
CNC4FUN
GRBL-1.1F - IW2EAX-1.1.41

Configuration
From: https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration

Original manual by Charles Van Noland, to which we added our own extended
commands (in yellow), which are available on the CNC4FUN (by IW2EAX) controller
board.

Getting Started
First, connect to Grbl using the serial terminal of your choice.

Set the baud rate to 115200 as 8-N-1 (8-bits, no parity, and 1-stop bit).

Once connected you should get the Grbl-prompt, which looks like this:

Grbl 1.1f ['$' for help]

Type $ and press enter to have Grbl print a help message. You should not see any
local echo of the $ and enter. Grbl should respond with:

[HLP:$$ $# $G $I $N $x=val $Nx=line $J=line $SLP $C $X $H ~ ! ? ctrl-x]

The ‘$’-commands are Grbl system commands used to tweak the settings, view or
change Grbl's states and running modes, and start a homing cycle. The last four
non-'$' commands are realtime control commands that can be sent at anytime, no
matter what Grbl is doing. These either immediately change Grbl's running behavior
or immediately print a report of the important realtime data like current position (aka
DRO).

Grbl Settings
$$ - View Grbl settings

To view the settings, type $$ and press enter after connecting to Grbl. Grbl should
respond with a list of the current system settings, as shown in the example below. All

https://github.com/gnea/grbl/wiki/Grbl-v1.1-Configuration

of these settings are persistent and kept in EEPROM, so if you power down, these will
be loaded back up the next time you power up your Arduino.

The x of $x=val indicates a particular setting, while val is the setting value. In prior
versions of Grbl, each setting had a description next to it in () parentheses, but Grbl
v1.1+ no longer includes them unfortunately. This was done to free up precious flash
memory to add the new features available in v1.1. However, most good GUIs will help
out by attaching descriptions for you, so you know what you are looking at.

*Parameters added by cnc4fun

Settings and sample values Description

$0=10 Step pulse, microseconds
$1=250 Step idle delay, milliseconds
$2=0 Step port invert, mask
$3=0 Direction port invert, mask
$4=0 Step enable invert, boolean
$5=0 Limit pins invert, boolean
$6=0 Probe pin invert, boolean
$10=1 Status report, mask
$11=0.010 Junction deviation, mm
$12=0.002 Arc tolerance, mm
$13=0 Report inches, boolean
$20=0 Soft limits, boolean (modified behavioural)
$21=0 Hard limits, boolean
$22=1 Homing cycle, boolean
$23=0 Homing dir invert, mask
$24=25.000 Homing feed, mm/min
$25=500.000 Homing seek, mm/min
$26=250 Homing debounce, milliseconds
$27=1.000 Homing pull-off, mm
$30=1000. Max spindle speed, RPM
$31=0. Min spindle speed, RPM
$32=0 Laser mode, boolean
$33 = 0 MIST-ON only when Z axis is down
$50 = 1 Expansion board installed
$51 = 1 Pendant enable
$52 = 1 Spindle off on 0 speed
$53 = -1.000 Parking target

Settings and sample values Description

$54 = 500.000 Parking rate
$55 = 100.000 Parking pullout rate
$56 = 5.000 Parking pullout increment
$57 = 18000 Spindle PWM frequency
$58 = 1500 Servo wake up time
$59 = 7 Homing cycle, mask (XYZ)
$60 = 0 Spindle knob ADC min value
$61 = 372 Spindle knob ADC mid value
$62 = 396 Spindle knob ADC high value
$63 = 0.7 Spindle knob min multiplier
$64 = 1.3 Spindle knob max multiplier
$65 = 32 Spindle knob nr. of steps
$66 = 0 Spindle spin-up time (mSec)
$70 = 0 Feed knob ADC min value
$71 = 372 Feed knob ADC mid value
$72 = 744 Feed knob ADC high value
$73 = 0.10 Feed knob min multiplier
$74 = 3.00 Feed knob max multiplier
$75 = 32 Feed knob nr. of steps
$76 = 1 Feed knob hold at 0 speed
$77 = 1.0 Feed minimum speed
$80 = 1.5 Pendant XY fast-mode timer
$81 = 1.5 Pendant Z fast-mode timer
$82 = 3500.00 Pendant XY jog-feed speed
$83 = 1000.00 Pendant Z jog-feed speed
$84 = 0.010 Pendant jog-step when pushbuttons = 00
$85 = 0.100 Pendant jog-step when pushbuttons = 01
$86 = 1.000 Pendant jog-step when pushbuttons = 10
$87 = 10.000 Pendant jog-step when pushbuttons = 11
$88 = 2 Pendant swap mask for XYZ pushbuttons
$89 = 4.00 Pendant soft reset = REBOOT after xx seconds
$90 = 0 Force WiFi off
$91 = 115200 Serial port Baud-rate
$100=250.000 X steps/mm
$101=250.000 Y steps/mm
$102=250.000 Z steps/mm

Settings and sample values Description

$110=500.000 X Max rate, mm/min
$111=500.000 Y Max rate, mm/min
$112=500.000 Z Max rate, mm/min
$120=10.000 X Acceleration, mm/sec^2
$121=10.000 Y Acceleration, mm/sec^2
$122=10.000 Z Acceleration, mm/sec^2
$130=200.000 X Max travel, mm
$131=200.000 Y Max travel, mm
$132=200.000 Z Max travel, mm

@ - New way to view and change Grbl settings – added by cnc4fun

The @ command is similar to the $$ command but, unlike $$ which is just a list of
numbers, it responds with a more structured list of the relevant parameters and
descriptions. Please note that the settings are organized by function and not by
number.

Moreover, unlike $$, which only provides the complete list of parameters, the @
command can provide just a single parameter: just add the wanted number after the
@ and this will happen.

