"On Finite W-algebras for superalgebras and Super Yangians"

Elena Poletaeva

University of Texas Rio Grande Valley

Joint work with

Vera Serganova, UC Berkeley

"Geometric Structures and Supersymmetry 2022"

August 26, 2022

1. INTRODUCTION

• For a finite-dimensional semi-simple Lie algebra \mathfrak{g} , the Yangian of \mathfrak{g} is an infinitedimensional Hopf algebra $Y(\mathfrak{g})$. It is a deformation of the universal enveloping algebra of the Lie algebra of polynomial currents of \mathfrak{g} : $\mathfrak{g}[t] = \mathfrak{g} \otimes \mathbb{C}[t]$.

• A finite W-algebra is a certain associative algebra attached to a pair (\mathfrak{g}, e) where \mathfrak{g} is a complex semi-simple Lie algebra and $e \in \mathfrak{g}$ is a nilpotent element. It is a generalization of the universal enveloping algebra $U(\mathfrak{g})$. For e = 0 it coincides with $U(\mathfrak{g})$.

(A. Premet, Adv. Math., 2002)

Theorem. (B. Kostant, Invent. Math. 1978) For a reductive Lie algebra \mathfrak{g} and a *regular* nilpotent element $e \in \mathfrak{g}$, the finite W-algebra coincides with the center of $U(\mathfrak{g})$.

• This theorem does not hold for Lie superalgebras, since the finite W-algebra has a non-trivial odd part, while the center of $U(\mathfrak{g})$ is even.

(V. Kac, M. Gorelik, A. Sergeev)

• J. Brown, J. Brundan and S. Goodwin proved that the finite W-algebra for $\mathfrak{g} = \mathfrak{gl}(m|n)$ associated with **regular (principal)** nilpotent element is a quotient of a shifted version of the super-Yangian $Y(\mathfrak{gl}(1|1))$ (Algebra Namber Theory, 2013)

2. The queer Lie superalgebra $\mathfrak{g} = \mathbf{Q}(\mathbf{n})$

• Equip $\mathbb{C}^{n|n}$ with the odd operator ζ such that $\zeta^2 = -$ Id. Q(n) is the centralizer of ζ in the Lie superalgebra $\mathfrak{gl}(n|n)$:

$$\zeta = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}, \quad Q(n) = \{ \begin{pmatrix} A & B \\ \hline B & A \end{pmatrix} \mid A, B \text{ are } n \times n \text{ matrices} \}$$

• Supercommutator: $[X, Y] = XY - (-1)^{p(X)p(Y)}YX.$

• Standard bases in A and B respectively:

$$e_{i,j} = \begin{pmatrix} E_{ij} & 0 \\ \hline 0 & E_{ij} \end{pmatrix}, \quad f_{i,j} = \begin{pmatrix} 0 & E_{ij} \\ \hline E_{ij} & 0 \end{pmatrix}$$

• $\mathfrak{g} = Q(n)$ admits an **odd** non-degenerate \mathfrak{g} -invariant super-symmetric bilinear form

$$(X|Y) := otr(XY)$$
 for $X, Y \in Q(n)$

$$otr\left(\frac{A \mid B}{B \mid A}\right) = trB$$

• $\mathfrak{g}^* \cong \Pi(\mathfrak{g})$, where Π is the parity functor.

3. The super-Yangian of Q(n)

The super-Yangian Y(Q(n)) was introduced by M. Nazarov. (Lecture Notes in Math. 1992)

Let $\mathfrak{gl}(n|n)$ be the general linear Lie superalgebra with the standard basis E_{ij} ,

where $i, j = \pm 1, \ldots, \pm n;$

$$p(i) = 0$$
 if $i > 0$ and $p(i) = 1$ if $i < 0$.

Define an involutive automorphism η of $\mathfrak{gl}(n|n)$ by

$$\eta(E_{ij}) = E_{-i,-j}$$

• Q(n) is the *fixed point subalgebra* in $\mathfrak{gl}(n|n)$ relative to η .

Consider the *twisted polynomial current* Lie superalgebra

$$\mathfrak{g} = \{ X(t) \in \mathfrak{gl}(n|n)[t] \mid \eta(X(t)) = X(-t) \}.$$

As a vector space, \mathfrak{g} is spanned by the elements

$$E_{ij}t^m + E_{-i,-j}(-t)^m,$$

where m = 0, 1, 2, ... and $i, j = \pm 1, ..., \pm n$.

