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Let (Z,0,+) be a commutative monoid. A parity function is a
(non-trivial) monoid homomorphism p : Z — Zj, or equivalently, a
Zo grading on Z which is compatible with the additive structure.

O|lalb
0|0|al|b
alal|b|a
b|b|a|b

Table 1.1: A commutative monoid of order 3.

p is defined by setting Zo = {0, b} and Z; = {a}.
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Proposition 1.1.
If T is cancellative, then |Iy| = |Z3].

Given a cancellative Z, how can one construct p for Z7?

If Z is finite, then it is isomorphic to a direct product of cyclic
groups of prime-power order. One of these cyclic groups must be
Zok, k > 1. We can write

T =Tgic X -+~

and define p by sending (x,---) € Z to a— 1 (mod 2), where a is
the order of x € Zo«.
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If Z is infinite, the construction of p is hard, perhaps not possible
in general. However, the case of a free Z is easy: one can choose
Zo be the submonoid of elements generated by even number of
generators, and Z; be the subset of elements generated by odd
number of generators. As an example, let Z be N, the monoid of
natural numbers under addition. p is then defined by sending even
numbers to 0 and odd numbers to 1.
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Let K(Z) denote the Grothendieck group of Z.

Proposition 1.2.
Let p be a parity function for L. The map

P K(Z) = Z
[(a1,22)] = p(a1) + p(a2)

is well-defined and gives a parity function for K(Z).

As an example, consider K(N) = Z, the monoid of integers under
addition. The parity function p’ induced from the parity function p
for N again sends even numbers to 0 and odd numbers to 1.
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Let R be a commutative ring. Let Z be a countable cancellative
commutative monoid equipped with a parity function p.

Definition 2.1.

An Z-graded R-module is an R-module V with a family of
sub-modules {V;};cz indexed by Z such that V =@, Vi. ve V
is said to be homogeneous if v € V; for some i € 1.
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Given two Z-graded R-modules V and W, we make V & W and
V ® W into Z-graded R-modules by setting

veaw=@Pview), veaw=FP| P view,
i€ keZ \it+j=k

We can also make Hom(V, W) into a K(Z)-graded R-module:

Hom(V, W)= P Hom(V, W),,
aeK(T)

Hom(V, W), = {f € Hom(V, W)|f(V;) C W,,[(j, )] = a}.
A morphism from V to W is just an element of Hom(V, W)o.
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Suppose that Z is also a semi-ring. We write ab as the
multiplication of a and b in Z.

Definition 2.2.

An Z-graded R-module A is called an Z-graded R-algebra if A is a
unital associative R-algebra and if the multiplication 4 : AQ A — A
is a morphism of Z-graded R-modules. We write xy = u(x ® y) as
the shorthand notation. A is said to be commutative if

for all homogeneous x,y € A.
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Remark 2.1.

We have to be careful about the sign factor appearing in the right
hand side of (2.1). Although both of Z and Z, are semi-rings, p is
not necessarily a semi-ring homomorphism and we do not have
p(d(x)d(y)) = p(x)p(y) in general. Bearing this in mind, we will
use (—1)PXIPY) to replace the sign factor (—1)P(d(x)9() for

simplicity.
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Definition 2.3.

The tensor algebra T(V) is the Z-graded R-module

T(V) = @,y V&', together with the tensor product ® as the
canonical multiplication. The symmetric algebra S(V/) is the
quotient algebra of T(V) by the Z-graded two-sided ideal
generated by

vaw—(=1)PMPMWy @ v,

where v,w € V C T(V) are homogeneous.
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S(V) has a canonical N-grading inherited from T(V') which should
not be confused with its Z-grading. We write

=Psn(v
neN
to indicate that fact.
S(V) is universal in the sense that, given a commutative Z-graded
R-algebra A and a morphism f : V — A. There exists a unique
algebraic homomorphism  : S(V) — A such that the following
diagram commutes.

V<—>S

\l
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Definition 2.4.
The Z-graded algebra of formal power series on V is the R-module

SiVli=J]s"(v)
neN

equipped with the canonical algebraic multiplication.

Let | = @,-0S"(V). One can equip S(V) with the so-called
I-adic topology. The [-adic completion of S(V) is defined as the
inverse limit

S(V)y 1= mS(V)/1".

13/34



Monoidally Graded Ringed Spaces
00000000®00000000

By the universal property of the inverse limit, one has a morphism

—

¢ S(V) = S(V),

with kernel equal to (1, /". There is a canonical identification

S/(\\/), 2 S[V] under which ¢; coincides with the canonical
embedding of S(V/) into S[V].
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Lemma 2.1.