@0 will respond with the single parameter

$0 = 3 STEPPER - Pulse, microseconds

@ will respond with the full list

$0 = 3 STEPPER - Pulse, microseconds

$1 = 250 STEPPER - Idle delay, milliseconds
$2 = 0 PIN - Port invert, mask

$3 = 0 PIN - Direction port invert, mask
$4 = 0 PIN - Step enable invert, boolean

$5 = 0 PIN - Limit invert, boolean
$6 = 0 PIN - Probe pin invert, boolean

$58 = 1500 SERVO - Wakeup time (ms)

$100 = 2560.00 X-AXE - Steps/mm
$101 = 2560.00 Y-AXE - Steps/mm

$102 = 2560.00 Z-AXE - Steps/mm

$110 = 380.00 X-AXE - Max rate, mm/min
$111 = 380.00 Y-AXE - Max rate, mm/min

$112 = 380.00 Z-AXE - Max rate, mm/min

$120 = 80.00 X-AXE - Acceleration, mm/sec^2
$121 = 80.00 Y-AXE - Acceleration, mm/sec^2

$122 = 80.00 Z-AXE - Acceleration, mm/sec^2

$130 = 220.00 X-AXE - Max travel, mm
$131 = 220.00 Y-AXE - Max travel, mm

$132 = 220.00 Z-AXE - Max travel, mm

$20 = 0 Homing - Soft limits, boolean
$21 = 1 Homing - Hard limits, boolean

$22 = 1 Homing - Enable, boolean
$59 = 7 Homing - Enable, mask (XYZ)

$23 = 1 Homing - DIR invert, mask
$24 = 60.00 Homing - Feed, mm/min

$25 = 250.00 Homing - Seek, mm/min
$26 = 10 Homing - Debounce, milliseconds

$27 = 1.00 Homing - Pull-off, mm

$53 = -1.00 Parking - Target
$54 = 500.00 Parking - Rate

$55 = 100.00 Parking - Pullout rate
$56 = 5.00 Parking - Pullout increment

$10 = 3 GRBL - REPORT Status, mask

$13 = 0 GRBL - REPORT Inches, boolean
$11 = 0.010 GRBL - Junction deviation, mm

$12 = 0.002 GRBL - Arc tolerance, mm
$32 = 0 GRBL - Laser mode, boolean

$33 = 0 GRBL - MIST-ON only when Z axis is down
$91 = 115200 GRBL - Serial port Baud-rate

$50 = 1 PENDANT - EXP.Board is installed,(reboot)

$51 = 1 PENDANT - Pendant enable, boolean
$80 = 1.50 PENDANT - XY Fast-Mode timer (Sec.)

$81 = 1.50 PENDANT - Z Fast-Mode timer (Sec.)
$82 = 3500.00 PENDANT - XY JOG-FEED Speed

$83 = 1000.00 PENDANT - Z JOG-FEED Speed
$84 = 0.010 PENDANT - JOG-STEP when pushbuttons = 00

$85 = 0.100 PENDANT - JOG-STEP when pushbuttons = 01
$86 = 1.000 PENDANT - JOG-STEP when pushbuttons = 10

$87 = 10.000 PENDANT - JOG-STEP when pushbuttons = 11
$88 = 2 PENDANT - Swap mask for XYZ pushbuttons

$89 = 4.0 PENDANT - Soft reset = REBOOT after xx sec.

$57 = 18000 SPINDLE - PWM frequency in Hz,(reboot)
$52 = 1 SPINDLE - OFF on 0 speed, boolean

$30 = 10000 SPINDLE - Max speed, RPM
$31 = 0 SPINDLE - Min speed, RPM

$60 = 0 SPINDLE - Knob ADC min value
$61 = 372 SPINDLE - Knob ADC mid value

$62 = 396 SPINDLE - Knob ADC high value
$63 = 0.7 SPINDLE - Knob min multiplier

$64 = 1.3 SPINDLE - Knob max multiplier
$65 = 32 SPINDLE - Knob Nr.of steps

$66 = 1500 SPINDLE - Spindle spin-up time (mSec.)
@69 = ADC Readings now: - ADC=339 Scaled=45% Knob=1.0

$70 = 0 FEED - Knob ADC min value

$71 = 372 FEED - Knob ADC mid value
$72 = 744 FEED - Knob ADC high value

$73 = 0.1 FEED - Knob min multiplier
$74 = 3.0 FEED - Knob max multiplier

$75 = 32 FEED - Knob Nr.of steps
$76 = 1 FEED - Knob Hold at 0 Speed

$77 = 1.0 FEED - Minimum Speed
@79 = ADC Readings now: - ADC=389 Scaled=52% Knob=1.1

$90 = 0 WIFI - Force WIFI OFF

Please note:

- The two lines @69 and @79 are read-only values that can be used to calibrate the
virtual knobs.

- To set a specific value for all other parameters, you can either just keep using the old
$x=val command or a new @x=val command.

NOTE2: @R is a special function that will perform a system reboot.

$x=val - Save Grbl setting

The $x=val command saves or alters a Grbl setting, which can be done manually by
sending this command when connected to Grbl through a serial terminal program,
but most Grbl GUIs will do this for you as a user-friendly feature.

To manually change e.g. the microseconds step pulse option to 10us you would type
this, followed by an enter:

$0=10

If everything went well, Grbl will respond with an 'ok' and this setting is stored in
EEPROM and will be retained forever or until you change them. You can check if Grbl
has received and stored your setting correctly by typing $$ to view the system settings
again.

Grbl's $x=val settings and what they mean
NOTE: From Grbl v0.9 to Grbl v1.1, only $10 status reports changed and new $30/ $31
spindle rpm max/min and $32 laser mode settings were added. Everything else is the same.

$0 – Step pulse, microseconds

Stepper drivers are rated for a certain minimum step pulse length. Check the data
sheet or just try some numbers. You want the shortest pulses the stepper drivers can
reliably recognize. If the pulses are too long, you might run into trouble when running
the system at very high feed and pulse rates, because the step pulses can begin to
overlap each other. We recommend something around 10 microseconds, which is the
default value.

$1 - Step idle delay, milliseconds

Every time your steppers complete a motion and come to a stop, Grbl will delay
disabling the steppers by this value. OR, you can always keep your axes enabled
(powered so as to hold position) by setting this value to the maximum 255
milliseconds. Again, just to repeat, you can keep all axes always enabled by setting
$1=255.

