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Abstract

The total solar irradiation (TSI) is the primary quantity of energy that is

provided to the Earth. The properties of the TSI variability are critical for

understanding the cause of the irradiation variability and its expected influence

on climate variations. A deterministic property of TSI variability can provide

information about future irradiation variability and expected long-term climate

variation, whereas the non-deterministic variability can only explain the past.

This study of solar variability is based on an analysis of the TSI data series from

1700 A.D. and 1000 A.D., a sunspot data series from 1611 A.D., and a solar

orbit data series from 1000 A.D. The study is based on a wavelet spectrum

analysis. First the TSI data series are transformed into a wavelet spectrum.

Then the wavelet spectrum is transformed into an autocorrelation spectrum, to

identify stationary, subharmonic and coincidence periods in the TSI variability.

The results indicate that the TSI and sunspot data series have periodic cycles

that is correlated to the solar position oscillation and controlled by gravity force

variations from the large planets Jupiter, Saturn, Uranus and Neptune and the

solar dynamo. A possible explanation is forced oscillations between the large
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planets and the solar dynamo.The major solar variability is controlled by the

12-year Jupiter period and the 84-year Uranus period. The TSI data series from

1700 A. D.has a direct relation to the 84-year Uranus period with subharmonics.

The phase lag between the solar position oscillation and this TSI oscillation is

estimated to about 0.15π (rad/year) for the dominating 84-year period, and is

phase locked to the perihelion state of Uranus.

The long TSI data series from 1000 A.D. has stationary periods of approx-

imately 125 years and 210 years, which are controlled by the same stationary

period of 84 year. The minimum of the 125 year period coincide with the

Uranus perihelion. The 125-year and the 210-year period subsequently produce

a new set of subharmonic periods. The sunspot data series from 1610 A.D. has

a stationary 12-year Jupiter period and a stationary period of approximately

210 years, which is controlled by a 5/2 resonance to the 84-year Uranus pe-

riod. The study confirms that the 12-year Jupiter period and the 210-year de

Vries/Suess period have coincidence periods in TSI and sunspot variability. The

phase lag between the solar position oscillation and TSI and sunspot oscillation

is estimated to about 0.7π (rad/year) for the dominating 210-year period.

A model of the stationary periods in TSI and sunspot variability confirms

the results by a close relation to known long solar minimum periods since 1000

A.D. and a modern maximum period from 1940 to 2015. The model computes

a new Dalton sunspot minimum from approximately 2025 to 2050 and a new

Dalton period TSI minimum from approximately 2040 to 2065.
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1. Introduction

The total solar irradiation (TSI) is the primary source of energy that is

provided to the Earth’s climate system. A variation in the TSI irradiation

will contribute to a natural climate variation on the Earth. The variability of

the irradiation from the Sun was approximately 0.3% over the last 300 years5

2



(Scafetta & Willson, 2014). A better understanding of the TSI variability prop-

erties is critical for understanding the cause of the irradiation variability from

the Sun. A TSI data series has information that reflects the cause of the TSI

variability. If the TSI variability has deterministic oscillating periods, we can

forecast expected TSI variation, whereas a random TSI variability can only ex-10

plain the past. The intermittency of the solar variation is preferably explained

as stochastic noise (Charbonneau, 2010). In this investigation, we introduce a

simple hypothesis: if the TSI variability has a periodic oscillation, the variabil-

ity oscillation must have an oscillation source that influences the solar energy

oscillation. A possible oscillation source is the variable distance to the planets,15

which create oscillating tidal effects which we name gravity oscillations (GO).

1.1. Solar variability

The concept of a perfect and constant Sun, as postulated by Aristotle, was a

strong belief for centuries and an official doctrine of Christian and Muslim coun-

tries (Usoskin et al., 2013). Although some transient changes of the Sun were20

observed with the naked eye, the introduction of the telescope in approximately

1600 demonstrated that the Sun had spots that varied in number and loca-

tion. From 1610 systematic observations were reported. A pattern of sunspot

variations was established when Heinrich Schwabe began regular observations

of sunspots in 1826. He reported a possible period of approximately ten years25

(Schwabe, 1844). Wolf (1859) presented the opinion that the planets Venus,

Earth, Jupiter and Saturn modulate the solar variability.

The solar activity cycle (Hathaway, 2015) consists of dark sunspots and

bright regions (faculae) in addition to active regions that display sudden energy

releases (flares). The average cycle length is 11.1 years. During a cycle, the30

number of spots increases to a maximum number and then decreases. The

average lifetime of a sunspot is slightly longer than the solar rotation period.

They are bipolar, with the same magnetic polarity that leads with respect to

the direction of the solar rotation. When the next cycle starts, spots appear

with opposite polarity at high latitudes in both hemispheres, and as the cycle35
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progress, they appear closer to the Equator.

The 11.1-year sunspot period is referred to as the Schwabe cycle, and is

proposed to be created by the tidal torque from the planets Venus, Earth and

Jupiter (Wilson, 2013). The 22-year magnetic reversal period is referred to as

the Hale period. Scafetta (2012) showed that the 11-year Schwabe sunspot cycle40

consists of three periods of 9.98, 10.90 and 11.86 years, which are close to the

Jupiter/Saturn spring period of 9.93 years, a tidal pattern of Venus, Earth and

Jupiter of 11.07 years and the Jupiter orbital period of 11.86 years. A relation

between the planets periods and sunspot periods indicates the possibility of a

deterministic long-term relation between planet periods and periods in sunspot45

data series.

1.1.1. Sunspot data series

The sunspot number time series is a measure of the long-term evolution of

the solar cycle and a proxy for the long-term influence of the Sun on the Earth’s

climate. The relative sunspot number (R) as defined by Wolf (1861) is based50

on the total number of individual sunspots n and the number of sunspot groups

g, according to the formula R = k(10g + n), where k is a correction factor for

the observer. It was introduced to correct for the use of different telescopes

and observers. R is referred to as the Zürich, Wolf or International Sunspot

Number. Today SN is used for the International Sunspot Number (Clette et55

al., 2014).

Rudolf Wolf started systematic observations of sunspot numbers in 1849. He

also collected previous observations to construct daily sunspot numbers from

1750 and a yearly series from 1700. The cycle that started in 1755 became

sunspot cycle 1. The sunspot numbers had to be scaled upwards several times60

due to missing spots. By approximately doubling the number of recovered

observations and cleverly interpolating between sparse observations (Hoyt et

al., 1994), gaps were reduced and the series was extended to the first recording

of sunspots by telescope in 1611. The history of the sunspot series and the last

extensive corrections are described by Clette et al. (2014). The revised yearly65
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series, which is available from the World Data Center SILSO from July 2015,

was employed in our analysis.

Because the standard sunspot series is a composite time series based on single

spots and groups, the accuracy significantly decreases going back in time. Due to

poorer telescopes and locations, smaller spots were difficult to see and frequently70

lost. To correct for this situation, Hoyt and Schatten (1998a,b) constructed a

new group sunspot number RG that was normalized to the Zürich sunspot num-

ber. Their series covered the period 1610-1995 and was based on a larger and

more refined observational database. Although the group sunspot number cor-

responded to the relative sunspot number in the 20th century, the maximum75

group number was 40% lower in the 19th century and previous centuries (Clette

et al., 2014). The group sunspot numbers were recently revised, and the dif-

ference between the series may now be considered as random noise. However,

during the last two sunspot cycles (nos. 23 and 24), 30% fewer sunspots per

group were observed, which may be a sign of changes in the solar dynamo (Clette80

et al., 2014).

1.1.2. Solar activity periods – grand maxima and minima

In the 1890s, G. Spörer and E. W. Maunder (Maunder, 1890) reported that

the solar activity was strongly reduced over a period of 70 years from 1645 to

1715 (Eddy, 1976, 1983). Based on naked-eye observations of sunspots, records85

of aurora activity, and a relation between 14C variations and solar activity, a

grand maximum (1100-1250) and the Spörer minimum (1460-1550) were also

identified (Eddy, 1976).

The distribution of the solar activity can be interpreted as bi-modal, which

implies distinct modes of activity. The main (regular) mode corresponds to90

moderate activity, which has a maxima of the 10-yr average spot number be-

tween 20 spots and 67 spots. In addition, we obtain grand maxima and grand

minima that are above this range and below this range, respectively (Usoskin

et al., 2014). Studies that employ cosmogenic isotope data and sunspot data

indicate that we are currently leaving a grand activity maximum, which started95
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in approximately 1940 and is now declining (Usoskin et al., 2003; Solanki et al.,

2004; Abreu et al., 2008).

Because grand maxima and minima occur on centennial or millennial timescales,

they can only be investigated using proxy data, i.e., solar activity reconstructed

from 10Be and 14C time-calibrated data. The conclusion is that the activity100

level of the Modern Maximum (1940-2000) is a relatively rare event, with the

previous similarly high levels of solar activity observed 4 and 8 millennia ago

(Usoskin et al., 2003). Nineteen grand maxima have been identified by Usoskin

et al. (2007) in an 11,000-yr series.

Grand minimum modes with reduced activity cannot be explained by only105

random fluctuations of the regular mode (Usoskin et al., 2014). They can be

characterized as two flavors: short minima in the length range of 50-80 years

(Maunder-type) and longer minima (Spörer-type). Twenty-seven grand minima

are identified with a total duration of 1900 years, or approximately 17% of the

time during the last 11,500 years (Usoskin et al., 2007). An adjustment-free110

reconstruction of the solar activity over the last three millennia confirms four

grand minima since the year 1000: Maunder (1640-1720), Spörer (1390-1550),

Wolf (1270-1340) and Oort (1010-1070) (Usoskin et al., 2007). The Dalton

minimum (1790-1820) does not fit the definition of a grand minimum; it is more

likely a regular deep minimum that is observed once per century or an immediate115

state between the grand minimum and normal activity (Usoskin et al., 2013).