• The enveloping algebra $U(\mathfrak{g})$ has a deformation, called the *Yangian* of Q(n).

 \bullet M. Nazarov and A. Sergeev described the *centralizer construction* of the Yangian of Q(n).

(Studies in Lie Theory, 2006)

8

Let A_n^m be the centralizer of $Q(n) \subset Q(n+m)$ in the associative superalgebra U(Q(n+m)) for each m = 1, 2, ...

They constructed a sequence of surjective homomorphisms

$$U(Q(n)) \longleftarrow A_n^1 \longleftarrow A_n^2 \longleftarrow \dots$$

and described the inverse limit of the sequence of centralizer algebras A_n^1, A_n^2, \ldots in terms of the Yangian of Q(n). • Y(Q(n)) is the associative unital superalgebra over \mathbb{C} with the countable set of generators.

$$T_{i,j}^{(m)}$$
 where $m = 1, 2, ...$ and $i, j = \pm 1, \pm 2, ..., \pm n$.

• The \mathbb{Z}_2 -grading of the algebra Y(Q(n)) is defined as follows:

$$p(T_{i,j}^{(m)}) = p(i) + p(j)$$
, where $p(i) = 0$ if $i > 0$ and $p(i) = 1$ if $i < 0$.

• To write down defining relations for these generators we employ the formal series in $Y(Q(n))[[u^{-1}]]$:

$$T_{i,j}(u) = \delta_{i,j} \cdot 1 + T_{i,j}^{(1)} u^{-1} + T_{i,j}^{(2)} u^{-2} + \dots$$

$$(u^{2} - v^{2})[T_{i,j}(u), T_{k,l}(v)] \cdot (-1)^{p(i)p(k) + p(i)p(l) + p(k)p(l)}$$

$$= (u + v)(T_{k,j}(u)T_{i,l}(v) - T_{k,j}(v)T_{i,l}(u))$$

$$- (u - v)(T_{-k,j}(u)T_{-i,l}(v) - T_{k,-j}(v)T_{i,-l}(u)) \cdot (-1)^{p(k) + p(l)}$$

$$(1)$$

$$T_{i,j}(-u) = T_{-i,-j}(u)$$
(2)

• Y(Q(n)) is a Hopf superalgebra with comultiplication given by

$$\Delta(T_{i,j}^{(r)}) = \sum_{s=0}^{r} \sum_{k} (-1)^{(p(i)+p(k))(p(j)+p(k))} T_{i,k}^{(s)} \otimes T_{k,j}^{(r-s)}.$$

The evaluation homomorphism $ev: Y(Q(n)) \to U(Q(n))$ is defined as follows

$$T_{i,j}^{(1)} \mapsto -e_{j,i}, \quad T_{-i,j}^{(1)} \mapsto -f_{j,i} \text{ for } i, j > 0, \quad T_{i,j}^{(0)} \mapsto \delta_{i,j}, \quad T_{i,j}^{(r)} \mapsto 0 \text{ for } r > 1.$$

Basis in
$$Q(n): e_{i,j} = \left(\begin{array}{c|c} E_{ij} & 0\\ \hline 0 & E_{ij} \end{array}\right), \quad f_{i,j} = \left(\begin{array}{c|c} 0 & E_{ij}\\ \hline E_{ij} & 0 \end{array}\right)$$

4. The finite W-algebra for Q(n)

• We fix the Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g} = Q(n) = \{\left(\frac{A \mid B}{B \mid A}\right)\}$ to be the set of matrices with diagonal A and B:

$$\mathfrak{h} = \operatorname{Span}\{e_{i,i} \mid f_{i,i}\}, \qquad i = 1, \dots, n$$

• \mathfrak{n}^+ (respectively, \mathfrak{n}^-) is the nilpotent subalgebra consisting of matrices with strictly upper triangular (respectively, low triangular) A and B.

 \bullet The Lie superalgebra ${\mathfrak g}$ has the triangular decomposition

 $\mathfrak{g}=\mathfrak{n}^-\oplus\mathfrak{h}\oplus\mathfrak{n}^+$

Set $\mathfrak{b} = \mathfrak{n}^+ \oplus \mathfrak{h}$.