The stepper idle lock time is the time length Grbl will keep the steppers locked before
disabling. Depending on the system, you can set this to zero and disable it. On others,
you may need 25-50 milliseconds to make sure your axes come to a complete stop
before disabling. This is to help account for machine motors that do not like to be left
on for long periods of time without doing something. Also, keep in mind that some
stepper drivers don't remember which micro step they stopped on, so when you re-
enable, you may witness some 'lost' steps due to this. In this case, just keep your
steppers enabled via $1=255.

$2 – Step port invert, mask

This setting inverts the step pulse signal. By default, a step signal starts at normal-low
and goes high upon a step pulse event. After a step pulse time set by $0, the pin
resets to low, until the next step pulse event. When inverted, the step pulse behavior
switches from normal-high, to low during the pulse, and back to high. Most users will
not need to use this setting, but this can be useful for certain CNC-stepper drivers that
have peculiar requirements. For example, an artificial delay between the direction pin
and step pulse can be created by inverting the step pin.

This invert mask setting is a value which stores the axes to invert as bit flags. You
really don't need to completely understand how it works. You simply need to enter

the settings value for the axes you want to invert. For example, if you want to invert
the X and Z axes, you'd send $2=5 to Grbl and the setting should now read $2=5 (step
port invert mask:00000101).

Setting
Value

Mask Invert X Invert Y Invert Z

0 00000000 N N N
1 00000001 Y N N
2 00000010 N Y N
3 00000011 Y Y N
4 00000100 N N Y
5 00000101 Y N Y
6 00000110 N Y Y
7 00000111 Y Y Y

$3 – Direction port invert, mask

This setting inverts the direction signal for each axis. By default, Grbl assumes that the
axes move in a positive direction when the direction pin signal is low, and a negative
direction when the pin is high. Often, axes don't move this way with some machines.
This setting will invert the direction pin signal for those axes that move the opposite
way.

This invert mask setting works exactly like the step port invert mask and stores which
axes to invert as bit flags. To configure this setting, you simply need to send the value
for the axes you want to invert. Use the table above. For example, if want to invert the
Y axis direction only, you'd send $3=2 to Grbl and the setting should now read $3=2
(dir port invert mask:00000010)

$4 - Step enable invert, boolean

By default, the stepper enable pin is high to disable and low to enable. If your setup
needs the opposite, just invert the stepper enable pin by typing $4=1. Disable with
$4=0. (May need a power cycle to load the change.)

$5 - Limit pins invert, boolean

By default, the limit pins are held normally-high with the Arduino's internal pull-up
resistor. When a limit pin is low, Grbl interprets this as triggered. For the opposite

behavior, just invert the limit pins by typing $5=1. Disable with $5=0. You may need a
power cycle to load the change.

NOTE: For more advanced usage, the internal pull-up resistor on the limit pins may be
disabled in config.h.

$6 - Probe pin invert, boolean

By default, the probe pin is held normally-high with the Arduino's internal pull-up
resistor. When the probe pin is low, Grbl interprets this as triggered. For the opposite
behavior, just invert the probe pin by typing $6=1. Disable with $6=0. You may need a
power cycle to load the change.

$10 - Status report, mask

This setting determines what Grbl real-time data it reports back to the user when a '?'
status report is sent. This data includes current run state, real-time position, real-time
feed rate, pin states, current override values, buffer states, and the g-code line
number currently executing (if enabled through compile-time options).

By default, the new report implementation in Grbl v1.1+ will include just about
everything in the standard status report. A lot of the data is hidden and will appear
only if it changes. This increases efficiency dramatically over of the old report style
and allows you to get faster updates and still get more data about your machine. The
interface documentation outlines how it works and most of it applies only to GUI
developers or the curious.

To keep things simple and consistent, Grbl v1.1 has only two reporting options. These
are primarily here just for users and developers to help set things up.

• Position type may be specified to show either machine position (MPos:) or work
position (WPos:), but no longer both at the same time. Enabling work position is
useful in certain scenarios when Grbl is being directly interacted with through a
serial terminal, but machine position reporting should be used by default.

• Usage data of Grbl's planner and serial RX buffers may be enabled. This shows
the number of blocks or bytes available in the respective buffers. This is
generally used to helps determine how Grbl is performing when testing out a
streaming interface. This should be disabled by default.

Use the table below enables and disable reporting options. Simply add the values
listed of what you'd like to enable, then save it by sending Grbl your setting value. For
example, the default report with machine position and no buffer data reports setting
is $10=1. If work position and buffer data are desired, the setting will be $10=2.

Report Type Value Description
Position Type 0 Enable WPos: Disable MPos:.
Position Type 1 Enable MPos:. Disable WPos:.

Buffer Data 2
Enabled Buf: field appears with planner and serial RX available
buffer.

$11 - Junction deviation, mm

Junction deviation is used by the acceleration manager to determine how fast it can
move through line segment junctions of a G-code program path. For example, if the
G-code path has a sharp 10 degree turn coming up and the machine is moving at full
speed, this setting helps determine how much the machine needs to slow down to
safely go through the corner without losing steps.

How we calculate it is a bit complicated, but, in general, higher values gives faster
motion through corners, while increasing the risk of losing steps and positioning.
Lower values makes the acceleration manager more careful and will lead to careful
and slower cornering. So if you run into problems where your machine tries to take a
corner too fast, decrease this value to make it slow down when entering corners. If you
want your machine to move faster through junctions, increase this value to speed it
up. For curious people, hit this link to read about Grbl's cornering algorithm, which
accounts for both velocity and junction angle with a very simple, efficient, and robust
method.