Temperature reconstructions for the last millennium for the northern hemi-

sphere (Ljungquist, 2010) show a medieval maximum temperature at approx-

imately the year 1000 and a cooling period starting at approximately 1350,

immediately after the Wolf minimum and lasting nearly 500 years, with the120

coldest period in what is referred to as the Little Ice Age (LIA) at the time of

the Maunder minimum. A cold period was also observed during the time of the

Dalton minimum. The Maunder and the Dalton minima are associated with less

solar activity and colder climate periods. In this investigation, minimum solar

activity periods may serve as a reference for the identified minimum irradiations125

in the TSI oscillations.

6



1.2. Total Solar Irradiance

The total solar irradiance (TSI) represents a direct index for the luminosity

of the Sun measured at the average distance of the Earth. The solar luminosity

was previously considered to be constant, and the TSI was named the solar130

constant. Since satellite observations started in 1979, the total solar intensity

(TSI) has increased by approximately 0.1% from the solar minima to the solar

maxima in the three observed sunspot cycles. The variation in the TSI level

does not adequately explain the observed variations in the global temperature.

In addition to the direct effect, however, many indirect effects exist, such as UV135

energy changes that affect the production of ozone, solar wind modulation of

the galactic cosmic ray flux that may affect the formation of clouds, and local

and regional effects on temperature, pressure, precipitation (monsoons) and

ocean currents. The Pacific Decadal Oscillation (PDO) and the North Atlantic

Oscillation (NAO) also show variations that are related to the phase of the TSI140

(Velasco & Mendoza, 2008). A significant relation between sunspots and ENSO

data has also been observed (Hassan et al., 2016).

Composite TSI records have been constructed from a database of seven in-

dependent measurement series that cover different periods since 1979. Different

approaches to the selection of results and cross-calibration have produced com-145

posites with different characteristics: the Active Cavity Radiometer Irradiance

Monitor (ACRIM) and the Physikalisch-Meteorologisches Observatorium Davos

(PMOD) series. The ACRIM composite uses the TSI measurements that were

published by the experimental teams (Willson, 2014), whereas the PMOD com-

posite uses a proxy model that is based on the linear regression of sunspot150

blocking and faculae brightening against satellite TSI observations (Fröhlich &

Lean, 1998). To construct a TSI from a previous time period, two different

approaches are employed: a reconstruction that is based on several different

proxies for the solar irradiance (ACRIM-HS) or a statistical approach (PMOD).

Proxies for the solar irradiance include the equatorial solar rotation rate, the155

sunspot structure, the decay rate of individual sunspots, the number of sunspots

without umbra, the length and decay rate of the sunspot cycle, and the solar
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activity level.

Hoyt & Schatten (1993) constructed an irradiance model that was based on

the solar cycle length, cycle decay rate, and mean level of solar activity for the160

period 1700-1874. From 1875-1992, a maximum of five solar indices were em-

ployed. The correlation between these indices and the phase coherence indicated

that they have the same origin. Hoyt & Schatten (1993) interpret this finding

as a response to convection changes near the top of the convection zone in the

Sun. All solar indices have maxima between 1920 and 1940; the majority of165

the maxima occur in the 1930s. The Hoyt-Schatten irradiance model has been

calibrated and extended with the newest version of ACRIM TSI observations

(e.g. Scafetta & Willson, 2014, Fig. 16); it is employed in this analysis. In the

following section, this reconstruction is referred to as TSI-HS. A mostly rural

Northern Hemisphere composite temperature series 1880 -2013 show strong cor-170

relation with the TSI-HS reconstruction, which indicates a strong solar influence

on Northern Hemisphere temperature (Soon et al., 2015).

The TSI-HS series covers the period from 1700-2013. To investigate longer

periods to search for minimum periods, we have employed a statistical TSI in-

dex estimated by Velasco Hererra et al. (2015) from 1000 to 2100. The index,175

which is referred to as TSI-LS, is estimated by the least squares support vector

machine (LS-SVM) method, which is applied for the first time for this purpose.

The method is nonlinear and nonparametric. The starting point is a probabil-

ity density function (PDF) that was constructed from the PMOD or ACRIM

composites. The function describes how many times a certain level of TSI has180

been observed. From this normalized annual power, anomalies are constructed.

The TSI between 1610 and 1978 was determined by the LS-SVM method using

the group sunspot number as an input after calibration between 1979 and 2013

with the ACRIM or PMOD composites. To estimate the TSI from 1000 to 1510

and from 2013 to 2100, the LS-SVM method and a nonlinear autoregressive185

exogenous model (NARX) were employed. In this study, we have employed the

TSI reconstruction that was calibrated by the ACRIM TSI composite (Velasco

Hererra et al., 2015).
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1.3. Solar energy oscillation

An oscillating TSI variability is produced by forcing from an oscillating en-190

ergy source. This oscillation energy source may be the solar inertial motion,

processes in the interior of the Sun, solar tides and/or solar orbit oscillation

around the solar system barycenter (SSB). The energy source for the solar

activity is the deceleration of the rotation of the Sun by magnetic field lines

connected to interplanetary space. The solar wind carries mass away from the195

Sun; this magnetic braking causes a spin down of the solar rotation. Part of the

decrease in rotational energy is the energy source for the solar dynamo, which

converts kinetic energy to electromagnetic energy.

The classical interpretation of the solar dynamo is that it is placed in the

transition zone between convection and radiation near the solar surface: the200

tachocline, approximately 200,000 km below the surface. Strong electric cur-

rents originate by the interaction between the convection and the differential

solar rotation. This causes the formation of strong magnetic fields, which rise

to the surface and display various aspects of solar activity, such as spots, facu-

lar fields, flares, coronal mass emissions, coronal holes, polar bright points, and205

polar faculae, after having detached, as described by de Jager & Duhau (2011).

They explain the 22-year Hale cycle as attributed to magneto-hydrodynamic

oscillations of the tachocline. This period is not constant. It persisted for ap-

proximately 23 years prior to the Maunder Minimum, during which it increased

to 26 years. During the maximum of the last century, this period was as brief as210

21 years. Gleissberg (1958, 1965) discovered a cycle of approximately 80 years

in the amplitude of the sunspot numbers. It is interpreted as the average of two

frequency bands: one band from 50-80 years and one band from 90-140 years

(Ogurtsov et al., 2002). An examination of the longest detailed cosmogenic

isotope record (INTCAL98) of 14C abundance, with a length of 12,000 years,215

reveals an average Gleissberg cycle period of 87.8 years. It is resolved in two

combination periods of 91.5±0.1 and 84.6±0.1 yr (Peristykh & Damon, 2003).

Proxies that describe the magnetic fields in the equatorial and polar re-

gions can describe the variability of the tachocline. A proxy for the equatorial

9



(or toroidal) magnetic field is Rmax (the maximum number of sunspots in two220

successive Schwabe cycles), and a proxy for the maximum poloidal magnetic

field strength is aamin (the minimum value of the measured terrestrial mag-

netic field difference). In a phase diagram based on theRmax and aamin values,

two Gleissberg cycles (1630-1724) and (1787-1880) were identified (Duhau & de

Jager, 2008). The years 1630 and 1787 represent transition points, where phase225

transitions to the grand episodes (Maunder and Dalton minima) occurred. The

lengths of the two Gleissberg cycles were 157 years and 93 years. The next

Gleissberg cycle lasted 129 years until 2009 with an expected phase transition

to a high state in 1924. Duhau & de Jager (2008) predicted that the transition

in 2009 indicates a transition to a Maunder-type minimum that will start with230

cycle 25 in approximately 2020.

In addition to the variable Gleissberg period, a de Vries period from 170-260

years is observed in the 14C and 38Cl records. This period is fairly sharp with

little or no variability (Ogurtsov et al., 2002). Almost no existing models for

the solar activity predicted the current weak cycle 24. A principal component235

analysis of full disc magnetograms during solar cycles 21-23 revealed two mag-

netic waves that travel from opposite hemispheres with similar frequencies and

increasing phase shifts (Shepherd et al., 2014; Zharkova et al., 2015). To under-

stand this phase shift they introduce a non-linear dynamo model in a two-layer

medium with opposite meridional circulation. One dynamo is located in the240

surface layer and the other dipole deeply in the solar convection zone. The solar

poloidal field is generated by these two dynamos in different cells with oppo-

site meridional circulation. The observed poloidal-toroidal fields have similar

periods of oscillation with opposite polarities that are in an anti-phase every

11 years, which explains the Schwabe period. The double-cell meridional circu-245

lation flow is detected with helioseismology by HMI/SDO observations (Zhao

et al., 2013). Extrapolations backward of these two components revealed two

350-year grand cycles that were superimposed on a 22-year cycle. The beat be-

tween the two waves shows a resemblance to the sunspot activity, including the

Maunder and Dalton minima, and forecasts a deep minimum in this century.250
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The low frequency wave has a variable period length from 320 year (in 18-20

centuries) to 400 year predicted for the next millennium.

