

Revolutionising Orsted's Offshore Wind Power

Orsted should target Germany and the Netherland whilst differentiating through systems integration **Orsted** Executive Summary

mplementation

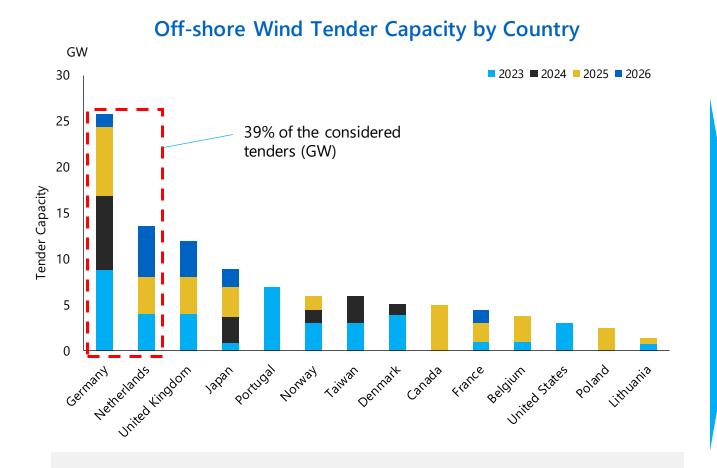
Orsted should move away from price competition and focus on its other differentiation pillars. Company Analysis

Goals & Ambition Cautions Wants to upskill local content and Steer away from **cost** leadership innovation hub. Wants to become more ecologically friendly. Eg. Artificial reefs (Netherlands).

Improve system integration - Power

to X

	Steer away nom cost readership,
	price reductions
- C	
	-
	Focus more sustainability initiatives & quality of wind farms.


Current Strength

Project deliverability: 30 offshore wind warm installed. Past project enhances reputation.

Existing initiatives: Less cement in turbine foundations Sourcing sustainable steels Recycling blades Green procurement activities

Issue Analysis

Orsted should target Germany and the Netherlands which account for 39% of the considered tenders **Orsted** Market Selection

Germany and Netherland hold the largest for offshore wind capacity.

Highly Valued Factors

Germany and Netherland highly value system integration, ecological mitigation, and sustainability.

Overview

Strategy

Implementation

Financials

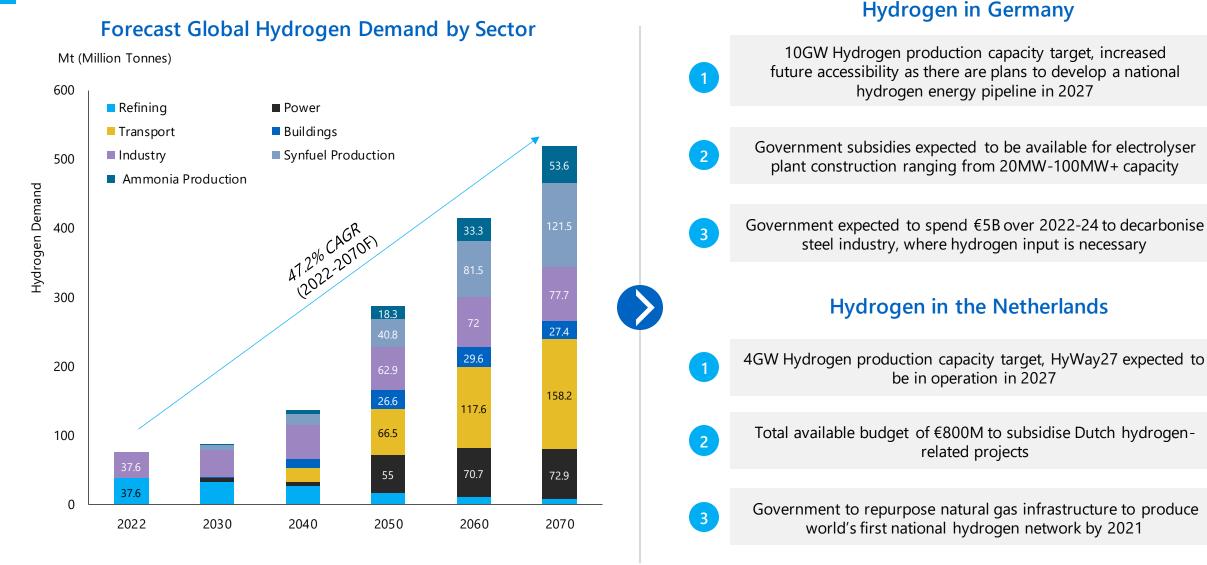
However, it is becoming harder for Orsted to win auctions and differentiate from competition Auction Criteria

