Signal Isolator v1

DESCRIPTION

The Signal Isolator BSI282 is an isolating converter providing true 3-way galvanic isolation up to 2 kV rms The BSI282 produces an isolated unipolar output signal from an input signal. The BSI282 comes in four, coding plug selectable models to accept either: Process, mV, Bipolar or Bipolar mV input signals. No special tools or components are required for range changing in the field. A $20 \mathrm{Vdc} / 22 \mathrm{~mA}$ sensor supply is available at the input section, this can be useful for loop powered field transmitters. Final calibration is trimmed using the front accessible zero and span 15-turn trim adjustments. Maximum current drive is 20 mA and maximum voltage drive is 20 V . The wide swing ac/dc power supply's cover all popular requirements. All units are fitted with a 500 msec filter that can be link changed to 5 or 50 msec for fast response. Surge protection for power supply and input is standard with all BASI modules.

General Specifications

Size:
Mounting:
Housing material:
Connection:
Weight:
Protection class:
Input/Output:
Accuracy error:
Linearity error:
Long term drift:
Ambient operating range:
Temperature drift error:
Supply voltage:
Output drive:
Response time:
Input impedance:

Front Zero adjust:
Front Span adjust:
Noise immunity:
Supply/Input/Output Isolation:
Auxiliary Output:
Electromagnetic compatibility:
$23.5 \mathrm{~W} \times 71.5 \mathrm{H} \times 109 \mathrm{D}(\mathrm{mm})$.
Clip for 35 mm DIN-Rail.
ABS.
Screw terminals.
120 g .
IP40.
Programmable - see table 2 overleaf.

<0.1\%.
<0.1\%.
$<0.10 \%$.
$-10 \ldots+60^{\circ} \mathrm{C}$.
0.01% per ${ }^{\circ} \mathrm{C}$.
$85-265 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ (90-280Vdc)
$16-42 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ ($10-60 \mathrm{Vdc}$) .
10 mA into $0-2 \mathrm{k} \Omega$,
20 mA into $0-1 \mathrm{k} \Omega$.
Programmable - see table 2 overleaf.
Current 51Ω
$2 \mathrm{M} 7 \Omega$ (10V/5V range).
$560 \mathrm{k} \Omega(2 \mathrm{~V} / 1 \mathrm{~V}$ range).
$140 \mathrm{k} \Omega$ ($250-1000 \mathrm{mV}$ ranges).
$30 \mathrm{k} \Omega$ ($40-200 \mathrm{mV}$ ranges).
+20/ -10\% typical.
$\pm 25 \%$ typical.
130 dB CMRR.
$>2 \mathrm{kV}$ r.m.s.
20 Vdc with 22 mA drive (Suitable for 2-wire transmitter supply). Complies with EN 50081-1, EN 50082-2, EN 61010-1

(\in

Connections

When externally sourced signals are used terminal 1 is the positive input. When a 2 -wire field transmitter is used,terminal 3 is a 20 V power supply used to supply the loop current.

For input / output combinations refer to TYPE NO. DESIGNATION overleaf.

TYPE NO. DESIGNATION
Power Supply:

$$
1=85-265 \mathrm{Vac} 50 / 60 \mathrm{~Hz}(90-280 \mathrm{Vdc})
$$

$2=16-42 \mathrm{Vac} 50 / 60 \mathrm{~Hz}(10-60 \mathrm{Vdc})$.
Input (Specify required range from selected table):
1 = Process Signals, Table $1(4-20 \mathrm{~mA}$ default) .
$2=$ Millivolt Signals, Table $2(0-75 \mathrm{mV}$ default).
3 = Bipolar Signals, Table 3 (+/-10V default).
4 = Bipolar Millivolt Signals, Table 4 (+/-75mV default).
Output (Specify required range):
$0=$ Table 5 ($4-20 \mathrm{~mA}$ default).
Action:

$$
1=\text { Direct. } \quad 2=\text { Reverse }
$$

Response time Table 0

	LK1/6	LK1/7
5 ms		
50 ms	X	
500 ms		\mathbf{X}

Process input Table 1

	LK1					
Input	1	2	3	4	5	8
4-20mA	X	X	X			X
$0-20 \mathrm{~mA}$	X	X	X		X	
$0-10 \mathrm{~mA}$	X	X	X	X	X	
0-1V	X		X		X	
0-2V	X				X	
0-5V			X		X	
$1-5 \mathrm{~V}$			X			X
0-10V					X	
Other non-standard						
$0-0.5 \mathrm{~V}$	X		X	X	X	
$0-2.5 \mathrm{~V}$			X	X	X	
0-4V			X			
0-6V				X		
0-7.5V				X	X	

Millivolt input Table 2

	LK1					
Input	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{8}$
$0-40 \mathrm{mV}$	X		X	X		
$0-50 \mathrm{mV}$	X		X	X	X	
$0-75 \mathrm{mV}$	X		X			
$0-100 \mathrm{mV}$	X		X		X	
$0-150 \mathrm{mV}$	X			X	X	
$0-200 \mathrm{mV}$	X				X	
$0-250 \mathrm{mV}$			X	X	X	
$0-400 \mathrm{mV}$			X			
$0-500 \mathrm{mV}$			X		X	
$0-600 \mathrm{mV}$				X		
$0-750 \mathrm{~m} \mathrm{~V}$				X	X	
$0-1000 \mathrm{mV}$					X	

Bipolar input Table 3

	LK1					
Input	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{8}$
$+/-20 \mathrm{~mA}$	X	X	X		X	
$+/-10 \mathrm{~mA}$	X	X	X	X	X	
$+/-1 \mathrm{~V}$	X		X		X	
$+/-2 \mathrm{~V}$	X				X	
$+/-5 \mathrm{~V}$			X		X	
$+/-10 \mathrm{~V}$					X	

Bipolar Millivolt input Table 4

	LK1					
Input	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{8}$
$+/-20 \mathrm{mV}$	X		X	X		
$+/-25 \mathrm{mV}$	X		X	X	X	
$+/-40 \mathrm{mV}$	X		X			
$+/-50 \mathrm{mV}$	X		X		X	
$+/-60 \mathrm{mV}$	X			X		
$+/-75 \mathrm{mV}$	X			X	X	
$+/-100 \mathrm{mV}$	X				X	
$+/-125 \mathrm{mV}$			X	X	X	
$+/-200 \mathrm{mV}$			X			
$+/-250 \mathrm{mV}$			X		X	
$+/-300 \mathrm{mV}$				X		
$+/-500 \mathrm{mV}$					X	

Output Table 5

	LK2						
Output	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	
$4-20 \mathrm{~mA}$	X		X				
$0-20 \mathrm{~mA}$		X					
$0-10 \mathrm{~mA}$				X			
$0-5 \mathrm{~V}$		X				X	
$1-5 \mathrm{~V}$	X		X			X	
$0-10 \mathrm{~V}$		X			X		

To change ranges

1. Unplug supply plug.
2. Remove terminal covers.
3. Slightly depress lid to base clips and withdraw from housing.
4. Set coding plugs as required.
5. Reassemble unit and connect power.
6. Adjust SPAN and ZERO pots to recalibrate.
7. Change the label information to the new input/output values.

Coding Plug Location Diagram

In the interest of development and improvement, BASI reserve the right to amend, without notice, details contained in this publication.BAS will accept no legal liability for any errors, omissions or amendments