Analysis of systematic variations of small scale magnetic structures and EUV

bright spots from the Solar and Heliospheric Observatory (SOHO) and Solar Dy-

namics Observatory (SDO) has lead to a phenomenological model that explains255

the cyclic behavior of the sunspots as a systematic pattern of activity bands

which either are stationary at high latitudes or move towards the equator in

a 22-yr cycle (McIntosh et al., 2014). The toroidal flux system that belong to

the 22-yr cycle is rooted deep in the convective interior at the bottom of the

convection zone at 0.72rs (McIntosh & Leamon, 2014). In this model the migra-260

tion towards the equator is controlled by the solar (differential) rotation. The

speed of migration towards the equator determines the solar activity. When the

opposite sign activity bands approach the equator they cancel each other and

a solar minimum is observed. If the approach is slow, a grand minimum may

take place (McIntosh & Leamon, 2015). However, in this case the 22 year cycle265

is still in present in the polar regions and a new band of activity is born every

22 year. This explains the variable length of solar cycles and that the cycle

still is present even in the deep Maunder minimum as observed in cosmogenic

nucleids. The slow approach may be the result of a random change in the length

of a solar cycle. A long, weak, cycle has the tendency to create another long270

and week cycle, until finally corrected by the high latitude 22yr clock, which

then ends the deep minimum (McIntosh & Leamon, 2015). The deep minimum

could also be a result of an systematic change in the rotation pattern, which

may be caused by external forcing. This will be discussed in the following.

Another model is based on the observation that the thermal relaxation time275

in the convection zone is on the order of 105 years (Foukal et al., 2009), which is

too long to explain the rapid decay of the magnetic field during one solar cycle.

A simple solution is to place the dynamo in small bubbles in the solar core, which

change polarity every cycle due to interaction with the interplanetary magnetic

field (Granpierre, 2015). The liberated rotational energy then forms buoyant280

hot bubbles that move toward the solar surface. These bubbles are observed
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on the solar surface as precursors for large flares. The largest flares have a

high probability of appearing near the closest position of one or more of the

tide-producing planets Mars, Venus, Earth and Jupiter (Hung, 2007; Mörner et

al., 2015). The energy of the hot bubbles is boosted by thermonuclear runaway285

processes in the bubbles, which appear at the solar surface as hot areas with a

frozen magnetic field. In this process, planetary effects serve an important role

(Granpierre, 1990, 1996; Wolf & O’Donovan, 2007; Scafetta, 2012).

1.4. External forcing generated by the planets

Although the various dynamo models can explain the variations to some290

extent, few or no constraints on the periods exist. The majority of the expla-

nations operate with a range of possible periods. The models do not explicitly

determine whether the observed periods are random and stochastic or if some

period-forcing from external or internal sources occurs. In the following section,

we investigate the external forcing that is generated by the planets in the solar295

system.

1.4.1. Solar inertial motion

Charvátová & Heida (2014) have classified the solar inertial motion (SIM)

in an ordered (trefoil) pattern with a length of approximately 50 years followed

by disordered intervals. Exceptionally long (approximately 370 years) trefoil300

patterns appear with a 2402-year Hallstadt period. They determined that the

deepest and longest solar activity minima (of Spörer and Maunder types) ap-

peared in the second half of the 2402-year cycle, in accordance with the most

disordered type of SIM. The Dalton minimum appeared during a mildly disor-

dered SIM (1787–1843), which repeats from 1985-2040. The solar orbit in the305

period 1940-2040, which is shown in Figure 1, demonstrates this phase.

1.4.2. Interior of the Sun as a rotating star

Wolf & Patrone (2010) have investigated how the interior of a rotating star

can be perturbed when the star is accelerated by orbiting objects, as in the

solar system. They present a simple model in which fluid elements of equal310
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mass exchange positions. This exchange releases potential energy (PE) that

is only available in the hemisphere that faces the barycenter of the planetary

system, with a minor exception. This effect can raise the PE for a few well-

positioned elements in the stellar interior by a factor of 7, which indicates that

a star with planets will burn nuclear fuel more effectively and have a shorter315

lifetime than identical stars without planets. However, in the case of the Sun,

occasional mass exchanges occur near the solar center, which activate a mixed

shell situated at 0.16rs where rs is the solar radius. For this reason, the close

passages of the barycenter are important because they can cause negative pulses

in the PE. The energy liberated is a result of the roto-translational dynamics of320

the cell around the solar system barycenter. An analysis of the variation of the

PE storage reveals that the maximum variations correspond to the documented

grand minima of the last 1000 years because the PE minima are connected to

periods in which the Sun moves close to the barycenter. Large reductions in

the PE values occur when the giant planets are quasi-aligned, which occurred325

in approximately 1632, 1811 and 1990, separated by 179 years (Jose cycle).

Because the planetary positions never exactly repeat, the PE variations show a

complex pattern that creates different minima (Cionco & Soon, 2015).

1.4.3. Solar inertial oscillations

The complex planetary synchronization structure of the solar system has330

been known since the time of Pythagoras of Samos (ca. 570-495 B.C.). Jose

(1965) showed that the solar center moves in loops around the solar system

barycenter (SSB). The average orbital period of 19.86 years corresponds to

the heliocentric synodic period of Jupiter and Saturn. The modulation of the

orbit by the outer planets Uranus and Neptune produces asymmetries in the335

orbital shape and period variations between 15.3 and 23.4 years (Fairbridge &

Shirley, 1987). The solar motion differs from the Keplerian motion of planets

and satellites in important ways. For instance, the velocity is some time highest

when the distance from the Sun to the SSB is largest, and the solar angular

momentum may vary by more than one order of magnitude over a period of ten340
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years (Blizzard, 1981). An analysis of solar orbits from A.D. 816 – 2054 covered

seven complete Jose cycles of 179 years and indicated that prolonged minima

can be identified by two parameters: the first parameter is the difference in

axial symmetry of the orbit, and the second parameter is the change in angular

momentum (torque) about SSB. Based on these criteria, a new minimum should345

begin between 1990 and 2013 and end in 2091 (Fairbridge & Shirley, 1987).

The distance of the Sun from the barycenter, the velocity, and the angular

momentum show the same periodic behavior. The motion of the solar center

around the SSB is typically prograde; however, in 1811 and 1990, the Sun

occasionally passes near the SSB in a retrograde motion. Because the 1811350

event occurred at the time of the Dalton minimum, a new minimum may occur

in approximately 1990 (Cionco & Soon, 2015).

Scafetta (2014) reviews the investigation of the patterns that are described

by the Sun and planets. He concludes that modern research shows that the plan-

etary orbits can be approximated by a simple system of resonant frequencies and355

that the solar system oscillates with a specific set of gravitational frequencies,

many of which range between three and 100 years, that can be constructed as

harmonics of a base period of ∼ 178.78 years.

1.4.4. Solar tidal oscillation

The tidal elongation at the solar surface is on the order of 1-2 mm from360

the planets Venus and Jupiter with less tides from the other planets. Scafetta

(2012) proposed that tidal forces, torques and jerk shocks act on and inside the

Sun and that the continuous tidal massaging of the Sun should involve heating

the core and periodically increasing the nuclear fusion rate. This action would

amplify weak signals from the planets with a factor ∼ 4 × 106. Even if the365

amplitude is small in the direction of a planet, it creates a wave that propagates

with the velocity of the planet. If the planet has an elliptical orbit, the variation

in distance creates a disturbance that will affect the nuclear energy production

in the center of the Sun. Since more planets participate, this effect or GO, will

be a combination of phases and periods, which can be highly nonlinear.370
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Our hypothesis is that the solar position oscillation (SPO) represents an in-

dicator of the tidal and inertial interaction between the giant planets Jupiter,

Saturn, Neptune, Uranus and the Sun. The SPO can be calculated from plane-

tary Ephemeris as the movement of the Sun around the Solar System Barycenter

(SSB). In section 2, we describe the methods and data sets used to demonstrate375

a connection between SPO and TSI and SN variations. In section 3, we present

the results; in section 4, we discuss the results and relate them to other investi-

gations. We conclude the paper in section 5. Because the solar system and its

planets has a long lifetime, we can expect forces in the same direction over long

periods of time that may have a strong effect on long periods.380

2. Materials and methods

2.1. Data

The motive of the study is to identify possible stationary periods in TSI

variability. In this study possible stationary periods are represented by first

stationary periods, subharmonic periods and coincidence periods. First sta-385

tionary periods have a period T in the data series. Subharmonic periods have

periods n ∗ T for n = 2, 3, 4 . . . Coincidence periods have a coincidence between

two ore more periods and may be represented by n ∗ T1 = m ∗ T2. Coincidence

periods are stationary periods and introduce a new set of subharmonic periods.

The study compares the identified stationary periods and period phase in two390

TSI data series, a sunspot data series and a SPO data series.

The SPO data series represents an indicator of the oscillating tidal and

inertial interaction between the Sun and the large planets. The large planets

have the following periods (in years): Jupiter P (J, 11.862), Saturn P (S, 29.447),

Uranus P (U, 84.02) and Neptune P (N, 164.79). The SPO covers the period from395

1000 to 2100, where SPOx represents the x-direction of the xyz-vector. The

source of the SPO data series is the JPL Horizon web interface (http://ssd.jpl.nasa.gov/horizons.cgi#top),which

is based on the Revised July 31, 2013 ephemeris with the ICRF/J2000 reference

frame, downloaded 30.09.14 and at subsequent dates.
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The total solar irradiance (TSI-HS) data series (e.g. Scafetta & Willson,400

2014, Fig. 16) covers the period from 1700 to 2013. The source of the data series

is Scafetta (personal communication. Dec. 2013). The total solar irradiation

(TSI-LS) is based on the LS-SVM ACRIM data series (Velasco Hererra et al.,

2015) and covers the period from 1000 to 2100. The source of the TSI-LS data

series is Velasco Herrera (21.09.14. Personal communication). The sunspot405

data series is the group sunspot numbers from 1610 to 2015. The source of

the sunspot data series is SILSO (The World Data Center for the production,

preservation and dissemination of the international sunspot number).

