meters,	
  N=	
  Newtons,	
  BW=	
  body	
  weights,	
  BW/km:	
  Cumulative	
  Achilles	
  load	
  in	
  body	
  
weights	
  to	
  run	
  1	
  kilometer	
  continuously,	
  W=	
  Watts. 

*
Significant	
  at	
  p<0.05	
   

**
Significant	
  at	
  p<0.005
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