Issue Analysis

	Countries / Weightings		Market Players					
Auction Criteria	Germany Netherlands		O'rsted	RWE	Vattenfall	Iberdola		
Price Market average of 582DKK/MWh	60%	50%	Hornsea 3 offshore wind farm price at 315 DKK per MWh	17Bn/GW DKK investment ~ 10% less than Hornsea 2	Past bid of 506 DKK per MWh.	23Bn/GW DKK investment ~ 20% more than than Hornsea 2		
System Integration Combining offshore wind with other technologies.	20%	25%	Rockstart - Innovation Program & Power to X (infancy)	Innovation Competition (2018) & IoT Projects	Integrated real time chatbot Nina	PRESEO Venture & Demand side electrification		
Ecological Mitigation Limiting environmental impact	20%	25%	Artificial Reefs 3D printed corals	Recyclable blades Marine life research Hybrid electric vehicle	Suction bucket & anchor windfarm to reduce noise	Good workers rights, leader in human rights		
To increase win rate, Orsted should differentiate its offerings through improved systems integration.								

Strategy

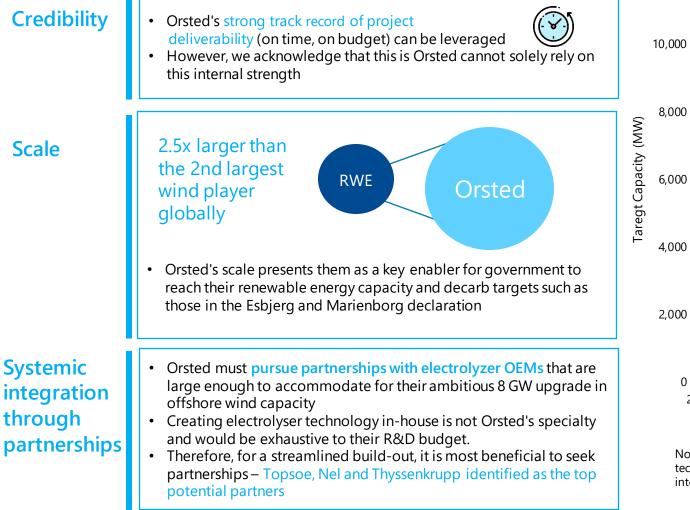
Eyes on the Prize & Hydrogen Electrifies

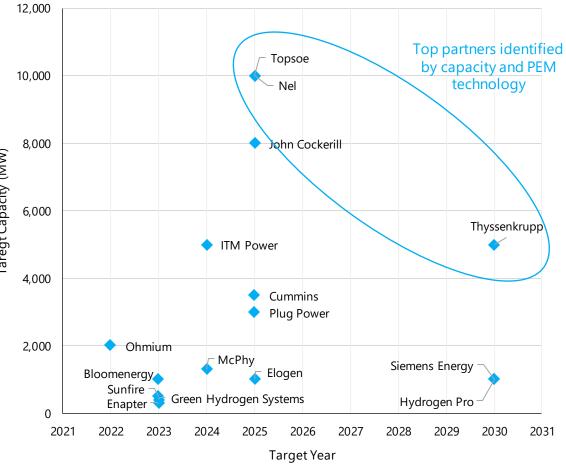

Green hydrogen stands out as a winner against other strategies in the sub bracket of system integration Decision matrix