2.2. Methods

Possible stationary periods in the data series are identified in two steps. First410

a wavelet transform of the data series separates all periods in into a wavelet

spectrum. The autocorrelation for wavelet spectrum then identifies dominant

first stationary periods, subharmonic periods and the coincidence periods. Prior

to the wavelet analysis, all data series are scaled by

x(t) = (y(t)− E[y(t)])/var(y(t)) (1)

where y(t) is the data series, E[y(t)] is the mean value, var(y(t)) is the415

variance and x(t) is the scaled data series. The data series are scaled to compare

the amplitudes from the oscillation periods and reduce side effects in the wavelet

analysis.

A wavelet transform of a data series x(t) has the ability to separate periods

in the data series into a wavelet spectrum. The wavelet spectrum is computed420

by the transformation

Wa,b(t) =
1√
a

∫
R

x(t)ψ

(
t− b
a

)
dt (2)

where x(t) is the analyzed time series, ψ() is a coif3 wavelet impulse function

(Daubechies, 1992; Matlab, 2015); which is chosen for its symmetrical perfor-

mance and its ability to identify symmetrical periods in data series; Wa,b(t)
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represents the computed wavelet spectrum, the parameter a represents a time-425

scaling parameter, and the parameter b represents a translation in time in the

wavelet transformation. When b = 0 and s = 1/a, the wavelet spectrum W (s, t)

represents a set of moving correlations between x(t) and the impulse function

ψ() over the entire time series x(t). The relationship between the wavelet s

and a sinus period T is approximately T ∼ 1.2s when using the coif3 wavelet430

function. In this investigation, the wavelet spectrum W (s, t) has the spectrum

range s = 0, 1, 2 . . . 0.6N , where N is the number of samples in the data series.

An autocorrelation transformation of the wavelet spectrum W (s, t) identifies

first periods, subharmonic periods and coincidence periods as maximum values

in the computed set of autocorrelation functions. The set of autocorrelation435

functions are estimated by the transformation

R(s,m) = E[W (s, t)W (s, t+m)] (3)

where R(s,m) represents the correlations between samples, at a distance m

years, for a wavelet s in the wavelet spectrum W (s, t).

3. Results

3.1. Sun Position Oscillation440

The Sun moves in a closed orbit around the barycenter of the solar system.

Figure 1 shows the SPO in the ecliptical plane from 1940 to 2040. The solar

system oscillation (SSO) is caused by the mutual gravity dynamics between

the planet system oscillation (PSO) and the solar position oscillation (SPO).

The solar position oscillation has oscillations in the (x, y, z) directions; they are445

represented by the data series SPOx, SPOy and SPOz. The movement looks

rather chaotic, as shown in Figure 1, because it mirrors the movements of the

planets in their orbits. A first step in this investigation is to identify stationary

periods and phase relations in the solar position between A.D. 1000 and 2100.

A wavelet spectrum represents a set of moving correlations between a data450

series and a scalable wavelet pulse. When the data series in the y-direction
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- SPOy - is transformed to the wavelet spectrum Wspoy(s, t), the spectrum

represents a collection of dominant periods in the SPOy data series. A visual

inspection of the wavelet spectrum Wspoy(s, t) shows a long-term dominant

period of approximately Pspoy(164) years. This period has a coincidence to the455

Neptune period P(N, 164.79). The data series SPOx and SPOy have the same

periods; however, SPOy has a 90-degree phase delay with respect to SPOx.

The wavelet spectrum Wspoy(s, t) is transformed to a set of autocorrelation

functions Rspoy(s,m), as shown on Figure 2, where each colored line repre-

sents a single autocorrelation function. The set of autocorrelations Rspoy(s, t)460

shows the identified stationary periods in the wavelet spectrum Wspoy(s, t).

The first maximum represents the correlation to a first stationary period. Sub-

harmonic periods have a maximum correlation at a distance (first period)∗n

where n = 1, 2, 3 . . . . Rspoy(s,m) identifies the following stationary periods:

P (spoy, 12) for Rspoy(12) = 0.98, P (spoy, 29) for Rspoy(29) = 0.95, P (spoy, 84)465

for Rspoy(84) = 0.9 and P (spoy, 164) for Rspoy(164) = 0.9. The same peri-

ods are associated with the PSO periods P (J, 11.862), P (S, 29.447), P (U, 84.02)

and P (N, 164.79), which indicates that the planets Jupiter, Saturn, Uranus and

Neptune in the planetary system are controlling the SPO.

A coincidence between subharmonic periods will amplify the coincidence470

period and introduce a new set of stationary periods. The autocorrelation spec-

trum Rspoy(s,m) of Figure 2 shows a set of subharmonic periods - P (spoy, n ∗

12), P (spoy, n ∗ 29) and P (spoy, n ∗ 84) - where n = 1, 2, 3 . . . . The identified

coincidence periods have mean values of

(P (spoy, 5 ∗ 12) + P (spoy, 2 ∗ 29))/2 = P (spox, 59) for RW (spoy, 59) = 0.95,475

P (spoy, 7∗12)+P (spoy, 3∗29)+P (spoy, 84))/3 = P (spoy, 85) forRW (spoy, 85) =

0.9,

(P (spoy, 10 ∗ 12) + P (spoy, 4 ∗ 29))/2 = P (spoy, 118) for Rspoy(118) = 0.9

and (P (spoy, 2 ∗ 84) + P (spoy, 164))/2 = P (spoy, 166) for Rspoy(166) = 0.9.

Figure 2 reveals that the majority of the SPO periods are mutually related by480

resonance. The new modulated periods are P (spoy, 59) and P (spoy, 118).

The stationary long wavelet periods Wspoy(84, t) and Wspoy(164, t) have
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maxima in approximately 1820, and Wspoy(29, t) has a maximum in approx-

imately 1812. The identified stationary periods may be transformed to the

model:485

P (spoyc, 29, t) = RW (spoy, 29) cos(2π(t− 1812))/29.447) (4)

P (spoyc, 84, t) = RW (spoy, 85) cos(2π(t− 1820))/84.02) (5)

P (spoyc, 164, t) = RW (spoy, 164) cos(2π(t− 1820))/164.97) (6)

By this model, the year 1820 may serve as a phase reference for the SPOy

periods, TSI variability and solar variability (SN). The data series SPOx has the

same stationary periods but a different phase. P (spoxc, 84, t) has a maximum

at approximately 1797, which represents a phase shift of approximately π/2.

P (spoxc, 164, t) has a maximum at approximately 1779. The maxima in SPOy490

and SPOx corresponds to minima in SPOÿ and SPOẍ. The deterministic

model (Eq. 4-6) has the sum P (spoyc, 29, t) + P (spoyc, 84, t) + P (spoyc, 164, t)

and a maximum in approximately 1812.

3.2. TSI-HS variability

The total solar irradiation (TSI) represents the measured irradiation Wm−2
495

at the average distance from the Sun to the Earth. Figure 3 shows an annual

mean total solar irradiance (TSI-HS) data series (Scafetta & Willson, 2014)

that covers the period from A.D. 1700 to 2013. A simple visual inspection

of this data series shows some variability properties. The TSI-HS data series

irradiation has fluctuations of approximately 3-4 Wm−2. The TSI fluctuations500

have minima in approximately 1700 (or before), 1800, 1890, and 1960, with

gaps of approximately 100, 90, and 70 years, or a mean minimum period of

approximately 86 years. The TSI-HS data series has maxima in 1770, 1830,

and 1950, with gaps of approximately 60 and 120 years. The mean maximum

fluctuation period in the TSI-HS data series is approximately 75 years or 11505

years less than the mean minimum period. Transformation of the TSI data

series into a wavelet spectrum may identify stationary periods.
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The transformed wavelet spectrum Whs(s, t) represents a set of separated

wavelet periods from the TSI-HS data series. Figure 4 shows the computed

wavelet spectrum of the TSI-HS data series from 1700 to 2013. In this presen-510

tation, the wavelet scaling range is s = 1 . . . 0.6N , and the data series contains

N = 313 data points. A visual inspection of the TSI wavelet spectrum shows

the dominant periods in the TSI data series in the time window between 1700

and 2013. The long wavelet period has a maximum in 1760, 1840, 1930, and

2000, with a mean gap of approximately 80 years.515

The autocorrelation spectrum Rhs(s,m) of the wavelet spectrum Whs(s, t)

identifies stationary periods in the wavelet spectrum. The maximum values in

the autocorrelation spectrum Rhs(s,m) represent a correlation to stationary

periods in the TSI-HS wavelet spectrum. Figure 5 shows the autocorrelation

spectrum Rhs(s,m) of the wavelet spectrum Whs(s, t) of the TSI-HS data se-520

ries.

A study of the autocorrelation spectrumRhs(s,m) shows a set of stationary

periods in the Whs(s, t) wavelet spectrum. The identified first cause station-

ary periods comprise the period set P (hs, 11) for Rhs(11) = 0.55, P (hs, 49) for

Rhs(49) = 0.55, P (hs, 86) for Rhs(86) = 0.65 and P (hs, 164) for RWhs(164) =525

0.7. The identified stationary periods are associated with the PSO periods

P (J, 11.862), P (S, 29.447), P (U, 84.02) and P (N, 164.79). The identified station-

ary period P (hs, 49) may be explained by possible modulation between the Sat-

urn oscillation and the Neptune oscillation: 2/(1/P (S, 29.447)+1/P (N, 164.79)) =

P (S,N, 49.96). This finding indicates that the TSI-HS variability is related530

to the solar position oscillation, which is controlled by the planet oscillation

from the large planets Jupiter, Saturn, Uranus and Neptune. Additional analy-

sis indicates that the dominant wavelet periods Whs(11, t) and Whs(49, t) are

mean estimates. Whs(11, t) has phase disturbance and Whs(49, t) has a phase-

reversal, as shown in Figure 6. They do not have stable phases and represent535

mean periods.

