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Let (I, 0,+) be a commutative monoid. A parity function is a
(non-trivial) monoid homomorphism p : I → Z2, or equivalently, a
Z2 grading on I which is compatible with the additive structure.

0 a b

0 0 a b

a a b a

b b a b

Table 1.1: A commutative monoid of order 3.

p is defined by setting I0 = {0, b} and I1 = {a}.
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Proposition 1.1.

If I is cancellative, then |I0| = |I1|.
Given a cancellative I, how can one construct p for I?
If I is finite, then it is isomorphic to a direct product of cyclic
groups of prime-power order. One of these cyclic groups must be
Z2k , k ≥ 1. We can write

I = Z2k × · · ·

and define p by sending (x , · · · ) ∈ I to a− 1 (mod 2), where a is
the order of x ∈ Z2k .
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If I is infinite, the construction of p is hard, perhaps not possible
in general. However, the case of a free I is easy: one can choose
I0 be the submonoid of elements generated by even number of
generators, and I1 be the subset of elements generated by odd
number of generators. As an example, let I be N, the monoid of
natural numbers under addition. p is then defined by sending even
numbers to 0 and odd numbers to 1.
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Let K (I) denote the Grothendieck group of I.

Proposition 1.2.

Let p be a parity function for I. The map

p′ : K (I)→ Z2

[(a1, a2)] 7→ p(a1) + p(a2)

is well-defined and gives a parity function for K (I).
As an example, consider K (N) = Z, the monoid of integers under
addition. The parity function p′ induced from the parity function p
for N again sends even numbers to 0 and odd numbers to 1.
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Let R be a commutative ring. Let I be a countable cancellative
commutative monoid equipped with a parity function p.

Definition 2.1.
An I-graded R-module is an R-module V with a family of
sub-modules {Vi}i∈I indexed by I such that V =

⊕
i∈I Vi . v ∈ V

is said to be homogeneous if v ∈ Vi for some i ∈ I.
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Given two I-graded R-modules V and W , we make V ⊕W and
V ⊗W into I-graded R-modules by setting

V ⊕W =
⊕
i∈I

(Vi ⊕Wi ), V ⊗W =
⊕
k∈I

 ⊕
i+j=k

Vi ⊗Wj

 .

We can also make Hom(V ,W ) into a K (I)-graded R-module:

Hom(V ,W ) =
⊕

α∈K(I)

Hom(V ,W )α,

Hom(V ,W )α = {f ∈ Hom(V ,W )|f (Vi ) ⊂Wj , [(j , i)] = α}.
A morphism from V to W is just an element of Hom(V ,W )0.
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Suppose that I is also a semi-ring. We write ab as the
multiplication of a and b in I.

Definition 2.2.
An I-graded R-module A is called an I-graded R-algebra if A is a
unital associative R-algebra and if the multiplication µ : A⊗A→ A
is a morphism of I-graded R-modules. We write xy = µ(x ⊗ y) as
the shorthand notation. A is said to be commutative if

xy − (−1)p(d(x)d(y))yx = 0 (2.1)

for all homogeneous x , y ∈ A.
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Remark 2.1.
We have to be careful about the sign factor appearing in the right
hand side of (2.1). Although both of I and Z2 are semi-rings, p is
not necessarily a semi-ring homomorphism and we do not have
p(d(x)d(y)) = p(x)p(y) in general. Bearing this in mind, we will
use (−1)p(x)p(y) to replace the sign factor (−1)p(d(x)d(y)) for
simplicity.
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Definition 2.3.
The tensor algebra T(V ) is the I-graded R-module
T(V ) =

⊕
n∈N V⊗n

, together with the tensor product ⊗ as the
canonical multiplication. The symmetric algebra S(V ) is the
quotient algebra of T(V ) by the I-graded two-sided ideal
generated by

v ⊗ w − (−1)p(v)p(w)w ⊗ v ,

where v ,w ∈ V ⊂ T(V ) are homogeneous.
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S(V ) has a canonical N-grading inherited from T(V ) which should
not be confused with its I-grading. We write

S(V ) =
⊕
n∈N

Sn(V )

to indicate that fact.
S(V ) is universal in the sense that, given a commutative I-graded
R-algebra A and a morphism f : V → A. There exists a unique
algebraic homomorphism f̃ : S(V )→ A such that the following
diagram commutes.

V S(V )

A

f

ι

f̃
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Definition 2.4.
The I-graded algebra of formal power series on V is the R-module

S[V ] =
∏
n∈N

Sn(V )

equipped with the canonical algebraic multiplication.