$12 – Arc tolerance, mm

Grbl renders G2/G3 circles, arcs, and helices by subdividing them into teeny tiny lines,
such that the arc tracing accuracy is never below this value. You will probably never
need to adjust this setting, since 0.002mm is well below the accuracy of most all CNC
machines. But if you find that your circles are too crude or arc tracing is performing
slowly, adjust this setting. Lower values give higher precision but may lead to
performance issues by overloading Grbl with too many tiny lines. Alternately, higher
values traces to a lower precision, but can speed up arc performance since Grbl has
fewer lines to deal with.

For the curious, arc tolerance is defined as the maximum perpendicular distance from
a line segment with its end points lying on the arc, aka a chord. With some basic
geometry, we solve for the length of the line segments to trace the arc that satisfies
this setting. Modeling arcs in this way is great, because the arc line segments
automatically adjust and scale with length to ensure optimum arc tracing
performance, while never losing accuracy.

http://t.co/KQ5BvueY

$13 - Report inches, boolean

Grbl has a real-time positioning reporting feature to provide a user feedback on
where the machine is exactly at that time, as well as, parameters for coordinate
offsets and probing. By default, it is set to report in mm, but by sending a $13=1
command, you send this boolean flag to true and these reporting features will now
report in inches. $13=0 to set back to mm.

$20 - Soft limits, boolean – modified by cnc4fun

Soft limits is a safety feature to help prevent your machine from traveling too far and
beyond the limits of travel, crashing or breaking something expensive. It works by
knowing the maximum travel limits for each axis and where Grbl is in machine
coordinates. Whenever a new G-code motion is sent to Grbl, it checks whether or not
you accidentally have exceeded your machine space. If you do, Grbl will issue an
immediate feed hold wherever it is, shutdown the spindle and coolant, and then set
the system alarm indicating the problem. Machine position will be retained
afterwards, since it's not due to an immediate forced stop like hard limits.

NOTE: Soft limits requires homing to be enabled and accurate axis maximum travel
settings, because Grbl needs to know where it is. $20=1 to enable, and $20=0 to
disable.

CNC4FUN modifications:

Soft limits behaviour has been modified and is now working as follows:
The original code didn’t take into account the pull-off limit parameter which is now
correctly subtracted.

After booting, soft limits are temporarily disabled anyway until the HOMING
procedure has been performed, allowing you to move the axes in any direction
without restrictions.

 This is useful in many situations: for example, to quickly move the axes near the limit
switch at power-up before the HOME procedure has been performed or when the
board is used for laser applications.

The soft limits are then engaged independently (axis by axis) during the homing
procedure. This behaviour is useful for example in laser applications, where you may
not want to move the Z axis while homing ($59 = 3) but still want to be able to move
the Z axis without any restrictions on soft limits. In this case, after homing, the X and Y
axes are subject to soft limit checking, while the Z axis is still free to move in any
directions without any checks.

PLEASE NOTE: if an axis homing is disabled via the $59 homing mask, its position
value is assumed to be 0 (zero) at boot time.

$21 - Hard limits, boolean

Hard limit work basically the same as soft limits, but use physical switches instead.
Basically you wire up some switches (mechanical, magnetic, or optical) near the end of
travel of each axes, or where ever you feel that there might be trouble if your program
moves too far to where it shouldn't. When the switch triggers, it will immediately halt
all motion, shutdown the coolant and spindle (if connected), and go into alarm mode,
which forces you to check your machine and reset everything.

To use hard limits with Grbl, the limit pins are held high with an internal pull-up
resistor, so all you have to do is wire in a normally-open switch with the pin and
ground and enable hard limits with $21=1. (Disable with $21=0.) We strongly advise
taking electric interference prevention measures. If you want a limit for both ends of
travel of one axes, just wire in two switches in parallel with the pin and ground, so if
either one of them trips, it triggers the hard limit.

Keep in mind, that a hard limit event is considered to be critical event, where steppers
immediately stop and will have likely have lost steps. Grbl doesn't have any feedback
on position, so it can't guarantee it has any idea where it is. So, if a hard limit is
triggered, Grbl will go into an infinite loop ALARM mode, giving you a chance to check
your machine and forcing you to reset Grbl. Remember it's a purely a safety feature.

$22 - Homing cycle, boolean

Ahh, homing. For those just initiated into CNC, the homing cycle is used to accurately
and precisely locate a known and consistent position on a machine every time you
start up your Grbl between sessions. In other words, you know exactly where you are
at any given time, every time. Say you start machining something or are about to start
the next step in a job and the power goes out, you re-start Grbl and Grbl has no idea
where it is due to steppers being open-loop control. You're left with the task of
figuring out where you are. If you have homing, you always have the machine zero
reference point to locate from, so all you have to do is run the homing cycle and
resume where you left off.

To set up the homing cycle for Grbl, you need to have limit switches in a fixed position
that won't get bumped or moved, or else your reference point gets messed up.
Usually they are setup in the farthest point in +x, +y, +z of each axes. Wire your limit
switches in with the limit pins, add a recommended RC-filter to help reduce electrical
noise, and enable homing. If you're curious, you can use your limit switches for both
hard limits AND homing. They play nice with each other.

Prior to trying the homing cycle for the first time, make sure you have setup
everything correctly, otherwise homing may behave strangely. First, ensure your
machine axes are moving in the correct directions per Cartesian coordinates (right-
hand rule). If not, fix it with the $3 direction invert setting. Second, ensure your limit
switch pins are not showing as 'triggered' in Grbl's status reports. If are, check your
wiring and settings. Finally, ensure your $13x max travel settings are somewhat
accurate (within 20%), because Grbl uses these values to determine how far it should
search for the homing switches.

By default, Grbl's homing cycle moves the Z-axis positive first to clear the workspace
and then moves both the X and Y-axes at the same time in the positive direction. To
set up how your homing cycle behaves, there are more Grbl settings down the page
describing what they do (and compile-time options as well.)

Also, one more thing to note, when homing is enabled. Grbl will lock out all G-code
commands until you perform a homing cycle. Meaning no axes motions, unless the
lock is disabled ($X) but more on that later. Most, if not all CNC controllers, do
something similar, as it is mostly a safety feature to prevent users from making a
positioning mistake, which is very easy to do and be saddened when a mistake ruins a
part. If you find this annoying or find any weird bugs, please let us know and we'll try
to work on it so everyone is happy. :)

NOTE: Check out config.h for more homing options for advanced users. You can
disable the homing lockout at startup, configure which axes move first during a
homing cycle and in what order, and more.