Figure 6 shows the identified dominant stationary wavelet periodsWhs(49, t),

Whs(86, t) and Whs(165, t) from the autocorrelation functions in Rhs(s,m). It
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shows that the wavelet period P (hs, 49) has a time-variant phase and is not

a stable period. The TSI-HS wavelet periods Whs(49, t) and Whs(86, t) have540

a negative value coincidence in the period from 1786 to 1820. Wspoy(84, t)

has an estimated maximum velocity and Wspox(84, t) has maximum state at

approximately 1797. The dominant wavelet period Whs(84, t) has a minimum

state at approximately 1803, or a phase delay of approximately 0.15π (rad/yr)

between the Wspox(84, t) maximum and the minimum Whs(84, t). Uranus was545

in perihelion in 1798. This indicates a relation between a minimum Uranus

distance to the Sun and a minimum in TSI-HS.

The correlation between the TSI-HS data series and the identified domi-

nant wavelet periods Whs(49, t) +Whs(86, t) +Whs(164, t) is estimated to be

R = 0.93, Q = 46.6 (Pearson correlation coefficient) in N = 312 samples. The550

correlation R = 0.93 reveals a close relation between the TSI-HS variability and

the solar position oscillation, which is controlled by Jupiter, Saturn, Uranus and

Neptune.

3.2.1. Deterministic model

The identified stationary periods Whs(86, t) and Whs(164, t) may be repre-555

sented by a deterministic model from the sum of the stationary cosine functions:

P (hsc, 84, t) = −Rhs(86) cos(2π(t− 1803)/84.02) (7)

P (hsc, 164, t) = −Rhs(164) cos(2π(t− 1860)/164.97) (8)

P (hsc, t) = P (hsc, 84, t) + P (hsc, 164, t) (9)

where R(hs, 86) and R(hs, 164) represent estimated correlations in the auto-

correlation. The phase relation between the maximum value of Pspox(84, t)

in 1797 and the minimum value P (hsc, 84, t) in 1803 is approximately 0.15π

(rad/year). The year 1797 is also the year of Uranus in perihelion. We also560

notice that the minimum value of P (hs, 164, t) (Eq. 8) is close to the time of

Neptune in perihelion. This indicates a delayed response from the SPO periods

on the TSI-HS variability. The correlation between the 84-year wavelet peri-

ods P (hsc, 84, t) and W (hsc, 84, t) is estimated to be Rhs, hsc(84) = 0.83. The
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correlation between the 164-year periods is Rhs, hsc(164) = 0.88. The correla-565

tion between the data series TSI-HS and the sum P (hsc, t) is estimated to be

R = 0.55. These results indicate that the dominant wavelet periods Whs(84, t)

and Whs(164, t) have stable phases from 1700 to 2013.

From the deterministic model (Eq. 9) of the data series TSI-HS, we estimate

grand minimum periods when P (hsc, t) ≤ −1. These minima, which are com-570

pared with named solar minima, are shown in Table 2. The next deep minimum

is estimated at approximately 2050. The TSH-HS data series can estimate time

periods up to a maximum of (2013-1700)/2=156 years and supports reasonable

good estimates of periods of approximately one hundred years. Longer time

period estimates require longer data series.575

3.3. TSI-LS variability

The TSI-LS data series (Figure 7) covers a period of 1100 years from A.D.

1000 to 2100, where the time period from the present to 2100 is forecasted. A

realistic hundred-year forecast or hindcast has to be based on possible deter-

ministic periods in the data series. A coherence analysis of the wavelet spectra580

Whs(s, t) and Wls(s, t) shows a coherency Chs, ls = 0.8− 0.95 for periods be-

tween 48 years and 86 years, which indicates that the TSI-HS data series and

the TSI-LS data series have the same periods from 48 - 86 years from 1700 to

2013.

The data series TSI-LS is analyzed by computing the wavelet spectrum585

Wls(s, t) and the autocorrelation spectrum Rls(s,m), the latter shown in Figure

8. The identified stationary periods in the autocorrelation spectrum Rls(s,m)

are P (ls, 11) for Rls(11) = 0.8, P (ls, 18) for Rls(18) = 0.3, P (ls, 29) for

Rls(29) = 0.2, P (ls, 83) for Rls(83) = 0.17, P (ls, 125) for Rls(125) = 0.6,

P (ls, 210) for Rls(210) = 0.35 and P (ls, 373) for Rls(373) = 0.5, the last not590

shown in Fig. 8. These periods are associated with the identified stationary

periods in the TSI-HS data series, the SPO data series periods and the PSO pe-

riods P (J, 11.862), P (S, 29.447) and P (U, 84.02). The difference is the smaller

correlation value in the autocorrelation Rls(s,m). Smaller correlation values
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may be explained by phase errors in this long data series.595

The autocorrelation spectrum Rls(s,m) (Figure 8) shows coincidence pe-

riods between P (ls, 3 ∗ 11) = P (ls, 33) and P (ls, 2 ∗ 18) = P (ls, 36), between

P (ls, 5∗11) = P (ls, 55) and P (ls, 3∗18) = P (ls, 54), and between P (ls, 8∗11) =

P (ls, 88) and the first period P (ls, 83). The coincidence period P (ls, 55) in-

troduces the subharmonic periods P (ls, n ∗ 55) for n = 1, 2, 3 . . .. The new600

information in Rls(s,m) is an identification of the dominant first cause pe-

riods P (ls, 18), P (ls, 125) and P (ls, 210). These periods have a combination

resonance that is created by a 2/3 resonance and a 5/2 resonance. The sta-

tionary model has a perfect relation to the Jupiter period and the Uranus

period when P (ls, 18) = P (ls, 3 ∗ 11/2) is related to P (ls, 3 ∗ 11.862/2 =605

17.793), P (ls, 126) = P (ls, 3∗84/2) is related to P (ls, 3∗84.02/2 = 126.03) and

P (ls, 210) = P (ls, 5 ∗ 84/2) is related to the period P (ls, 5 ∗ 84.02/2 = 210.05).

The period P (ls, 125) introduces a set of subharmonic periods P (ls, n ∗ 125),

where n = 1, 2, 3 . . . . In this investigation, we have only selected the third sub-

harmonic period P (ls, 3 ∗ 126.03 = 378.09), which is the most dominant.610

The autocorrelation spectrum Rls(s,m) shows that the period Wls(125, t)

represents the dominant amplitude variability in the TSI-LS data series. Figure

9 shows the identified long-term stationary periods Wls(124, t), Wls(210, t),

Wls(373, t) and the mean amplitude variation for these periods. The correla-

tion between TSI-LS and the mean is estimated to be R = 0.7 for N=1100 sam-615

ples and the quality Q=27.4. The mean of the identified wavelets Wls(125, t),

Wls(210, t), Wls(373, t) has a negative state in the periods (1000-1100), (1275-

1314), (1383-1527), (1634-1729), (1802-1846) and (2002-2083). The mean has a

minimum state in the years 1050, 1293, 1428, 1679, 1820, and 2040.

3.3.1. Deterministic model620

The identified dominant periods Wls(125, t),W ls(210, t), and Wls(373, t)

may be represented by the deterministic stationary model from the sum of the

cosine functions

P (lsc, 126, t) = Rls(125) cos(2π(t− 1857)/(3 ∗ 84.02/2) (10)
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P (lsc, 210, t) = Rls(210) cos(2π(t− 1769)/(5 ∗ 84.02/2) (11)

P (lsc, 378, t) = Rls(373) cos(2π(t− 1580)/(9 ∗ 84.02/2) (12)

P (lsc, t) = P (lsc, 126, t) + P (lsc, 210, t) + P (lsc, 378, t) (13)

where Rls(125), Rls(210) and RWls(373) represent the maximum period corre-

lations in the autocorrelation Rls(s,m). The correlation between the 125-year625

wavelet period W (ls, 125, t) and the stationary period P (lsc, 126, t) is estimated

to be Rls, lsc(125) = 0.9 for N=1040 samples and Q=53.7, Rls, lsc(210) = 0.67

for N=1000 and Q=28.9, and Rls, lsc(378) = 0.68 for N=1000 and Q=28.8.

The period Plsc(375, t) has the correlation Rls, lsc(378) = 0.67 to the identi-

fied wavelet period Wls(373, t) for N=1000 samples and Q=2813. The domi-630

nant wavelet periods Wls(125, t) and Wls(375, t) have a stationary period and

an approximately stable phase in the period from 1000 to 2100. A correlation

of long data series is sensitive to phase noise. The sum of the stationary periods

P (lsc, t) represents a mean TSI-LS variability. The correlation to the TSI-LS

data series is estimated to be Rlsc, ls(126 + 210 + 378) = 0.55 for N=1100 and635

Q=21.5. This analysis indicates that the TSI-LS variability has been influenced

by stationary periods that are controlled by the Uranus period P (U, 84.02).

A minimum of P (lsc, 126, t) is in 1794, which is close to the time of Uranus

perihelion position, while P (lsc, 2010, t) has a minimum in 1874 which is 0.7π

(rad/yr) after the Pspox(max). This indicates that the phase of these periods640

are synchronized with Uranus perihelion position.