Let I =
⊕

n>0 S
n(V ). One can equip S(V ) with the so-called

I -adic topology. The I -adic completion of S(V ) is defined as the
inverse limit

Ŝ(V )I := lim←− S(V )/I n.
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By the universal property of the inverse limit, one has a morphism

ιI : S(V )→ Ŝ(V )I

with kernel equal to
⋂

n>0 I
n. There is a canonical identification

Ŝ(V )I
∼= S[V ] under which ιI coincides with the canonical

embedding of S(V ) into S[V ].
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Lemma 2.1.
Let A be a commutative I-graded R-algebra. Let J be an ideal of
A such that A is J-adic complete. S [V ] is universal in the sense
that, given a morphism f : V → A such that f (V ) ⊂ J, there
exists a unique (continuous) algebraic homomorphism
f̃ : S[V ]→ A such that the following diagram commutes

V S[V ]

A

f

ι

f̃
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Let k be a field and R be a commutative k-algebra. Let A be a
commutative I-graded k-algebra.

Definition 2.5.
A k-algebra epimorphism ϵ : A→ R is called a body map of A if ϵ
preserves the relevant I-gradings.
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Lemma 2.2.
Let V be an I-graded R-module with V0 = 0. Let ϵ be an R-linear
body map of S[V ]. Then ϵ is unique.

Remark 2.2.
Let V be as above. Suppose A ∼= S[V ] as I-graded k-algebras. In
particular, this implies that A admits a decomposition A = A′ ⊕ I
where A′ ∼= R and I is the ideal generated by homogeneous
elements of non-zero degree. Let ϵ be a body map of A. Since
I ⊂ ker ϵ, ϵ is determined by ϵ|A′ . In other words, ϵ is determined
by a k-algebra endomorphism of R.
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More can be said if V is free.

Lemma 2.3.
Let V be a free I-graded R-module with V0 = 0. Let ϵ be a
R-linear body map of S[V ]. (By Lemma 2.2, ϵ is the canonical
one.) Let I denote the kernel of ϵ. Then there exists an R-algebra
isomorphism

S[V ] ∼= S[I/I 2],

where I 2 is the square of the ideal I .

Lemma 2.4.
Let ϵ be the canonical body map of S[V ]. Then for f ∈ S[V ], f is
invertible if and only if ϵ(f ) is invertible.
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Corollary 2.1.

S[V ] is local if R is local.

Remark 2.3.
As is in the case of I = Z, it is actually crucial to work with S[V ]
instead of S(V ) when the even part of V is non-trivial. The former
allows us to have a coordinate description of morphisms between
”I-graded domains”, a notion of partition of unity for ”I-graded
manifolds”, and more.
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Definition 2.6.
An I-graded ringed space is a ringed space (X ,O) such that

1. O(U) is an I-graded algebra for any open subset U of X ;

2. the restriction morphism ρV ,U : O(U)→ O(V ) is a morphism
of I-graded algebras.

A morphism between two I-graded ringed spaces (X1,O1) and
(X2,O2) is just a morphism φ = (φ̃, φ∗) between ringed spaces
such that φ∗

U : O2(U)→ O1(φ̃
−1(U)) preserves the I-grading for

any open subset U of X2.
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Let (X ,C ) be a ringed space where C (U) are commutative rings.

Definition 2.7.
Let F be an I-graded C -module. The formal symmetric power
S[F ] of F is the sheafification of the presheaf

U → S[F(U)],

where S[F(U)] is the I-graded algebra of formal power series on
the C (U)-module F(U).
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Lemma 2.5.
Let A be a commutative I-graded C -algebra. Let B be a sub-sheaf
of A such that A(U) is B(U)-adic complete for all open subsets U.
S[F ] is universal in the sense that, given a morphism of I-graded
C -modules F : F → A such that F (F(U)) ⊂ B(U) for all open
subsets U, there exists a unique morphism of I-graded C -algebras
F̃ : S[F ]→ A such that the following diagram commutes.

F S[F ]

A

F

ι

F̃
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Throughout this section, V is a real I-graded vector space with
V0 = 0. dimVi = mi .

Definition 3.1.
Let U be a domain of Rn. An I-graded domain U of dimension
n|(mi )i∈I is an I-graded ringed space (U,O), where O is the
sheaf of S[V ]-valued smooth functions.

Remark 3.1.
U is a locally ringed space by Corollary 2.1.

Remark 3.2.
Recall that we have a canonical body map
ϵ : C∞(U)⊗ S[V ]→ C∞(U), which induces a monomorphism
U ↪→ U .
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Definition 3.2.
Let M be a n-dimensional manifold. An I-graded manifoldM of
dimension n|(mi )i∈I is an I-graded ringed space (M,OM) which is
locally isomorphic to an I-graded domain of dimension n|(mi )i∈I .
That is, for each x ∈ M, there exist an open neighborhood Ux of
x , an I-graded domain U , and an isomorphism of locally ringed
spaces

φ = (φ̃, φ∗) : (Ux ,OM |Ux )→ U .

φ is called a chart ofM on Ux . (We often refer to Ux as a chart
too.)
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Remark 3.3.
A function on an I-graded manifold of non-zero degree is not
necessarily nilpotent as in the Z2-graded setting, which means that
one cannot pass to the underlying manifold by simply modding out
all nilpotent functions.