$23 - Homing dir invert, mask

By default, Grbl assumes your homing limit switches are in the positive direction, first
moving the z-axis positive, then the x-y axes positive before trying to precisely locate
machine zero by going back and forth slowly around the switch. If your machine has a
limit switch in the negative direction, the homing direction mask can invert the axes'
direction. It works just like the step port invert and direction port invert masks, where
all you have to do is send the value in the table to indicate what axes you want to
invert and search for in the opposite direction.

$24 - Homing feed, mm/min

The homing cycle first searches for the limit switches at a higher seek rate, and after it
finds them, it moves at a slower feed rate to home into the precise location of
machine zero. Homing feed rate is that slower feed rate. Set this to whatever rate
value that provides repeatable and precise machine zero locating.

$25 - Homing seek, mm/min

Homing seek rate is the homing cycle search rate, or the rate at which it first tries to
find the limit switches. Adjust to whatever rate gets to the limit switches in a short
enough time without crashing into your limit switches if they come in too fast.

$26 - Homing debounce, milliseconds

Whenever a switch triggers, some of them can have electrical/mechanical noise that
actually 'bounce' the signal high and low for a few milliseconds before settling in. To
solve this, you need to debounce the signal, either by hardware with some kind of
signal conditioner or by software with a short delay to let the signal finish bouncing.
Grbl performs a short delay, only homing when locating machine zero. Set this delay
value to whatever your switch needs to get repeatable homing. In most cases, 5-25
milliseconds is fine.

$27 - Homing pull-off, mm

To play nice with the hard limits feature, where homing can share the same limit
switches, the homing cycle will move off all of the limit switches by this pull-off travel
after it completes. In other words, it helps to prevent accidental triggering of the hard
limit after a homing cycle. Make sure this value is large enough to clear the limit
switch. If not, Grbl will throw an alarm error for failing to clear it.

$30 - Max spindle speed, RPM

This sets the spindle speed for the maximum 5V PWM pin output. For example, if you
want to set 10000rpm at 5V, program $30=10000. For 255rpm at 5V, program
$30=255. If a program tries to set a higher spindle RPM greater than the $30 max
spindle speed, Grbl will just output the max 5V, since it can't go any faster. By default,
Grbl linearly relates the max-min RPMs to 5V-0.02V PWM pin output in 255 equally
spaced increments. When the PWM pin reads 0V, this indicates spindle disabled. Note
that there are additional configuration options are available in config.h to tweak how
this operates.

$31 - Min spindle speed, RPM

This sets the spindle speed for the minimum 0.02V PWM pin output (0V is disabled).
Lower RPM values are accepted by Grbl but the PWM output will not go below 0.02V,
except when RPM is zero. If zero, the spindle is disabled and PWM output is 0V.

$32 - Laser mode, boolean

When enabled, Grbl will move continuously through consecutive G1, G2, or G3 motion
commands when programmed with a S spindle speed (laser power). The spindle PWM

pin will be updated instantaneously through each motion without stopping. Please
read the GRBL laser documentation and your laser device documentation prior to
using this mode. Lasers are very dangerous. They can instantly damage your vision
permanently and cause fires. Grbl does not assume any responsibility for any issues
the firmware may cause, as defined by its GPL license.

When disabled, Grbl will operate as it always has, stopping motion with every S
spindle speed command. This is the default operation of a milling machine to allow a
pause to let the spindle change speeds.

$33 – MIST-ON only when Z axis is down – added by cnc4fun

If set to 1, the MIST relay is active only when the Z axis Is down and working. This
function can be useful to save refrigeration liquid.

$50 – Expansion board, boolean – added by cnc4fun

If set to 1, it means that the CNC4FUN expansion board is installed.

$51 – Pendant enabled, boolean – added by cnc4fun

If set to 1, it means that the CNC4FUN pendant keyboard is installed.

$52 – Spindle off at 0 speed, boolean – added by cnc4fun

If set to 1, Grbl turns off the spindle motor relay when the spindle speed is set to 0.

$53 – Parking axis target, mm – added by cnc4fun (UNDER DEVELOPMENT)

Sets the parking target in millimeters as machine coordinates [-max_travel,0].

$54 – Parking rate, mm/min – added by cnc4fun (UNDER DEVELOPMENT)

Sets the parking fast rate after pullout in mm/min.

$55 – Parking pullout rate, mm/min – added by cnc4fun (UNDER DEVELOPMENT)

Sets the pullout/plunge slow feed rate in mm/min.

$56 – Parking pullout increment, mm/min – added by cnc4fun (UNDER
DEVELOPMENT)

Spindle pull-out and plunge distance in mm. Incremental distance. Must be a positive
value or a value equal to zero.

$57 – Spindle PWM, Hz – added by cnc4fun

Sets the PWM frequency of the spindle speed control. 15/20 KHz can be okay to
control a spindle motor in DC, but more often than not lasers for non-professional

use can’t work at frequencies that are higher than 500/1000 Hz. This parameter allows
to set a specific frequency. The change takes effects after a reboot.

$58 – Servo wakeup time, ms – added by cnc4fun

Depending on the specific motors and servo drivers that are present on the user’s
CNC, before any movement can be executed by the machine you may need to wait
some time from power-up until the servos are ready. This command allows you to set
this waiting time in milliseconds.

$59 – Enable, mask (XYZ) – added by cnc4fun

Depending on whether you have a CNC or a laser cutter, you may want to disable the
Z axis homing function. The original GRBL code only provides a global ON/OFF
function, either enabling or disabling all the homing axes at the same time ($21).

For compatibility reasons, the $21 parameter is still present, but the $59 parameter
allows you to enable/disable each single axis separately.