The deterministic model (Eq.11) of the data series TSI-LS may represent an

index of minimum irradiation periods as shown in Table 2. By this index, the

chosen data series references a TSI minimum when the state is P (lsc, t) ≤ −0.5,

a Dalton-type minimum when P (lsc, t) ≤ −0.7 and a grand minimum when645

P (lsc, t) ≤ −1.0. The identified minima from this model are P (lsc, t) ≤ −1.0 for

the time period (1014-1056); P (lsc, t) ≤ −0.5) for (1276-1301); P (lsc, t) ≤ −1.0

for (1404-1435), which has a minimum -1.215 in the year 1419; P (lsc, t) ≤ −0.5

for (1662-1695) which has a minimum -0.91 in the year 1672; and P (lsc, t) ≤

−0.5 for (1775-1819), which has a minimum -0.81 in the year 1796. The com-650
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puted subsequent minimum time period is P (lsc, t) ≤ −0.5 for (2035-2079),

which has a minimum -0.79 in the year 2057. In this model, a Dalton-type

minimum has a minimum state at approximately -0.7. The Maunder minimum

is between -0.7 and -1.0, as shown in Table 2. The computed minimum -0.79 in

the year 2057 indicates an expected Dalton-Maunder-type minimum. The de-655

terministic model has a state P (lsc, t) ≥ +0.5 index for the periods (1093-1134),

(1198-1241) and (1351-1357); P (lsc, t) ≥ +1.0 index for the period (1582-1610);

P (lsc, t) ≥ +0.5 for (1945-2013); and P (lsc, t) ≥ +1.0 for (1959-2001), which

has a maximum 1.4 in 1981.

3.4. Sunspot variability660

The sunspot data series SN(t) is an indicator of the solar variability. Figure

10 shows the group sunspot number data series that covers a period of approxi-

mately 400 years from A.D. 1610 to 2015. From this 400-year data series, we can

estimate periods of approximately up to 200 years. Periods with few sunspots

are associated with low solar activity and cold climate periods. Periods with665

many sunspots are associated with high solar activity and warm climate periods.

If a relation exists between solar periods and climate periods, we may expect a

relation between the periods in the TSI variability and solar variability.

Figure 11 shows the computed wavelet spectrum Wsn(s, t) of the SN(t) data

series from 1610 to 2015, with the wavelet scaling parameter s = 1 . . . 6N . A670

visual inspection of the wavelet spectrum shows a maximum at the approximate

years (1750, 1860, 1970), which represents periods of approximately 110 years.

The time from 1750 to 1970 represents a period of 220 years. Temporary periods

of approximately 50 years from approximately 1725 and 1930 may be confirmed

by computing the autocorrelation wavelet spectrum Rsn(s, t).675

The computed set of autocorrelations Rsn(s,m) of the wavelet spectrum

Wsn(s, t) is shown in Figure 12. The wavelet spectrum W (sn, t) has the sta-

tionary periods P (sn, 11) for Rsn(11) = 0.73, P (sn, 22) for Rsn(22) = 0.35

and P (sn, 86) for Rsn(86) = 0.35. The identified period P (sn, 11) repre-

sents the Schwabe cycle and corresponds to the TSI P (tsi, 11), the SPO period680
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P (spox, 11) and the Jupiter period P (J, 11.862).

The period P (sn, 11) introduces the subharmonic period P (sn, 5 ∗ 11) =

P (sn, 55) forRsn(55) = 0.43, which introduces the subharmonic periods P (sn, 110)

for Rsn(110) = 0.40 and P (sn, 210) for Rsn(210) = 0.36. The period P (sn, 55)

is a temporary stationary period from 1610 only when P (sn, 110) has a posi-685

tive state. An inspection of P (sn, 55) shows that the period is stationary when

P (sn, 210) has a positive state from 1726-1831 and from 1935. The period

P (sn, 55) shifted to P (sn, 2∗55) when P (sn, 210) has a negative state from 1831-

1935. A possible explanation is a 5/2 relation between the periods P (U, 84.04)

and P (sn, 210) (Eq. 16).690

Figure 12 shows that the period P (sn, 55) has combination resonance peri-

ods with a 3/2 relation P (sn, 3 ∗ 55/2 = 84) to the Uranus period P (U, 84.02).

The 3/2 correlation to the P (ls, 84) period and the Uranus period P (U, 84.02)

explains the synchronization between the SN variability and the TSI-LS vari-

ability. The dominant period P (sn, 110) is a coincidence period in the subhar-695

monic period P (sn, 2 ∗ 55 = 110), which has a combination resonance to the

Neptune period by P (sn, 2 ∗ 164, 79/3 = 109, 86). The long stationary iden-

tified period P (sn, 210) is related to a 5/2 combination resonance to Uranus

by P (U, 5 ∗ 84.02/2 = 210.05). The period P (sn, 210) corresponds to the TSI-

LS period P (ls, 210). The identified periods have a subharmonic resonance in700

the Jupiter period P (J, 11.862). The correlation between the data series SN(t)

and the dominant wavelet periods W (sn, 55, t) + W (sn, 110, t) + W (sn, 210, t)

is estimated to be R = 0.51 for N=404 and Q=11.8.

3.4.1. Deterministic model

The identified temporary stationary periods Wsn(55, t),Wsn(110, t) and705

Wls(210, t) may be represented by a deterministic model

P (snc, 56, t) = Rsn(55) cos(2π(t− 1782)/(2 ∗ 84.02/3) (14)

P (snc, 112, t) = Rsn(110) cos(2π(t− 1751)/(4 ∗ 84.02/3) (15)

P (snc, 210, t) = Rsn(210) cos(2π(t− 1770)/(5 ∗ 84.02/2) (16)
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P (snc, t) = P (snc, 56, t) + P (snc, 112, t) + P (snc, 210, t) (17)

where Rsn(55), Rsn(110) and Rsn(210) represent the maximum correlation

in the autocorrelation Rsn(s,m). This model is, however, a simplified lin-

ear model. Figure 11 shows that the Rsn(55) amplitude is controlled by the

Rsn(110) amplitude, which indicates that the period P (sn, 55) is temporarily710

stable. The correlation between the 55-year wavelet periods W (sn, 55, t) and the

stationary period P (snc, 55, t) is estimated to be Rsn, snc(55) = 0.66 for N=354

samples and Q=16.6. The correlations are Rsn, snc(110) = 0.9 for N=304 and

Q=36 and Rsn, snc(210) = 0.9 for N=304 and Q=36. The correlation between

the sum W (sn, 55, t)+W (sn, 110, t)+W (sn, 210, t) and the deterministic model715

from (Eq. 17) is estimated to be R = 0.84 for N=304 and Q=29.8. Minimum

states that correspond to negative values of the stationary model correspond

to the observed minima, as shown in Table 2. The model indicates a future

minimum in the period 2018 - 2055 with an extreme value in 2035.

This analysis indicates that the sunspot variations is controlled by the Uranus720

period P (U, 84.02), which introduces a 2/3 resonance to the period P (sn, 55, t)

and a 5/2 resonance to the P (sn, 210) period. The TSI-LS data series and

the sunspots data series have stationary coincidence periods with P (ls, 11) and

P (sn, 11), P (ls, 125) and P (sn, 110) and with P (ls, 210) and P (sn, 210). The

difference between the stationary periods P (ls, 125) and P (sn, 110) indicates a725

limited direct relation between the data series.

3.5. Stationary dominant periods and minima

The relations between the identified dominant periods in the SN, TSI-HS

and TSI-LS series are shown in Table 1, where R is the autocorrelation of the

wavelet spectrum.730

In Table 2 we compare values of the stationary models P (hsc, t), P (lsc, t)

and P (snc, t) at minima corresponding to the solar activity minima determined

by Usoskin et al. (2007). The grand minimum periods are calculated from the

stationary models in Equations 9, 13 and 17, and compared with Spox and Spoy
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maxima. The model P (snc, t) computes a new Dalton sunspot minimum from735

approximately 2025 to 2050; the model P (hsc, t) computes a new Dalton TSI

minimum period (2035-2065), and the model P (lsc, t) computes a new Dalton

TSI minimum period (2045-2070).

The SN model in Eq. 17 is a simplified linear model. It has a minimum

P (snc, t) ≤ −0.5 in 1907-1931, which is not shown in the table. The HS-model740

from Eq. 9 has grand minima in 1200-1230 and 1876-1887, which are not shown

in the table. For this model the Dalton minimum is less deep. The LS-model

from Eq. 13 has the maximum index P (lsc, t) ≥ 0.5 for the periods (1093-

1134), (1198-1241), (1351-1357), and (1945-2013) and the grand maximum index

P (lsc, t) ≥ +1.0 for the periods (1582-1610) and (1959-2001).745

4. Discussion

The study of the TSI variability is based on the TSI-HS data series from

1700-2013, the TSI-LS data series 1000-2100, sunspots data series 1610-2015 and

a Solar Barycenter orbit data series from 1000-2100. The results are, however,

limited by how well they represent the solar physics and how well the methods750

are able to identify the periods in the data series. The investigation is based

on a new method. The data series are transformed to a wavelet spectrum to

separate periods, and the wavelets are transformed into a set of autocorrelations

to identify the first periods, subharmonic periods and coincidence periods. The

identified stationary periods in the TSI and SN series are supported by the close755

relations with the well-known solar position periods and documented solar min-

imum periods. The solar orbit data will then provide a stable and computable

reference. We have used the Dalton minimum (1790-1820) as a reference period,

since our two TSI-series and the SN-series cover this minimum. We notice that

maxima in SPOx and SPOy corresponds to minima in SPOẍ and SPOÿ which760

means maximum negative acceleration. We use P (spoxc, 84,max) = 1797 as a

time of reference. This is close to Uranus perihelion (1798) and Neptune aphe-

lion (1804), which indicates a possible relation between the distance to these
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planets and the Dalton minimum.