Alternative Strategies	Advantages	Disadvantages				
Community Microgrid Integration	 Decentralized power grids are isolated from national blackouts 	 Not very scalable as microgrids must be customized for each local community Up-front risk of major policy changes 				
Decommissioned Platforms Purchase	 Oil/gas platforms eligible for decommissioning are repurposed to become offshore wind farms Employment opportunities to redundant oil/gas platform workers High availability of oil rigs eligible for decommissioning - 2021-30 period sees decommissioning of 33% of fixed platforms that are currently in operation (Source: S&P Commodity insights, 2021) 	 Regulatory barriers regarding the rigging area I.e. If you have a lease to drill, then you only have a lease to drill – may not have a permit for the purpose of wind Economic infeasibility – decommissioning cost proven to be lower than installation CapEx (Source: J Braga, 2022) Connecting the offshore wind farms via power cables with the oil platforms may be complex. 				
Hybrid Wind & Solar PV Opportunity	 Solar generation during the day complements more intense wind speeds during the night Hydro pump acts as a large battery that rebalances the energy output when the wind stops blowing 	 Only works under specific geographic conditions: turbines must be on a hill and must accommodate for an underwater, man-made lake 600 feet below the wind farm (Source: General Electric, 2016) Lengthy payback period up to several decades 				
Hydrogen Production	 Demand is set to skyrocket in the next 10 years, underpinned by the process to reach government and corporate sustainability targets Attractive substitute for fossil fuel especially as policies such as Germany's National Hydrogen Strategy (Jun-2020) introduces CO2 pricing for fossil fuels in transport and heating Orsted can front-run the commercial use boom in hydrogen energy 	× Currently a nascent industry, so industrial use is stymied by the lack of hydrogen energy distribution capability and producers not yet able to capitalize off economies of scale.				
Overview	Issue Analysis Strategy Implemen	tation Financials Appendices				

Demand for green hydrogen is expected to take off across German and Dutch end-markets Hydrogen Industry Opportunity

Strategy

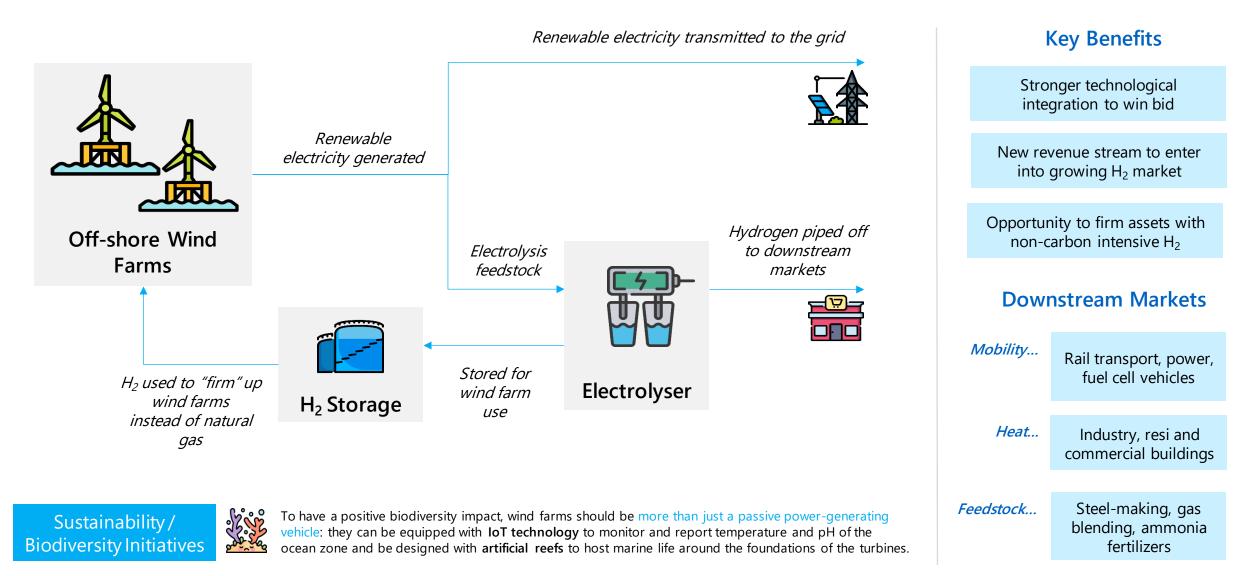

An OEM partnership is recommended to supplement a bid with additional hydrogen capabilities



Potential Electrolyser OEM Partners

Orsted is recommended to differentiate its bid through implementing hydrogen production and storage in addition to off-shore wind generation

Scale



Electrolyser OEM Target Capacity by Year

Note: John Cockerill was excluded as it offers alkaline technology whilst our preference is for PEM technology since it can start faster than alkaline, are therefore is a better complement to intermittent generation

Electrolysers and hydrogen storage can diversify revenue streams and support existing operations Design Concept

Overview

sue Analys

Strategy

Implementatio

Financials

Appendice

A central electrolyser will be positioned to benefit Orsted's wind farms' clusters