- We define the finite W-algebra associated with the regular even nilpotent element φ in the coadjoint representation of Q(n).
- Choose $\varphi \in \mathfrak{g}^*$ such that

$$\varphi(f_{i,j}) = 0, \quad \varphi(e_{i,j}) = \delta_{i,j+1}.$$

 $\varphi(f_{i,j}) = 0, \quad \varphi(e_{i,j}) = \delta_{i,j+1}.$ **Remark.** Let $E = \sum_{i=1}^{n-1} f_{i,i+1}$ (odd). Then $\varphi(x) = (x|E)$ for $x \in \mathfrak{g}$.

	0	0	0	0	0	0	0	1	0	0	• • •	0
E =	0	0	0	0	0	0	0	0	1	0	• • •	0
	0	0	0	0	0	0	0	0	0	1	•••	0
	• • •	• • •	• • •	•••	•••	• • •	•••	• • •	•••	•••	• • •	• • •
	0	0	0	0	• • •	0	0	0	0	0	• • •	0
	0	1	0	0	• • •	0	0	0	0	0	0	0
	0	0	1	0	•••	0	0	0	0	0	0	0
	0	0	0	1	• • •	0	0	0	0	0	0	0
		• • •	• • •	•••	•••	• • •	• • •	•••	• • •	•••	• • •	• • •
	0	0	0	0	•••	0	0	0	0	0	• • •	0 /

 φ is regular nilpotent $\iff E$ has a single Jordan block

Let I_{φ} be the left ideal in $U(\mathfrak{g})$ generated by $x - \varphi(x)$ for all $x \in \mathfrak{n}^-$, and

 $\pi: U(\mathfrak{g}) \to U(\mathfrak{g})/I_{\varphi}$ be the natural projection.

Definition. The finite W-algebra associated with φ is

 $W^{n} := \{ \pi(y) \in U(\mathfrak{g})/I_{\varphi} \mid \operatorname{ad}(x)y \in I_{\varphi} \text{ for all } x \in \mathfrak{n}^{-} \}.$

 $\pi(y_1)\pi(y_2) = \pi(y_1y_2)$

• We identify $U(\mathfrak{g})/I_{\varphi}$ with $U(\mathfrak{b})$, then W^n is a subalgebra of $U(\mathfrak{b})$.

Definition. The *Harish-Chandra homomorphism* is the natural projection

 $\vartheta: U(\mathfrak{b}) \to U(\mathfrak{h})$

with the kernel $\mathfrak{n}^+ U(\mathfrak{b})$.

Proposition 1. (P.--S., Adv. Math., 2016) The restriction

 $\vartheta: W^n \longrightarrow U(\mathfrak{h})$

is injective.

We consider W^n as a subalgebra of $U(\mathfrak{h})$.

5. W^n is a quotient of YQ(1)

Define $\Delta_n : YQ(1) \longrightarrow YQ(1)^{\otimes n}$ by $\Delta_n := \Delta_{n-1,n} \circ \cdots \circ \Delta_{2,3} \circ \Delta.$ Let $\varphi_n : YQ(1) \to U(Q(1))^{\otimes n} \simeq U(\mathfrak{h})$ be $\varphi_n := ev^{\otimes n} \circ \Delta_n.$

Proposition 2. (P.-S., J. Math. Phys. 2017) The map φ_n is a surjective homomorphism from YQ(1) onto W^n , realized as a subalgebra of $U(\mathfrak{h})$:

 $\varphi_n(YQ(1)) = \vartheta(W^n) \simeq W^n.$

6. The structure of $U(\mathfrak{h})$

• The Cartan subalgebra of $\mathfrak{g} = Q(n)$ is

 $\mathfrak{h} = \operatorname{Span}\{e_{i,i} \mid f_{i,i}\}.$

$$[f_{i,i}, f_{j,j}] = 0$$
 if $i \neq j, [f_{i,i}, f_{i,i}] = 2e_{i,i}.$

Set $\xi_i = (-1)^{i+1} f_{i,i}, x_i = \xi_i^2 = e_{i,i}$. Then

- $U(\mathfrak{h}) = \mathbb{C}[\xi_1, \ldots, \xi_n]/(\xi_i\xi_j + \xi_j\xi_i)_{i < j \le n}$.
- The center of $U(\mathfrak{h})$ coincides with $\mathbb{C}[x_1,\ldots,x_n]$.
- The center $Z(U(\mathfrak{g}))$ was described by A.Sergeev.
- The center of W^n coincides with $W^n \cap \mathbb{C}[x_1, \ldots, x_n] = \vartheta(Z(U(\mathfrak{g})))$. (P.-S., Adv. Math., 2016)

7. The structure of W^n

• We define the following set of generators of W^n : n odd generators ϕ_k and n even generators z_k .