Setting
Value

Mask Home X Home Y Home Z

0 00000000 N N N
1 00000001 Y N N
2 00000010 N Y N
3 00000011 Y Y N
4 00000100 N N Y
5 00000101 Y N Y
6 00000110 N Y Y
7 00000111 Y Y Y

$60 to $65 ; $70 to $75 – Virtual stepped knob parameters – added by cnc4fun

The two potentiometers on the CNC4FUN board are ‘virtualized’ as stepped knobs. In
order to correctly set up the machine, you will need to enter some calibration values
that will enable the virtual knobs to work properly.

When you work on a CNC, you have a nominal value for the spindle speed and the
feed rate. You can override the nominal value by using the correction knobs.
By definition, the central position of the knob represents the nominal value (1x).
Rotating the knob to the left means reducing the value, while rotating it to the right
means increasing the value.

Depending on your needs (laser mode, CNC mode, spindle requirements, etc.) you
may need to limit the range of correction of the nominal value. In order to do this,
some calibrations and configurations are needed. The following commands will allow
you to do this.

The knob virtualization process is done in three steps:

1. data acquisition and filtering from ADC,

2. linearization,

3. stepping and scaling of the values.

Step 1: enter the minimum, middle and maximum value. This means entering the
values you read from the ADC (0-1023) when the potentiometer is in the leftmost
position, in the central position, and finally in the rightmost position ($60, $61, $62,
$70, $71, $72).

Step 2: the system will linearize the value based on the data entered by the user.

Step 3: set the number of positions of the virtual knob you want to have ($65, $75).
Then, set the range of allowed corrections ($63, $64, $73, $74).

Obtaining the current values:

The two commands @69 and @79 allow you to read the current ADC and scaled
values. For example:

@69 = ADC Readings now: - ADC=339 Scaled=45% Knob=1.0

You can use the current ADC value to properly set the relevant parameters.

NOTE:

For technical reasons, there are two ways of setting the ADC values:

1. reading the values via the @69 and @79 commands, or

2. automatically acquiring the current ADC value (see below).

$60 – Spindle knob min value – added by cnc4fun

Sets the ADC value when the potentiometer is in the leftmost position.

To automatically read the current ADC value, use <$60 = -1> as a value.

$61 – Spindle knob mid value – added by cnc4fun

Sets the ADC value when the potentiometer is in the central position.

To automatically read the current ADC value, use <$61 = -1> as a value.

$62 – Spindle knob min value – added by cnc4fun

Sets the ADC value when the potentiometer is in the rightmost position.

To automatically read the current ADC value, use <$62 = -1> as a value.

$63 – Spindle knob min multiplier – added by cnc4fun

Sets the maximum attenuation limit for the virtual knob.

$64 – Spindle knob max multiplier – added by cnc4fun

Sets the maximum gain limit for the virtual knob.

$65 – Spindle knob steps – added by cnc4fun

Sets the number of virtual knob steps.

$66 – Spindle spin-up time – added by cnc4fun

Sets the number of milliseconds to wait from the M3 command (power supply relay
ON) to the next G-code command execution (useful to provide some time for the laser
power-supply stabilization).

@69 – Spindle ADC reading – added by cnc4fun

This command returns the current ADC reading and the knob status.

See the example below:

@69 = ADC Readings now: - ADC=859 Scaled=100% Knob=3.0

$70 – Feed knob min value – added by cnc4fun

Sets the ADC value when the potentiometer is in the leftmost position.

To automatically read the current ADC value, use <$70 = -1> as a value.

$71 – Feed knob mid value – added by cnc4fun

Sets the ADC value when the potentiometer is in the central position.

To automatically read the current ADC value, use <$71 = -1> as a value.

$72 – Feed knob min value – added by cnc4fun

Sets the ADC value when the potentiometer is in the rightmost position.

To automatically read the current ADC value, use <$72 = -1> as a value.

$73 – Feed knob min multiplier – added by cnc4fun

Sets the maximum attenuation limit for the virtual knob.

$74 – Feed knob max multiplier – added by cnc4fun

Sets the maximum gain limit for the virtual knob.

$75 – Feed knob steps – added by cnc4fun

Sets the number of virtual knob steps.

@79 – Feed ADC reading – added by cnc4fun

This command returns the current ADC reading and the knob status.

See the example below:

@79 = ADC Readings now: - ADC=859 Scaled=100% Knob=3.0

$76 – Feed knob hold at 0 speed – added by cnc4fun

If set to 1, put the CNC on hold when the knob is in the leftmost position.

$77 – Feed minimum speed – added by cnc4fun

Sets the minimum feed speed that the CNC is allowed to use.

$80 – Pendant fast mode timer, [X,Y] sec.– added by cnc4fun

Sets the time (in seconds) before the XY axes movement changes from slow-mode to
fast-mode.

$81 – Pendant fast mode timer, [Z] sec.– added by cnc4fun

Sets the time (in seconds) before the Z axis movement changes from slow-mode to
fast-mode.

$82 – Pendant jog feed sped, [X,Y] mm/min.– added by cnc4fun

Sets the feed rate of the XY axes movement.

$83 – Pendant jog feed sped, [Z] mm/min.– added by cnc4fun

Sets the feed rate of the Z axis movement.

$84 – Pendant jog step, [X,Y,Z] mm – added by cnc4fun

On the pendant there are two “Jog” step pushbuttons. The combination of the two
sets the axis movement (in millimeters) for each single step.

This parameter sets the step of XYZ axes movement when the pushbuttons are =00.

$85 – Pendant jog step, [X,Y,Z] mm – added by cnc4fun

On the pendant there are two “Jog” step pushbuttons. The combination of the two
sets the axis movement (in millimeters) for each single step.

This parameter sets the step of XYZ axes movement when the pushbuttons are =01.

$86 – Pendant jog step, [X,Y,Z] mm – added by cnc4fun

On the pendant there are two “Jog” step pushbuttons. The combination of the two
sets the axis movement (in millimeters) for each single step.

This parameter sets the step of XYZ axes movement when the pushbuttons are =10.