Remark 3.4.
The vector fields on an I-graded manifold is in general not
I-graded, but K (I)-graded, where K (I) is the Grothendieck group
of I.
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Lemma 3.1.
Let F : C∞ → C∞ be an endomorphism of sheaves of
commutative rings on M. Then F must be the identity.

Let U be an arbitrary open subset of M. We can choose a
collection of charts {Uα} such that U =

⋃
α Uα. For f ∈ O(U),

one can apply the restriction morphisms to f to get a sequence of
sections fα in O(Uα). Apply the canonical body map ϵ to each of
them to get a sequence of smooth functions f̃α in C∞(Uα). By
Lemma 3.1 and Remark 2.2, ϵ is actually the unique sheaf
morphism from O|Uα to C∞|Uα . Therefore, f̃α are compatible with
each other and can be glued together to give a smooth function f̃
over U. In this way, we construct a unique body map for every
open subset of M, which are compatible with restrictions.

Theorem 3.1.
There exists a unique underlying manifold ofM.
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Definition 3.3.
An I-graded manifoldM is called projected if there exists a
splitting of the short exact sequence (of sheaves of rings)

0 −→ O1 −→ O ϵ−−→ C∞ −→ 0, (3.1)

where O1 is the kernel of ϵ.

The structure sheaf O of a projected manifold is a C∞-module.
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Definition 3.4.
A projected I-graded manifoldM is called split if there exists a
splitting of the short exact sequence (of C∞-modules)

0 −→ O2 −→ O1 π−−→ O1/O2 −→ 0, (3.2)

where O2 is the square of O1.

Let O be the structure sheaf of a projected I-graded manifold. Let
F denote the sheaf O1/O2. F is an I-graded C∞-module and we
can define its formal symmetric power S[F ]. By construction, the
ringed spaceMS = (M,S[F ]) is also a projected I-graded
manifold.
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Lemma 3.2.
Let O1 be the kernel of ϵ. O is O1-adic complete. That is, for any
open subset U, O(U) is O1(U)-adic complete.

Using Lemma 3.2 and the universal property of S[F ], one can prove

Proposition 3.1.

LetM = (M,O) be a projected I-graded manifold. M is split if
and only ifM∼=MS .
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Lemma 3.3.
Let F and G be two locally free C -modules. Then the obstruction
to the existence of a splitting of the short exact sequence of
C -modules

0 −→ G −→ H −→ F −→ 0.

can be represented as an element in the first sheaf cohomology
group H1(X ,Hom(F ,G)) of Hom(F ,G).

Proposition 3.2.

Every projected I-graded manifold is split.
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Proposition 3.3.

Every I-graded manifold is projected.

Proof.
Let O(i) = O/Oi+1. Let ϕ(0) : C

∞ → O(0) be the identity
morphism. One can construct by induction on i mappings
ϕ(i+1) : C

∞ → O(i+1) such that πi+1,i ◦ ϕ(i+1) = ϕ(i), where
πi+1,i : Oi+1 → Oi is the canonical epimorphism. The obstruction
to the existence of ϕ(i+1) can be represented as an element

ω(ϕ(i)) ∈ H1(M, (T ⊗ Si+1(F))0), where T is the tangent sheaf of
the underlying manifold M.
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Proposition 3.3.

Every I-graded manifold is projected.

Proof.
Due to the existence of a smooth partition of unity on M,
H1(M, (T ⊗ Si+1(F))0) = 0 and ω(ϕ(i)) = 0. It follows that there
exists a unique morphism ϕ : C∞ → lim←−O(i) such that
πi ◦ ϕ = ϕ(i), where πi : lim←−O(i) → Oi is the canonical projection.
By Lemma 3.2, ϕ can be seen as a morphism from C∞ to O. Note
that π0 = ϵ and π0 ◦ ϕ = ϕ(0) = id. ϕ splits (3.1).
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An I-graded vector bundle π : E → M is a vector bundle such that
E =

⊕
k∈I Ek where Ek are vector bundles whose fibers consist of

elements of degree k . To any I-graded vector bundle E we can
associate an I-graded ringed space with the underlying topological
space being M and the structure sheaf being the sheaf of sections
of S(

⊕
k∈I(Ek)

∗). (This is an I-graded manifold in our sense if
the fiber of E does not contain elements of degree 0.)

Theorem 3.2.
Every I-graded manifold can be obtained from an I-graded vector
bundle.
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Definition 4.1.
A QK -manifold is a bigraded manifold equipped with three vector
fields Q, K and d of degree (0, 1), (1,−1) and (1, 0), respectively,
satisfying the following relations

Q2 = 0, d2 = 0, QK + KQ = d , Kd + dK = 0.

K is known as the vector supersymmetry in the physics literature.
It can be used to study the descent equations

Q(O(p)) = d(O(p−1)) (4.1)

in a topological field theory.

Theorem 4.1.
Every solution to (4.1) is a K -sequence up to some exact sequence.
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The preprints: https://arxiv.org/abs/2206.02586 and
https://arxiv.org/abs/2202.12425.
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