Set

$$\phi_0 = \sum_{i=1}^n \xi_i, \quad \phi_k = T^k(\phi_0), \quad k = 0, \dots, n-1.$$

where the matrix of T in the standard basis ξ_1, \ldots, ξ_n has 0 on the diagonal and

$$t_{ij} = \begin{cases} x_j & if \quad i < j, \\ -x_j & if \quad i > j. \end{cases}$$

18

Even generators for *even* $0 \le k < n$ are given by

$$z_k := [\phi_0, \phi_k] \in \text{ center of } W^n$$

Even generators for $odd \ 0 \le k < n$ are given by

$$z_{k} = \left[\sum_{i_{1} \ge i_{2} \ge \dots \ge i_{k+1}} (x_{i_{1}} + (-1)^{k} \xi_{i_{1}}) \dots (x_{i_{k}} - \xi_{i_{k}}) (x_{i_{k+1}} + \xi_{i_{k+1}})\right]_{even},$$

Then

$$[\phi_i, \phi_j] = \begin{cases} (-1)^i 2z_{i+j} \text{ if } i+j \text{ is even} \\ 0 \text{ if } i+j \text{ is odd} \end{cases}$$

• Elements z_0, \ldots, z_{n-1} are algebraically independent in W^n and they commute with each other.

8. Irreducible representations of W^n

Now we give a classification of simple W^n -modules for Q(n). They are all finite-dimensional.

Restriction from $U(\mathfrak{h})$ to W^n .

Definition. Let $\mathbf{s} = (s_1, \ldots, s_n) \in \mathbb{C}^n$. We call \mathbf{s} regular if $s_i \neq 0$ for all $i \leq n$ and typical if $s_i + s_j \neq 0$ for all $i \neq j \leq n$.

• All irreducible representations of $U(\mathfrak{h})$ are enumerated by $\mathbf{s} \in \mathbb{C}^n$ up to change of parity.

Let V be an irreducible representation, then every x_i acts by scalar s_i Id.

Let $I_{\mathbf{s}}$ be the ideal in $U(\mathfrak{h})$ generated by $x_i - s_i$.

Then the quotient algebra $U(\mathfrak{h})/I_{\mathbf{s}}$ is isomorphic to the Clifford algebra $C_{\mathbf{s}}$ associated with the quadratic form $B_{\mathbf{s}}$:

$$C_{\mathbf{s}} = \mathbb{C}[\xi_1, \dots, \xi_n] / (\xi_i \xi_j + \xi_j \xi_i - 2\delta_{i,j} s_i),$$

and V is a simple $C_{\mathbf{s}}$ -module.

Let m be the number of non-zero coordinates of \mathbf{s} . Then

- $C_{\mathbf{s}}$ has **one** simple \mathbb{Z}_2 -graded module $V(\mathbf{s})$ for **odd** m, and **two** simple modules $V(\mathbf{s})$ and $\Pi V(\mathbf{s})$ for **even** m.
- The dimension of $V(\mathbf{s})$ equals 2^k , where $k = \lceil m/2 \rceil$.
- We denote by the same symbol $V(\mathbf{s})$ the restriction to W^n .

Proposition 3. If s is typical, then V(s) is a simple W^n -module.

- 9. SIMPLE W^2 -modules for Q(2)
- The generators of W^2 are

Even: $z_0 = x_1 + x_2$, $z_1 = x_1x_2 - \xi_1\xi_2$, Odd: $\phi_0 = \xi_1 + \xi_2$, $\phi_1 = x_2\xi_1 - x_1\xi_2$.

- $V(\mathbf{s})$ is simple as W^2 -module if and only if $s_1 \neq -s_2$.
- If $s_1 = -s_2 \neq 0$, we have the following nonsplit exact sequence:

$$0 \to \Pi \Gamma_{-s_1^2 + s_1} \to V(\mathbf{s}) \to \Gamma_{-s_1^2 - s_1} \to 0,$$

where Γ_t is one-dimensional simple module on which ϕ_0, ϕ_1 and z_0 act by zero and z_1 acts by the scalar t.