4.1. TSI-HS variability765

The dominant periods in the TSI-HS variability are related to the large plan-

ets, as shown in Table 1. The correlation between the TSI-HS data series and

the identified dominant wavelet periods Whs(49, t) +Whs(86, t) +Whs(164, t)

is estimated to be R = 0.93. The dominant periods P (hs, 11) and P (hs, 49)

have a time-variant phase and represent mean estimates. A possible source of770

the P (hs, 49) period is the interference between the Saturn period P (hs, 29)

and the Neptune period P (hs, 164). The periods P (hs, 84) and P (hs, 164) have

a stable period and phase in the time period from 1700 to 2013. The TSI-HS

data series from 1700 is too short for a reasonable estimate of P (hs, 164). A

possible alternative is a coincidence resonance between the subharmonic period775

P (hs, 2 ∗ 84 = 168) and the 164 year Neptune period.

The model P (hsc, t) computes the deterministic oscillations in the TSI-HS

variability. Table 2 shows that P (hsc, t) computes a minimum in the period

from 1796-1830. In the same time period, P (spox, 84) and P (spoy, 84) have

maxima in 1797 and 1820. A close relation between the minimum of the period780

P (hs, 84) and the maximum states of P (spox, 84) and P (spoy, 84) is observed.

The identified wavelet stationary periods Whs(84, t) and Whs(164, t) are

transformed to a simplified model in Eq. 9, which produces a simplified deter-

ministic TSI-HS data series from 1000 to 2100. The computed results in Table

2 show a close relation between the P (spox, 84) maxima periods and minimum785

sunspots periods. The stationary model predicts minima in 1880 and 1960,

which is seen in the TSI-HS reconstruction (Figure 3). The Eq. 9 model iden-

tifies three additional P (hsc, t) ≤ 0 minimum periods, which are not shown in

Table 2. These periods are (1296-1313), (1629-1656) and (1962-2002). The last

period had a P (hsc, t) = −0.40 state in 1979. The model estimates a minimum790

P (hsc, t) ≤ −0.5 in the period (2030-2065), a grand minimum P (hsc, t) ≤ −1.0

period (2044-2054) and a local minimum irradiation state in approximately 2050.
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These estimates support the identification of Uranus, in resonance with Nep-

tune, as the major cause of TSI-HS variability.

The implication of this result is a chain of events between the solar inertial795

motion due to the large planets and the TSI-HS variability. The SPO period

P (spoy, 84), controlled by the 84-year Uranus period may serve as a reference

for the TSI-HS variability.

4.2. TSI-LS variability

The TSI-LS variability is influenced by the periods from the large planets,800

as shown in Table 1. The major variability is, however, influenced by the long

stationary periods P (ls, 125) and P (ls, 210). A stationary period is dependent

on a stationary source. The autocorrelations in Figure 8 indicate a 3/2 and

5/2 combination resonance to P (ls, 84), which produce the stationary periods

P (ls, 3 ∗ 84/2 = 126) and P (ls, 5 ∗ 84/2 = 210). The same stationary deter-805

ministic periods produce a new set of subharmonic periods P (ls, n ∗ 126) and

P (ls, n ∗ 210) for n = 1, 2, 3. When P (ls, 125) and P (ls, 210) are related to

the stationary Uranus period P (U, 84.02), they will produce a set of subhar-

monic stationary periods. The period P (ls, 3 ∗ 84/2 = 126.03) will produce

the subharmonic periods P (ls, 2 ∗ 126.03 = 252.06), P (ls, 3 ∗ 126.03 = 378.09),810

P (ls, 4 ∗ 126.03 = 504.12), P (ls, 5 ∗ 126.03 = 630.15) and P (ls, 6 ∗ 126.03 =

756.18). The period P (ls, 5 ∗ 84/2 = 210.05) will produce the subharmonic pe-

riods P (ls, 2 ∗ 210.05 = 420.1) and P (ls, 3 ∗ 210.05 = 630.15), which indicate

that P (ls, 126.03) and P (ls, 210.05) have a coincidence resonance in periods of

approximately 630 years (Nayfeh & Mook, 2004; Ghilea, 2014).815

The TSI-LS data series is reconstructed by Velasco Hererra et al. (2015), who

performed a wavelet analysis of their TSI-PMOD and TSI-ACCRIM reconstruc-

tions for the years 1000-2100 and discovered periods of 11± 3, 60± 20, 120± 30

and 240 ± 40 years. They interpret the 11-year period as the Schwabe cycle

and the 60-year period as the Yoshimura-Gleissberg cycle, which is associated820

with solar barycentric motion. The 120 years period they associated with solar

magnetic activity (Velasco Hererra, 2013), and the 240-year period was asso-
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ciated with barycentric motion as discovered by Jose (1965). They concluded

that the negative phase of the 120-year period coincides with the grand minima,

the positive phase of the 120-year period coincides with the grand maxima. The825

next minimum should appear between 2010 and 2070 according to this inter-

pretation. Long periods were also identified by McCracken et al. (2014), who

analyzed 10Be from cosmic ray variation over the past 9,400 years by a Fourier

spectrum analysis and identified three related period pairs (65 and 130), (75

and 150), and (104 and 208) in addition to periods 350, 510 and 708 years. The830

identified 210-year period is known as the de Vries/Suess period. It is identified

as a stationary period of approximately 210 years in the radiocarbon dating of

pine tree rings of the last 8,000 years (Suess, 1980) .

The identified periods in this investigation support the study by Suess (1980);

Velasco Hererra et al. (2015) and McCracken et al. (2014). The new informa-835

tion reveals that all long periods in the TSI-LS variability are traced to the

deterministic Uranus period P (U, 84.02). This study confirms that the TSI-LS

variability is dominated by deterministic periods and explains why the identified

periods from Suess (1980) and McCracken et al. (2014) are found in series of

8,000 and 9.400 years length.840

An identification of stationary periods in TSI variability can provide in-

formation about future irradiation variability and expected long-term climate

variation. The computed minima from the deterministic model (Eq. 13) show

a close relation between the solar grand minimum periods and the computed

minimum periods from the model (Table 2). From this deterministic model,845

we may expect a new TSI minimum P (lsc, t) ≤ −0.5 for the period 2040 –

2080, a Dalton state level P (lsc, t) ≤ −0.7 in the time-period 2048 – 2068 and

a minimum state P (lsc, t) = −0.9 at approximately 2060.

4.3. Sunspot variability

A study of the sunspot data series from 1610 identified the first dominant pe-850

riods P (sn, 11), P (sn, 55), P (sn, 110) and P (sn, 210), as shown in Table 1. The

period P (sn, 11) is a mean estimate from a time-variant phase. The wavelet
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spectrum in Figure 11 shows that the period P (sn, 55) has a time variant am-

plitude that is controlled by the period P (sn, 110). The stationary first pe-

riod P (sn, 11) is related to the Jupiter period P (J, 11.862) and produces the855

subharmonic periods P (sn, 5 ∗ 11.862 = 59.31), P (sn, 2 ∗ 59.31 = 118.62) and

P (sn, 4 ∗ 59.31 = 237.24).

The periods have a combination resonance to the Uranus period P (U, 84.02).

The autocorrelation spectrum in Figure 12 shows that the period P (sn, 55) has

a 2/3 combination resonance to the period P (sn, 84). This finding indicates that860

the identified period P (sn, 55) is a stationary period that is controlled by the

Uranus period P (U, 84.02) from the 2/3 relation 2∗84.02/3 = 56.01 years. This

first stationary period is expected to produce a new set of subharmonic periods

of approximately 2 ∗ 56 = 112 and 4 ∗ 56 = 224 years. The identified period

P (sn, 210) has a 5/2 combination resonance to the Uranus period P (U, 84.02) by865

the relation 5 ∗ 84.02/2 = 210.05 years. Table 1 shows a close relation between

the identified TSI period P (hs, 11), P (ls, 11), the sunspots period P (sn, 11) and

the Jupiter period P (J, 11.862). This study has demonstrated that the Uranus

period P (U, 84.02) introduces a deterministic TSI period of approximately 5 ∗

84/2 = 210.05 years, a deterministic sunspots period of approximately 4(2 ∗870

84.02/3) = 224.05 years and a mean coincidence period of 217 years.

The sunspot data series has been investigated for decades. Schwabe (1844)

proposed Jupiter as a source for P (sn, 11), and Ljungman (1879) presented the

theory that the long-term herring biomass fluctuation was related to a 111-

year sunspot cycle. The 210-year de Vries/Suess period is related to a climate875

cycle (Suess, 1980). The new information from this study is that the 210-

year de Vries/Suess period, which is identified as a deterministic period in the

TSI-LS and the sunspots data series, has its minimum at a phase difference of

0.35π(rad/year) from the SPOx maximum in 1797, which coincide with Uranus

perihelion. This shows that they are controlled by the same 84-year Uranus880

period,

This study shows that solar variability and TSI variability have deterministic

coincidence periods of approximately 11 and 210-220 years. The deterministic
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model of the solar variability indicates that we may expect a new sunspot solar

variability minimum P (snc, t) ≤ −0.5 in the period from approximately 2025885

to 2050, a Dalton level minimum P (snc, t) ≤ −0.7 in the period from approxi-

mately 2030 to 2040 and a minimum state P (snc, t) = −0.84 approximately at

the year 2035.