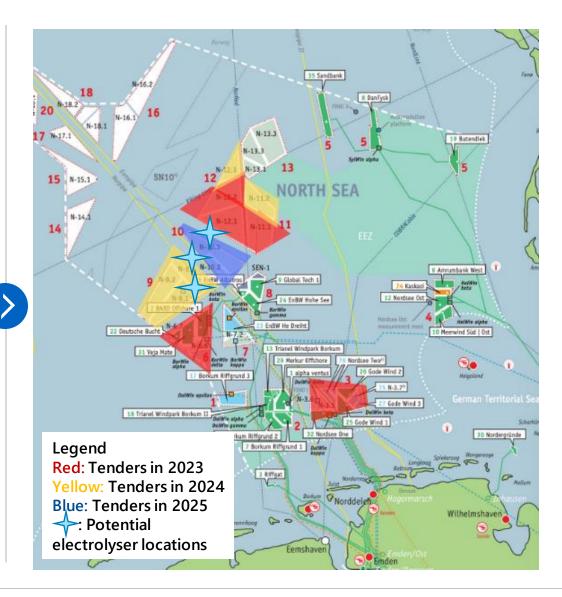
Potential in proximity

Parallel bidding rationale

Establishing parallel tracks of approvals for the auctioned zones can allow Orsted to dominate the key areas such as the North Sea

A single offshore electrolyser is more economical than an onshore electrolyser or individual electrolysers attached to each individual turbine

3


2

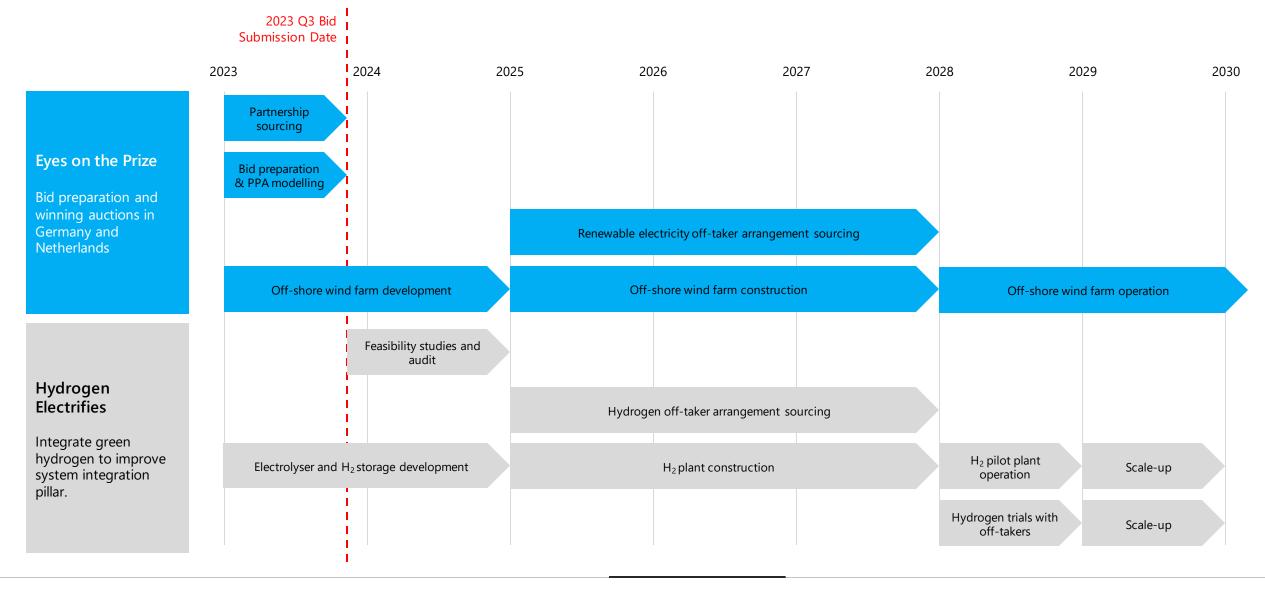
Owning wind farms proximal to each other allows Orsted to tap into the scale advantages by building a single or few electrolysers in the centre of the wind farms cluster (especially between zone N-9, N-10, N-6 and N-12)

Priority auction combination of German and Dutch zones:

2023	2024	2025
 IJmuiden Ver I IJmuiden Ver II IJmuiden Ver III IJmuiden Ver IV 		 IJmuiden (Noord) Ver V IJmuiden (Noord) Ver VII Netherlands Nederwiek South I
 N-11.1 N-12.1 N-12.2 O-2.2 N-6.6 N-6.7 N-3.5 N-3.6 	 N-9.1 N-9.2 N-9.3 N-12.3 N-11.2 	 N-10.2 N-10.1 2025 Auction

^All auction formats: Central, all technology: Fixed

Implementation


Implementation & Financials

Orsted should focus on the 2023 bids in the short-term and contract partners for the long-term

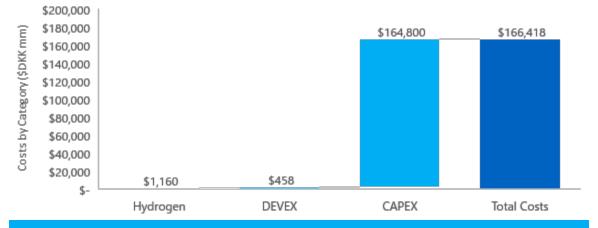
Implementation Timeline

Overview

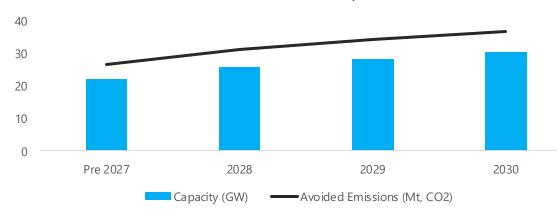
ue Analys

Strated

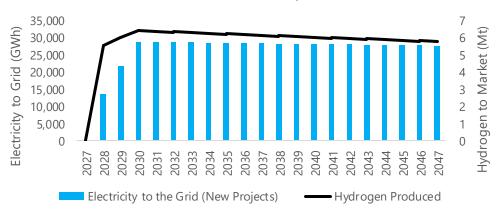
Implementation


Financia

Orsted can achieve its 2030 objectives whilst remaining under the budget of \$200DKKmm


Cost comprises mostly from CAPEX, totaling \$166 DKK bn

Cost Breakdown



Accomplishing 2023 targets and avoiding emissions

Environmental Impact

8GW translates to 28,000 GWh and 6 Mt of Hydrogen

Combined Output

Key Assumptions:

- Tender win rate increased from 30% pre-2025 to 45% post-2025 (when hydrogen plants are operational)
- Degradation of 5% p.a. applied to new turbines
- Wind turbines emit 6g of CO2 / kWh compared to 900g from coal-based power plants
- Hydrogen electrolyser CAPEX of \$30 DKK mm / MW, with OPEX at 1.5% of CAPEX

Overview

Strategy

Financials

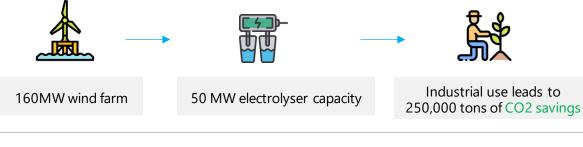
Appendices

Green hydrogen use cases in the Netherlands and Germany

Orsted

Appendix

Transport


- Industrial ports opportune for hydrogen-powered transport
- Greening the maritime sector is a trend seen with the Netherlands starting to retrofit coastal shipping with hydrogen
- Diesel trains to be replaced by hydrogen models in the next 10-15 years as hydrogen offers the compact propulsion system, with rapid refueling times and a long travel range

It is estimated that 20% of all German utility vehicles will be hydrogen powered by 2035

Gas blending

- · Local chemical plants can employ green hydrogen to create low-emissions heat and power
- Appeals to governments since CO2 reduction targets in transport, heat supply and industry can only be achieved if progress is made in the large-scale use of zero-emissions energy sources like hydrogen
- The ecological mitigation advantages from this industrial gas blending use case of green hydrogen is clear in the recent case of RWE's Eemshydrogen which demonstrates:

Steel-making

- The Salzgitter 2022 partnership highlighted the potential for circularity partnership where green hydrogen-powered steelmaking is used to: 1) produce new turbine components, or 2) recycle scrap from decommissioned wind turbines
- Orsted could maintain this momentum from by reaching out to new partners like ArcelorMittal and Thyssenkrupp for circular green steel-making
- Thiis would present an industry-leading sustainability initiative since steel alone makes up half of the total climate footprint of offshore wind farm project