$87 – Pendant jog step, [X,Y,Z] mm – added by cnc4fun

On the pendant there are two “Jog” step pushbuttons. The combination of the two
sets the axis movement (in millimeters) for each single step.

This parameter sets the step of XYZ axes movement when the pushbuttons are =11.

$88 –Swap mask for XYZ pushbuttons – added by cnc4fun

Accordind to your preferences, you may want to invert the action of the XYZ
pushbuttons on the pendant of your CNC. This is the relevant swap mask.

Setting
Value

Mask Invert X Invert Y Invert Z

0 00000000 N N N
1 00000001 Y N N
2 00000010 N Y N
3 00000011 Y Y N
4 00000100 N N Y
5 00000101 Y N Y
6 00000110 N Y Y
7 00000111 Y Y Y

$89 – Pendant soft reset = REBOOT after xx Sec. – added by cnc4fun

The PENDANT soft-reset button will perform a hardware CPU REBOOT if pressed
longer than the time specified by this parameter.

$90 – WiFi off – added by cnc4fun

Forces WiFi off. When set to 1, this command disables the wifi interface.

$91 – Serial port baud rate – added by cnc4fun

Selects the operational speed of the serial communication port.
The supported baudrates are: 115200, 23400, 250000, 460800, 500000, 921600,
1000000

$100, $101 and $102 – [X,Y,Z] steps/mm

Grbl needs to know how far each step will take the tool in reality. To calculate
steps/mm for an axis of your machine you need to know:

• The mm traveled per revolution of your stepper motor. This is dependent on
your belt drive gears or lead screw pitch.

• The full steps per revolution of your steppers (typically 200)
• The microsteps per step of your controller (typically 1, 2, 4, 8, or 16). Tip: Using

high microstep values (e.g., 16) can reduce your stepper motor torque, so use the
lowest that gives you the desired axis resolution and comfortable running
properties.

The steps/mm can then be calculated like this: steps_per_mm =
(steps_per_revolution*microsteps)/mm_per_rev

Compute this value for every axis and write these settings to Grbl.

$110, $111 and $112 – [X,Y,Z] Max rate, mm/min

This sets the maximum rate each axis can move. Whenever Grbl plans a move, it
checks whether or not the move causes any one of these individual axes to exceed
their max rate. If so, it'll slow down the motion to ensure none of the axes exceed
their max rate limits. This means that each axis has its own independent speed, which
is extremely useful for limiting the typically slower Z-axis.

The simplest way to determine these values is to test each axis one at a time by slowly
increasing max rate settings and moving it. For example, to test the X-axis, send Grbl
something like G0 X50 with enough travel distance so that the axis accelerates to its
max speed. You'll know you've hit the max rate threshold when your steppers stall.

It'll make a bit of noise, but shouldn't hurt your motors. Enter a setting a 10-20%
below this value, so you can account for wear, friction, and the mass of your
workpiece/tool. Then, repeat for your other axes.

NOTE: This max rate setting also sets the G0 seek rates.

$120, $121, $122 – [X,Y,Z] Acceleration, mm/sec^2

This sets the axes acceleration parameters in mm/second/second. Simplistically, a
lower value makes Grbl ease slower into motion, while a higher value yields tighter
moves and reaches the desired feed rates much quicker. Much like the max rate
setting, each axis has its own acceleration value and are independent of each other.
This means that a multi-axis motion will only accelerate as quickly as the lowest
contributing axis can.

Again, like the max rate setting, the simplest way to determine the values for this
setting is to individually test each axis with slowly increasing values until the motor
stalls. Then finalize your acceleration setting with a value 10-20% below this absolute
max value. This should account for wear, friction, and mass inertia. We highly
recommend that you dry test some G-code programs with your new settings before
committing to them. Sometimes the loading on your machine is different when
moving in all axes together.

$130, $131, $132 – [X,Y,Z] Max travel, mm

This sets the maximum travel from end to end for each axis in mm. This is only useful
if you have soft limits (and homing) enabled, as this is only used by Grbl's soft limit
feature to check if you have exceeded your machine limits with a motion command.

Quick Guide to Setting Up Your Machine for the First
Time
Grbl's default configuration is intentionally very generic to help ensure users can see
successful motion without having to tweak settings. Generally, the first thing you'll
want to do is get your stepper motors running, usually without it connected to the
CNC. Wire Grbl to your stepper drivers and stepper motors according to your
manufacturer guidelines. Connect to Grbl through a serial terminal or one of many
Grbl GUIs. Send some G1 or G0 commands to Grbl. You should see your stepper
motor rotating. If you are having trouble with your stepper motors, try the following:

http://linuxcnc.org/docs/html/gcode/g-code.html#gcode:g0
http://linuxcnc.org/docs/html/gcode/g-code.html#gcode:g1

• Ensure everything is wired and powered correctly per your stepper driver
manufacturer guidelines.

• If your steppers are mounted in your CNC already, ensure your axes move
freely and don't obviously bind. If you can't easily tell, try removing your
steppers and check if they run under no load.

• Ensure your stepper motors and axes linear mechanisms are all tight and
secure. Small set screws on drivetrain components becoming loose is a very
common problem. Re-tighten and try applying some non-permenant thread
locker (Loctite blue) if it continually loosens.

• For more difficult issues, try the process of elimination to quickly isolate the
problem. Start by disconnecting everything from the Arduino. Test if Grbl is
operating ok by itself. Then, add one thing at a time and test.

• If your steppers are powered and making a grinding noise when trying to move,
try lowering the '$' acceleration and max rate settings. This sound is a sign that
your steppers is losing steps and not able to keep up due too much torque load
or going too fast.

• Grbl's default step pulse settings cover the vast majority of stepper drivers on
the market. While very uncommon, check these settings if you are still
experiencing problems or have a unusual setup.

Next, you will need to make sure your machine is moving in the correct directions
according to a Cartesian(XYZ) coordinate frame and satisfies the rule, as shown:

Mount your stepper motors into your CNC, if you haven't already done so. Send Grbl
some motion commands, such as G91 G0 X1 or G91 G0 X-1, which will move the x-axis
+1mm and -1mm, respectively. Check all axes. If an axis is not moving correctly, alter
the $3 direction port mask setting to invert the direction.