4.4. Possible explanation

This study of long solar variable data series has identified a deterministic890

relation among TSI variability, sunspot variability, the solar position oscillation

and the periods from the four large planets. In this chain of events, we may un-

derstand the solar dynamo oscillation as a coupled oscillator, forced by the GO

between the large planets and the Sun. The mutual GO which exists between

the four large planets and the solar position oscillation controls the transfer of895

angular momentum between the planets and the solar dynamo (Sharp, 2013).

The study of the solar position oscillation shows that the 84-year Uranus

period P (spox, 84) may serve as a reference for the forced gravity oscillation

influence on the solar dynamo. The real SPO gravity influence on the solar

dynamo is more complex.900

Since the direct gravitational effect is small (Scafetta, 2012), an amplifica-

tion mechanism is necessary to produce the TSI variations. Several mechanisms

for amplification are propised: A nonspherical shape of the tacholine (Abreu

et al., 2008): the two meridional circulating magnetic waves (Shepherd et al.,

2014; Zharkova et al., 2015); the tidal massage of the solar center resulting in905

greater nuclear energy production (Scafetta, 2012); movement of elements near

the center of the Sun (Wolf & Patrone, 2010; Cionco & Soon, 2015) or reconnec-

tion of magnetic field lines which create magnetic bubbles (Granpierre, 2015).

A sudden loss of angular momentum from solar rotation to solar and planetary

orbit may cause variation in differential rotation that modulates the dynamo,910

which generates a magnetic field and sunspot variations (Blizzard, 1981). A

phenomenological model proposed by McIntosh et al. (2014); McIntosh & Lea-

mon (2014), and McIntosh & Leamon (2015) which explains the deep minima,
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requires a modulation of the solar differential rotation which may be a result of

the transfer of angular momentum as proposed here. Transfer of angular mo-915

mentum between the rotation of the Sun and the orbit of the planets is possible

because of the wobble of the Sun. The axis of rotation is tilted with respect to

the axes of the orbital plane, and the shape of the Sun is elliptical in the polar

directions. Since the Earth also moves inside the solar wind, modulation of the

solar wind by the four large planets may also be directly felt by the Earth, in ad-920

dition to exchange of angular momentum resulting in faster or slower rotation,

which modulates the Earths climate (Mörner, 2010).

Other studies have identified stationary periods in the solar dynamo. Duhau

& de Jager (2008) analyzed the variation of the solar-dynamo magnetic-field

since 800 and identified periods of approximately 11, 22, 88 and 208 years.925

Shepherd et al. (2014) and Zharkova et al. (2015) have identified two dynamo

waves that show periods of 320 - 400 years, with an amplitude modulation in

the range of 20 - 24 years. These periods are similar to some of the identified

periods in Table 1. The new information from this study is that the identified

solar dynamo periods have a deterministic relation to the stationary periods930

from the four large planets, the TSI variability and the sunspot variability.

The stationary solar dynamic periods explains why the 125-year TSI-LS period

produces a subharmonic period of approximately 3 ∗ 125 or 375 years.

5. Conclusions

A better understanding of the deterministic properties of the TSI variability935

is critical for understanding the cause of irradiation variability and how the

TSI irradiation will contribute to the natural climate variation on the Earth.

In this study, we have identified stationary periods in the TSI-HS data series

from 1700-2013, in the TSI-LS data series from 1000-2100 and in the sunspots

data series from 1610-2015. The identified stationary periods are related to the940

SPO and the periods from the four large planets. The results show that the

TSI and sunspot data series variability have stationary oscillating periods that
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is controlled by the gravity from the large planets Jupiter, Saturn, Uranus and

Neptune. The identified periodic relation between the solar system oscillation

and the TSI variability, indicates a chain of events between the solar system945

gravity force oscillation and the TSI variability. A possible chain of events is

that the GO between the Sun and the large planets influences the solar dynamo

oscillation, which produces the TSI variability and the sunspot variability.

The study demonstrates that the major TSI variability and sunspot variabil-

ity are controlled by the 11-year Jupiter period and the 84-year Uranus period.950

The TSI data series from 1700 has a variability that is controlled by the 11-year

Jupiter period and the 84-year Uranus period. The TSI data series from 1000

has a stationary dominant period of approximately 125 years, which is con-

trolled by a 3/2 resonance to the 84-year Uranus period, and a 210-year period

by a 5/2 resonances to the 84-year Uranus period. The stationary periods of955

approximately 125 and 210 years introduce a new set of deterministic subhar-

monic periods. The study confirms the deterministic relation between 210-year

variability and TSI variability, which is known as the 210-year de Vries/Suess

period (Suess, 1980).

The identified stationary periods in TSI variability and sunspot variability960

are transformed to deterministic models of TSI oscillation and sunspot oscilla-

tion. The close relation between the computed deterministic model minima and

the known minimum periods since 1000 confirms the identified periods from this

study. The deterministic model of sunspots and TSI computes a new Dalton-

type sunspot minimum from 2025 to 2050 and a new Dalton-period-type TSI965

minimum from approximately 2040 to 2065.
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Table 1: Identified stationary periods

Data Per,R Per,R Per,R Per,R Per,R Per,R Per,R Per,R Per,R

Planet PJ PS P (55) PU P (110) P (125) PN P (210) P (373)

period (yr) 11.862 29.447 2PU/3 84.02 4PU/3 3PU/2 164.79 5PU/2 9PU/2

P(SPO) spoy, 12 spoy, 29 spoy, 84 spoy, 165

R= 0.98 0.95 0.90 0.90

TSI-HS hs, 11 hs, 84 hs, 164

R= 0.55 0.65 0.70

TSI-LS ls, 11 ls, 29 ls, 83 ls, 125 ls, 210 ls, 373

R= 0.80 0.20 0.17 0.60 0.35 0.50

SN sn, 11 sn, 55 sn, 86 sn, 110 sn, 210

R= 0.73 0.43 0.35 0.40 0.36

1135
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Table 2: Minimum periods from deterministic models

Data series Oort Wolf Spörer Maunder Dalton Next

Minima periods: 1010-1070 1270-1340 1390-1550 1640-1720 1790-1820

P (spocx, 84)max 1043 1296 1462 1630 1797 2049

P (spocy, 84)max 1068 1326 1487 1654 1820 2073

HS model period 1033-1055 1369-1389 1537-1554 1706-1721 1796-1830 2035-2065

P (hsc, t) < −1.0 < −1.0 < −1.0 < −1.0 < 0 < −0.7

HS model min 1040 1337 1547 1714 1810 2049

P (hsc, t) min -1.30 -1.23 -1.87 -1.13 -0.33 -1.0

LS model period 1014-1056 1276-1301 1404-1435 1657-1689 1785-1810 2045-2070

P (lsc, t) < −1.0 < −0.5 < −1.0 < −0.7 < −0.7 < −0.7

LS model min 1035 1289 1418 1672 1796 2060

P (lsc, t) min -1.40 -0.62 -1.20 -0.91 -0.81 -0.79

SN mode l period 1019-1032 1242-1256 1467-1478 1693-1699 1802-1820 2025-2050

P (snc, t) < 1.0 < −1.0 < −1.0 < −1.0 < −0.5 < −0.5

SN model min 1026 1249 1473 1696 1811 2035

P (snc, t) min -1.7 -1.18 -1.13 -1.04 -0.79 -0.84
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Figure 1: Orbit of the solar center with respect to the solar system barycenter (SSB) (+)

for the period 1940–2040 in the ecliptic plane defined in the direction of the

Earth’s vernal equinox (Υ). The outer yellow circle represents the diameter of

the Sun, and the inner circle at radius 0.65rs represents a shell where the

potential energy (PE) of the solar radiative zone can be affected if the solar

center moves closer to the SSB (Cionco & Soon, 2015).
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Figure 2: Autocorrelations Rspoy(s,m) of Sun position oscillation (SPOy) wavelet spectrum

Wspoy(s, t) for m = 0 . . . 225. Each colored line represents a single autocorrelation function.
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Figure 3: TSI-HS total solar irradiance from A.D. 1700 to 2013 (Scafetta & Willson, 2014).
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Figure 4: Wavelet spectrum Whs(s, t) of the TSI-HS data series, for s = 1 . . . 190.
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Figure 5: Autocorrelations Rhs(s,m) of the TSI-HS wavelet spectrum Whs(s, t) for s =

1 . . . 190 and m = 1 . . . 160.
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Figure 6: The identified stationary wavelet periods Whs(49, t),Whs(86, t) and Whs(165, t)

from the TSI-HS wavelet spectrum Whs(s, t).
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Figure 7: TSI-LS data series from 1000 to 2100 Velasco Hererra et al. (2015).
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Figure 8: Autocorrelations Rls(s,m) of the TSI-LS wavelet spectrum Wls(s, t) for s =

0 . . . 600, and m = 0 . . . 225.

51



1000 1200 1400 1600 1800 2000 2200
Year

-10

-8

-6

-4

-2

0

2

4

6

8

10

W
(s
,t)

W(125,t)
W(210)
W(373,t)
Mean

Figure 9: Identified long stationary wavelet periods Wls(125, t),W ls(210, t)Wls(373, t) and

their mean value
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Figure 10: Solar variability represented by the yearly average group sunspot number series

SN(t), estimated from A.D.1610 to 2015 (SILSO data/image, Royal Observatory of Belgium,

Brussels)
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Figure 11: Wavelet spectrum Wsn(s, t) of the sunspot data series SN(t).
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Figure 12: Autocorrelations Rsn(s,m) of the SN wavelet spectrum Wsn(s, t) for s = 0 . . . 240,

and m = 0 . . . 400.
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