Let A be a commutative I-graded R-algebra. Let J be an ideal of
A such that A is J-adic complete. S[V] is universal in the sense
that, given a morphism f : V' — A such that f(V) C J, there
exists a unique (continuous) algebraic homomorphism

f : S[V] — A such that the following diagram commutes

V s S[V]

Nk
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Let k be a field and R be a commutative k-algebra. Let A be a
commutative Z-graded k-algebra.

Definition 2.5.
A k-algebra epimorphism € : A — R is called a body map of A if €
preserves the relevant Z-gradings.
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Lemma 2.2.
Let V' be an I-graded R-module with Vo = 0. Let € be an R-linear
body map of S[V]. Then € is unique.

Remark 2.2.

Let V be as above. Suppose A = S[V] as Z-graded k-algebras. In
particular, this implies that A admits a decomposition A = A" @ /
where A’ = R and | is the ideal generated by homogeneous
elements of non-zero degree. Let € be a body map of A. Since

| C kere, € is determined by €| 4. In other words, € is determined
by a k-algebra endomorphism of R.
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More can be said if V is free.

Lemma 2.3.

Let V be a free IT-graded R-module with Vy = 0. Let € be a
R-linear body map of S[V]. (By Lemma 2.2, € is the canonical
one.) Let | denote the kernel of €. Then there exists an R-algebra
isomorphism

S[V] = S[1/17],

where 2 is the square of the ideal |.

Lemma 2.4.
Let € be the canonical body map of S[V]. Then for f € S[V], f is
invertible if and only if e(f) is invertible.
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Corollary 2.1.
S[V] is local if R is local.

Remark 2.3.

As is in the case of Z = Z, it is actually crucial to work with S[V/]
instead of S(V) when the even part of V is non-trivial. The former
allows us to have a coordinate description of morphisms between
"T-graded domains”, a notion of partition of unity for " Z-graded
manifolds”, and more.
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Definition 2.6.
An Z-graded ringed space is a ringed space (X, Q) such that

1. O(U) is an Z-graded algebra for any open subset U of X;
2. the restriction morphism py y : O(U) — O(V) is a morphism
of Z-graded algebras.

A morphism between two Z-graded ringed spaces (X1, 01) and
(X2, 02) is just a morphism ¢ = (@, ¢*) between ringed spaces
such that ¢}, : O2(U) — O1($1(U)) preserves the Z-grading for
any open subset U of X>.
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Let (X, C) be a ringed space where C(U) are commutative rings.

Definition 2.7.
Let F be an Z-graded C-module. The formal symmetric power
S[F] of F is the sheafification of the presheaf

U — S[F(V)],

where S[F(U)] is the Z-graded algebra of formal power series on
the C(U)-module F(U).
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Lemma 2.5.

Let A be a commutative Z-graded C-algebra. Let B be a sub-sheaf
of A such that A(U) is B(U)-adic complete for all open subsets U.
S[F] is universal in the sense that, given a morphism of Z-graded
C-modules F : F — A such that F(F(U)) C B(U) for all open
subsets U, there exists a unique morphism of Z-graded C-algebras
F : S[F] — A such that the following diagram commutes.

F — S[F]

b
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Throughout this section, V is a real Z-graded vector space with
Vo =0. dim V, = m;.

Definition 3.1.

Let U be a domain of R”. An Z-graded domain U of dimension
n|(m;)iez is an Z-graded ringed space (U, Q), where O is the
sheaf of S[V]-valued smooth functions.

Remark 3.1.
U is a locally ringed space by Corollary 2.1.

Remark 3.2.

Recall that we have a canonical body map

€: C®(U) ® S[V] — C*(U), which induces a monomorphism
U—=U.
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Definition 3.2.

Let M be a n-dimensional manifold. An Z-graded manifold M of
dimension n|(m;);cz is an Z-graded ringed space (M, Op) which is
locally isomorphic to an Z-graded domain of dimension n|(m;);ez.
That is, for each x € M, there exist an open neighborhood U, of
x, an Z-graded domain U, and an isomorphism of locally ringed
spaces

v =(¢¢7): (Ux, Omlu,) = U.

@ is called a chart of M on Uy. (We often refer to Uy as a chart
too.)
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Remark 3.3.

A function on an Z-graded manifold of non-zero degree is not
necessarily nilpotent as in the Z,-graded setting, which means that
one cannot pass to the underlying manifold by simply modding out
all nilpotent functions.