If you are unfamiliar with how coordinate frames are setup on CNC machines, see this
great diagram by LinuxCNC. Just keep in mind that motions are relative to the tool. So
on a typical CNC gantry router, the tool will move rather than the fixed table. If the x-
axis is aligned positive to the right, a positive motion command will move the tool to
the right. Whereas, a moving table with a fixed tool will move the table to the left for
the same command, because the tool is moving to the right relative to the table.

Finally, tune your settings to get close to your desired or max performance. Start by
ensuring your $100,$101, and $102 axes step/mm settings are correct for your setup.
This is dependent on your stepper increments, micro steps on your driver, and
mechanical parameters. There are multiple resources online to show you how to
compute this for your particular machine, if your machine manufacturer has not
supplied this for you. Tweak your $12x acceleration and $11x max rate settings to
improve performance. Set to no greater than 80% of absolute max to account for
inertia, cutting forces, and motor torque reductions with speed. Set your $13x max
travel settings if you plan on using homing or soft limits. It's recommended to enter
something approximately close to actual travel now to avoid problems in the future.

At this point, you're pretty much ready to get going! Grbl can now move your CNC
machine and run g-code jobs. If you need to add more features, such as limit switches
for homing or hard limits or spindle/laser control. There are other Wiki pages to help
you that. Good luck and have fun!

http://linuxcnc.org/docs/html/user/user-concepts.html#_machine_configurations

	Getting Started
	Grbl Settings
	$$ - View Grbl settings
	@ - New way to view and change Grbl settings – added by cnc4fun
	Please note:
	$x=val - Save Grbl setting

	Grbl's $x=val settings and what they mean
	$0 – Step pulse, microseconds
	$1 - Step idle delay, milliseconds
	$2 – Step port invert, mask
	$3 – Direction port invert, mask
	$4 - Step enable invert, boolean
	$5 - Limit pins invert, boolean
	$6 - Probe pin invert, boolean
	$10 - Status report, mask
	$11 - Junction deviation, mm
	$12 – Arc tolerance, mm
	$13 - Report inches, boolean
	$20 - Soft limits, boolean – modified by cnc4fun
	$21 - Hard limits, boolean
	$22 - Homing cycle, boolean
	$23 - Homing dir invert, mask
	$24 - Homing feed, mm/min
	$25 - Homing seek, mm/min
	$26 - Homing debounce, milliseconds
	$27 - Homing pull-off, mm
	$30 - Max spindle speed, RPM
	$31 - Min spindle speed, RPM
	$32 - Laser mode, boolean
	$33 – MIST-ON only when Z axis is down – added by cnc4fun
	$50 – Expansion board, boolean – added by cnc4fun
	$51 – Pendant enabled, boolean – added by cnc4fun
	$52 – Spindle off at 0 speed, boolean – added by cnc4fun
	$53 – Parking axis target, mm – added by cnc4fun (UNDER DEVELOPMENT)
	$54 – Parking rate, mm/min – added by cnc4fun (UNDER DEVELOPMENT)
	$55 – Parking pullout rate, mm/min – added by cnc4fun (UNDER DEVELOPMENT)
	$56 – Parking pullout increment, mm/min – added by cnc4fun (UNDER DEVELOPMENT)
	$57 – Spindle PWM, Hz – added by cnc4fun
	$58 – Servo wakeup time, ms – added by cnc4fun
	$59 – Enable, mask (XYZ) – added by cnc4fun
	$60 to $65 ; $70 to $75 – Virtual stepped knob parameters – added by cnc4fun
	$60 – Spindle knob min value – added by cnc4fun
	$61 – Spindle knob mid value – added by cnc4fun
	$62 – Spindle knob min value – added by cnc4fun
	$63 – Spindle knob min multiplier – added by cnc4fun
	$64 – Spindle knob max multiplier – added by cnc4fun
	$65 – Spindle knob steps – added by cnc4fun
	$66 – Spindle spin-up time – added by cnc4fun
	@69 – Spindle ADC reading – added by cnc4fun
	$70 – Feed knob min value – added by cnc4fun
	$71 – Feed knob mid value – added by cnc4fun
	$72 – Feed knob min value – added by cnc4fun
	$73 – Feed knob min multiplier – added by cnc4fun
	$74 – Feed knob max multiplier – added by cnc4fun
	$75 – Feed knob steps – added by cnc4fun
	@79 – Feed ADC reading – added by cnc4fun
	$76 – Feed knob hold at 0 speed – added by cnc4fun
	$77 – Feed minimum speed – added by cnc4fun
	$80 – Pendant fast mode timer, [X,Y] sec.– added by cnc4fun
	$81 – Pendant fast mode timer, [Z] sec.– added by cnc4fun
	$82 – Pendant jog feed sped, [X,Y] mm/min.– added by cnc4fun
	$83 – Pendant jog feed sped, [Z] mm/min.– added by cnc4fun
	$84 – Pendant jog step, [X,Y,Z] mm – added by cnc4fun
	$85 – Pendant jog step, [X,Y,Z] mm – added by cnc4fun
	$86 – Pendant jog step, [X,Y,Z] mm – added by cnc4fun
	$87 – Pendant jog step, [X,Y,Z] mm – added by cnc4fun
	$88 –Swap mask for XYZ pushbuttons – added by cnc4fun
	$89 – Pendant soft reset = REBOOT after xx Sec. – added by cnc4fun
	$90 – WiFi off – added by cnc4fun
	$91 – Serial port baud rate – added by cnc4fun
	$100, $101 and $102 – [X,Y,Z] steps/mm
	$110, $111 and $112 – [X,Y,Z] Max rate, mm/min
	$120, $121, $122 – [X,Y,Z] Acceleration, mm/sec^2
	$130, $131, $132 – [X,Y,Z] Max travel, mm

	Quick Guide to Setting Up Your Machine for the First Time