Agriculture

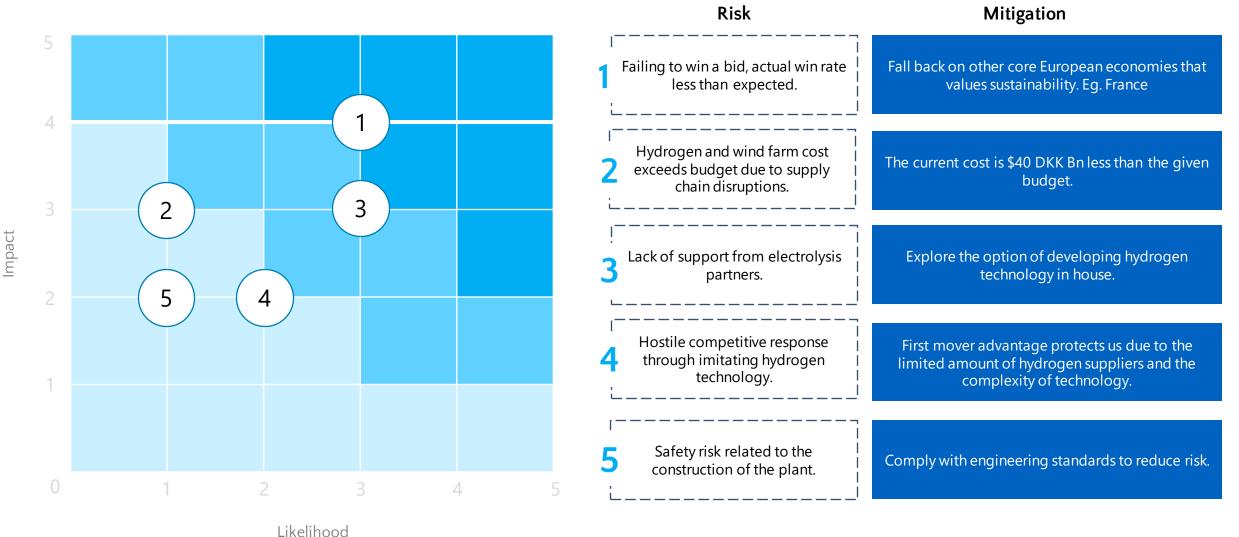
- In 2021, Ørsted and Yara have developed a green ammonia project in the Netherlands a scalable and sustainable initiative
- As Germany is the 3rd largest exporter of agricultural products, there is naturally a significant use for ammonia/fertiliser Orsted

Long-Term corporate, infra, & political tailwinds

- Future corporate ESG targets drives increased industrial demand for green hydrogen. For example, German's largest steelmaker thyssenkrupp aims for climate-neutral steel production by 2050.
- Improved accessibility to hydrogen energy from government-funded national networks in Germany and the Netherlands (both expected to be in operation in 2027) which should incentivize both supply and demand
- Germany's National Hydrogen Strategy (Jun-2020) makes hydrogen an attractive replacement fossil fuels with the introduction of CO2 pricing for fossil fuels in transport/heating

Overview

nalysis


Strategy

mplementation

Several risks and mitigation strategies have been taken into account.

Risk and Mitigation

Strate

Financials

Sensitivity analysis suggests that this strategy is prone to variance in win rates Sensitivity Analysis

	Base Win Rate						
	20%	25%	30%	35%	40%		
55%	10.49	11.53	12.57	13.61	14.65		
50%	9.91	10.95	11.99	13.03	14.07		
45%	9.34	10.38	11.42	12.46	13.50		
40%	8.76	9.80	10.84	11.88	12.92		
35%	8.19	9.23	10.27	11.31	12.35		

Key Takeaways

- In the base case with 30% base win rate, Orsted may choose between the several tenders in 2025, with an expect 11.42 GW if all tenders were contested for.
- In the worst case, with 20% win rate pre-hydrogen and 35% win rate post-hydrogen, the expected capacity won still meets Orsted's 2030 goals.

Base CAPEX (\$DKKmm/GW)									•	
\$	16,000	\$	18,000	\$	20,000	\$	22,000	\$	24,000	
\$	133,448	\$	149,978	\$	166,508	\$	183,038	\$	199,568	•

- The most significant cost associated with this strategy is CAPEX.
- However, even with Base CAPEX costs increased by 20%, Orsted is still under the budget of \$200 DKK bn.

Likelihood

Overview

Win Rate Post-2025

Strategy

Implementation

Financials