10. General construction of simple W^n -modules

Let W^n be the finite W-algebra for Q(n).

Let i + j = n. There is natural embedding of the Lie superalgebras:

 $Q(i)\oplus Q(j)\hookrightarrow Q(n).$

This induces the isomorphism

 $U(\mathfrak{h}) \simeq U(\mathfrak{h}_i) \otimes U(\mathfrak{h}_j),$

where \mathfrak{h}_r denotes the Cartan subalgebra of Q(r).

Lemma. Let i + j = n. Then W^n is a subalgebra in the tensor product $W^i \otimes W^j$, where $W^r \subset U(\mathfrak{h}_r)$ denotes the W-algebra for Q(r).

Corollary. If $i_1 + \cdots + i_p = n$, then W^n is a subalgebra in $W^{i_1} \otimes \cdots \otimes W^{i_p}$.

Let n = r + 2p + q, where $r, p, q \ge 0$, and $\mathbf{t} = (t_1, \dots, t_p) \in \mathbb{C}^p$, $t_1, \dots, t_p \ne 0$, $\lambda = (\lambda_1, \dots, \lambda_q) \in \mathbb{C}^q$, $\lambda_1, \dots, \lambda_q \ne 0$, such that $\lambda_i + \lambda_j \ne 0$ for any $1 \le i \ne j \le q$. We have an embedding

$$W^n \hookrightarrow W^r \otimes (W^2)^{\otimes p} \otimes W^q.$$

Set

$$S(\mathbf{t},\lambda) := \mathbb{C} \boxtimes \Gamma_{t_1} \boxtimes \cdots \boxtimes \Gamma_{t_p} \boxtimes V(\lambda).$$

Theorem 1. (P.-S., J. Algebra, 2021)

(a) $S(\mathbf{t}, \lambda)$ is a simple W^n -module;

(b) Every simple W^n -module is isomorphic to $S(\mathbf{t}, \lambda)$ up to change of parity.

Proposition 4.

Two simple modules $S(\mathbf{t}, \lambda)$ and $S(\mathbf{t}', \lambda')$ are isomorphic if and only if $\mathbf{t}' = \sigma(\mathbf{t})$ and $\lambda' = \tau(\lambda)$ for some $\sigma \in S_p$ and $\tau \in S_q$.

11. The structure of the super Yangian of Q(1)

• YQ(1) has generators $T_{1,1}^{(m)}$ (even) and $T_{1,-1}^{(m)}$ (odd)

Let

$$\eta_0 = T_{1,-1}^{(1)}, \quad \eta_i = (-\frac{1}{2})^i \operatorname{ad}^i T_{1,1}^{(2)}(T_{1,-1}^{(1)}), \quad Z_{2i} = \frac{1}{2}[\eta_0, \eta_{2i}].$$

• The surjective homomorphism $\varphi_n: YQ(1) \to W^n$ acts on generators by

$$\varphi_n(\eta_i) = \phi_i, \quad \varphi_n(Z_{2i}) = z_{2i}, \quad 0 \le i \le n-1.$$

Lemma.

(1) The following analogue of the relations in W^n holds:

$$[\eta_i, \eta_j] = \begin{cases} (-1)^i 2Z_{i+j} & \text{if } i+j \text{ is even} \\ 0 & \text{if } i+j \text{ is odd} \end{cases}$$

(2) The elements $\{Z_{2i} \mid i \in \mathbb{N}\}$ are algebraically independent generators of the center of YQ(1).

(3) The elements η_0 and $\{T_{1,1}^{(2i)} \mid i \in \mathbb{N}\}$ generate YQ(1).

12. Representations of the super Yangian of Q(1)

- Using the surjective homomorphism $\varphi_n : YQ(1) \to W^n$ we equip $V(\mathbf{s})$ with a YQ(1)-module structure.
- Let M be a simple YQ(1)-module. Then M admits a central character χ .

Set $\chi_{2i} = \chi(Z_{2i})$ and consider the generating function

$$\chi(u) = \sum_{i=0}^{\infty} \chi_{2i} u^{-2i-1}.$$

Proposition 5. Let M be a finite-dimensional simple YQ(1)-module admitting central character χ . Then $\chi(u)$ is a rational function of the form

$$\frac{a_0 u^{-1} + \dots + a_{q-1} u^{-2q+1}}{1 + c_1 u^{-2} + \dots + c_q u^{-2q}}.$$

Proposition 6. For any rational $\chi(u)$ there exist *n* and a regular typical $\mathbf{s} = (s_1, s_2, \ldots, s_n)$ such that $V(\mathbf{s})$ admits central character χ . $V(\mathbf{s})$ is a simple YQ(1)-module.