Remark 3.4.
The vector fields on an Z-graded manifold is in general not
Z-graded, but K(Z)-graded, where K(Z) is the Grothendieck group

of Z.
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Lemma 3.1.
Let F: C°® — C* be an endomorphism of sheaves of
commutative rings on M. Then F must be the identity.

Let U be an arbitrary open subset of M. We can choose a
collection of charts {U,} such that U =, U.. For f € O(U),
one can apply the restriction morphisms to f to get a sequence of
sections f, in O(U,). Apply the canonical body map € to each of
them to get a sequence of smooth functions £, in C*®(U,). By
Lemma 3.1 and Remark 2.2, ¢ is actually the unique sheaf
morphism from O|y, to C®|y, . Therefore, f, are compatible with
each other and can be glued together to give a smooth function f
over U. In this way, we construct a unique body map for every
open subset of M, which are compatible with restrictions.

Theorem 3.1.
There exists a unique underlying manifold of M.
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Definition 3.3.
An Z-graded manifold M is called projected if there exists a
splitting of the short exact sequence (of sheaves of rings)

0—0' —0-5C*°—0, (3.1)

where Ol is the kernel of e.
The structure sheaf O of a projected manifold is a C°°-module.
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Definition 3.4.
A projected Z-graded manifold M is called split if there exists a
splitting of the short exact sequence (of C>°-modules)

0— 0?2 — 0! 5 0')0? — 0, (3.2)

where ©? is the square of O

Let O be the structure sheaf of a projected Z-graded manifold. Let
F denote the sheaf O1/0?. F is an Z-graded C*°-module and we
can define its formal symmetric power S[F]. By construction, the
ringed space Mg = (M, S[F]) is also a projected Z-graded
manifold.
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Lemma 3.2.
Let O be the kernel of €. O is O'-adic complete. That is, for any
open subset U, O(U) is O'(U)-adic complete.

Using Lemma 3.2 and the universal property of S[F], one can prove

Proposition 3.1.
Let M = (M, Q) be a projected I-graded manifold. M is split if
and only if M = M.
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Lemma 3.3.

Let F and G be two locally free C-modules. Then the obstruction
to the existence of a splitting of the short exact sequence of
C-modules

0—§G—H —F —0.

can be represented as an element in the first sheaf cohomology
group HY(X,Hom(F,G)) of Hom(F,G).

Proposition 3.2.
Every projected Z-graded manifold is split.
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Proposition 3.3.
Every T-graded manifold is projected.

Proof.

Let Oy = O/O™FL. Let ¢(g) : C* — O(g) be the identity
morphism. One can construct by induction on i mappings

P(iv1) + € = O(ig1) such that w1 0 (jy1) = P(j), Where

mit1,i - Oiy1 — Oj is the canonical epimorphism. The obstruction
to the existence of ¢(; 1) can be represented as an element

w(giy) € HY(M, (T @ S™T1(F))o), where T is the tangent sheaf of
the underlying manifold M.
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Proposition 3.3.
Every T-graded manifold is projected.

Proof.

Due to the existence of a smooth partition of unity on M,

HY (M, (T @ S™(F))o) = 0 and w(¢(;)) = 0. It follows that there
exists a unique morphism ¢ : C*° — le O(iy such that

i 0 ¢ = ¢(jy, where 7; I@ O(jy — O is the canonical projection.

By Lemma 3.2, ¢ can be seen as a morphism from C* to O. Note
that mo = € and mp 0 ¢ = ¢y = id. ¢ splits (3.1). O
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An Z-graded vector bundle 7w : E — M is a vector bundle such that
E = @1 Ex where Ej are vector bundles whose fibers consist of
elements of degree k. To any Z-graded vector bundle E we can
associate an Z-graded ringed space with the underlying topological
space being M and the structure sheaf being the sheaf of sections
of S(Brez(Ex)*)- (This is an Z-graded manifold in our sense if
the fiber of E does not contain elements of degree 0.)

Theorem 3.2.
Every T-graded manifold can be obtained from an Z-graded vector
bundle.
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Definition 4.1.

A @QK-manifold is a bigraded manifold equipped with three vector
fields Q, K and d of degree (0,1), (1,—1) and (1,0), respectively,
satisfying the following relations

Q*=0, d°=0, QK+KQ=d, Kd+dK =0.

K is known as the vector supersymmetry in the physics literature.
It can be used to study the descent equations

Q(O(”)) — d(@(pfl)) (4.1)

in a topological field theory.
Theorem 4.1.

Every solution to (4.1) is a K-sequence up to some exact sequence.
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Thank you!

The preprints: https://arxiv.org/abs/2206.02586 and
https://arxiv.org/abs/2202.12425.
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