Hybrid Power

= 7

AEP Smart Grid Cabinet

Bidirectional (dis)charging system

- Innovative in energy storage & Power Electronics
- Custom-made solutions
- Complete solution: storage & Power Electronics
- Design and system integration

Features

- Input and output are galvanically isolated over a 50Hz transformer
- Communication via CAN-interface and digital signals
- Three individual bidirectional systems in one

Applications

- Many variations on the load-side possible, according to customers' requirements:
 - Example: Electric vehicle charging, Ultracapacitors, batteries and fuel cells.

Mechanical Data

Length x Depth x Height 810 x 608 x 2208 mm Approx. 1000 kg

aephybridpower.com sales@aephybridpower.com +31 (0)78 692 2100

Technical Characteristics

Symbol	Parameter	Description	Value	Unit
	General			
U _{IN}	Input voltage	Phase – Phase ± 10%	400	VAC
l _{iN}	Input current		40 (Charging) – 217 (Discharging)	А
Uouт	Output voltage		120 (Charging/SOFC) – 420 (Discharging/SOEC)	VDC
	Voltage accuracy		< ± 1,5	%
Ιουτ	Output current	Per stack	40 (Charging) – 103 (Discharging)	А
	Current accuracy		< ± 1,5	%
	Power (Charging)	Per Stack (40 kW optional)	7	kW
	Power (Discharging)	Per Stack	41	kW
	Max. AC Power		135	kVA
	Net Frequency		50 ± 1%	Hz
	Environment			
	Operating temperature		0 to 40	°C
	Storage temperature		-20 till +50	°C
	Humidity	< 95 % non-condensing		
	Environmental conditions	EN 50178		
	EMC	EN 61000-6-4, EN 61000-6-2, EN 61000-3 (C2)		
	Panel sheet coating	Pre-galvanized steel		

Energy flow: Grid to load \rightarrow Charging Load to grid \rightarrow Discharging

AED

System Overview

Figure 1: Example of two cabinets installed in a container

Figure 2: Example; block diagram of one cabinet with fuel cells

Mechanical Data

Length x Depth x Height:178 x 359 x 238 mmWeight:Approx. 9,8 kg

Figure 3: dimensions of the cabinet

Parameter	Description	Value	Unit	
Mechanical Data				
Weight		1000	kg	
Dimensions (W x D x H)		810 x 608 x 2208	mm	
Enclosure type	Rittal TS 8			
Cooling	Forced air cooling: 2 roof-fans			
Socket	100 mm (Rittal standard), RAL			
International Protection degree (IP)	IP 20 (Exceptions cutouts on door and roof)			

Example of use

Figure 3: Top view

Figure 4: Typical example of use

Note: Individual Converter stack does not include controller and parallel switching board.

Connections

Power connection

Pin	Signal	Connection cross-section	Connector	Description
	L1	25 50 mm²	Copper bar with hole M8	Fastening torque: 25 Nm
	L2	25 50 mm²	Copper bar with hole M8	Fastening torque: 25 Nm
	L3	25 50 mm²	Copper bar with hole M8	Fastening torque: 25 Nm
	DC-link +	25 2 x 50 mm ²	Copper bar with hole M8	Fastening torque: 25 Nm
	DC-link -	25 2 x 50 mm ²	Copper bar with hole M8	Fastening torque: 25 Nm

FAN terminal

Connector	Pin	Signal	Description
$X1 \rightarrow$ Fan control			
	1	FAN_RELAYS_24V	+24V for fan relays
	2	FAN_PWM	2kHz PWM signal for fan control
	3	FAN_RELAYS_ON	Fan relays on (control signal switched to GN
	4	FAN_24V	+24V supply for fan (I _{max} :7,5A)
	5	FAN_GND	Ground for fan supply

Current sensors LEM HAS 200

Connector	Pin	Signal	Description	
Phase 1 T1				
	1	0	Ground	
	2	Μ	Current measure signal phase 1	
	3	-	-15V supply sensor	
0 M - + 🖿	4	+	+15V supply sensor	
Phase 2 T2				
	1	0	Ground	
	2	М	Current measure signal phase 2	
0 M - +	3	-	-15V supply sensor	
	4	+	+15V supply sensor	
Phase 3 T3 Analog input ANA8				
	1	0	Ground	
	2	М	Current measure signal phase 3	
	3	-	-15V supply sensor	
0 M - +	4	+	+15V supply sensor	

IGBT connectors

=>

Connector	Pin	Signal	Description	
	PL401			
	1	PE	Connected to chassis	
	2	SK1_PH_BOT	PWM signal - BOT IGBT	
	3	SK1_ERR	Error signal – IGBT	
	4	SK1_PH_TOP	PWM signal - TOP IGBT	
	5	SK1_OT	Error signal - over temperature	
	6	+24V	24V driver supply	
	7	+24V	24V driver supply	
	8	+15V	15V driver supply	
	9	NC	Not used	
	10	GND	Ground	
	11	GND	Ground	
	12	SK1_T	Measure signal – Dc-link voltage	
	13	SK1_GNDA	Analogue ground	
	14	SK1_I	Not used	

Hybrid Power					
Phase 2	Phase 2 PL402				
	1	PE	Connected to chassis		
	2	SK2_PH_BOT	PWM signal - BOT IGBT		
	3	SK2_ERR	Error signal – IGBT		
	4	SK2_PH_TOP	PWM signal - TOP IGBT		
	5	SK2_OT	Error signal – over temperature		
	6	+24V	24V driver supply		
	7	+24V	24V driver supply		
	8	+15V	15V driver supply		
	9	NC	Not used		
	10	GND	Ground		
	11	GND	Ground		
	12	SK2_T	Not used		
	13	SK2_GNDA	Analogue ground		
	14	SK2_I	Not used		
Phase 3	PL403 An	alog input ANA8			
	1	PE	Connected to chassis		
	2	SK3_PH_BOT	PWM signal - BOT IGBT		
	3	SK3_ERR	Error signal – IGBT		
	4	SK3_PH_TOP	PWM signal - TOP IGBT		
	5	SK3_OT	Error signal – over temperature		
	6	+24V	24V driver supply		
	7	+24V	24V driver supply		
	8	+15V	15V driver supply		
	9	NC	Not used		
	10	GND	Ground		
	11	GND	Ground		
	12	SK3_T	Measure signal – IGBT temperature		
	13	SK3_GNDA	Analogue ground		
	14	SK3_I	Not used		

Accessories

Figure 5: Pre-charge

Figure 6: EMC filter

Figure 7: Voltage measurement

Figure 8: Output cap