Lemma. $[T_{1,1}^{(2k)}, T_{1,1}^{(2l)}] = 0.$

Definition.

Let **A** be the commutative subalgebra in YQ(1) generated by $T_{1,1}^{(2k)}$ for $k \ge 0$.

Proposition 7.

YQ(1)/ ideal generated by odd elements $\simeq \mathbf{A}$.

Hence \mathbf{A} is a commutative cocommutative Hopf algebra with comultiplication

$$\Delta T_{1,1}(u^{-2}) = T_{1,1}(u^{-2}) \otimes T_{1,1}(u^{-2}),$$

where $T_{1,1}(u^{-2}) = \sum T_{1,1}^{(2k)} u^{-2k}$.

Let $f(u) = 1 + \sum_{k>0} f_{2k} u^{-2k}$. Let Γ_f be the one-dimensional **A**-module, where the action of $T_{1,1}(u^{-2})$ is given by the generating function f(u).

Lemma. The isomorphism classes of one-dimensional YQ(1)-modules are in bijection with the set $\{\Gamma_f\}$, and

 $\Gamma_f \otimes \Gamma_g \simeq \Gamma_{fg}.$

Theorem 2. (P.-S., J. Algebra 2021).

(1) Any simple finite-dimensional YQ(1)-module is isomorphic to $V(\mathbf{s}) \otimes \Gamma_f$ or $\Pi V(\mathbf{s}) \otimes \Gamma_f$ for some regular typical \mathbf{s} and $f(u) = 1 + \sum_{k>0} f_{2k} u^{-2k}$.

(2) $V(\mathbf{s}) \otimes \Gamma_f$ and $V(\mathbf{s}') \otimes \Gamma_g$ are isomorphic up to change of parity if and only if \mathbf{s}' is obtained from \mathbf{s} by permutation of coordinates and f(u) = g(u).

13. The relation between W^n -modules and YQ(1)-modules

The following diagram commutes:

$$\begin{array}{cccc} YQ(1) & \xrightarrow{\Delta} & YQ(1) \otimes YQ(1) \\ \varphi_{m+n} & & & & & \\ W^{m+n} & \longrightarrow & W^m \otimes W^n \end{array}$$

Proposition 8. The simple YQ(1)-module $V(\mathbf{s}) \otimes \Gamma_f$ is lifted from some W^{m+n} -module if and only if $f \in \mathbb{C}[u^{-2}]$. The smallest m is equal to the degree of the polynomial f.

Proof. Note that m = 2p is even. $S(t_1, \ldots, t_p, \lambda) \simeq V(\lambda) \otimes \Gamma_f$ where

$$f = \prod_{i=1}^{p} (1 + t_i u^{-2}).$$

Remark. Not all irreducible finite-dimensional representations of the Yangian YQ(1) are obtained by lift from those of W-algebras and the classification is not a straightforward consequence of the classification for W-algebras.

14. The category YQ(1)-mod

Let YQ(1)-mod be the category of finite-dimensional YQ(1)-modules, and $(YQ(1))^{\chi}$ -mod be the full subcategory of modules admitting generalized central character χ .

• What are the blocks in $(YQ(1))^{\chi}$ -mod?

If there is a non-split short exact sequence $0 \longrightarrow M_i \longrightarrow M \longrightarrow M_j \longrightarrow 0$ with $\{i, j\} = \{1, 2\}$, then M_1 and M_2 belong to the same block, and we say that they are *linked*. 15. The subcategory $(YQ(1))^{\chi=0}$ -mod

• The simple modules in the subcategory $(YQ(1))^{\chi=0}$ -mod are exactly the 1-dimensional modules Γ_f up to change of parity. Let Γ_f and Γ_q be two YQ(1)-modules, where

$$f(u) = \sum_{k \ge 0} a_{2k} u^{-2k}, \quad g(u) = \sum_{k \ge 0} b_{2k} u^{-2k}, \quad a_0 = b_0 = 1.$$

Let $x_k = \frac{1}{2}(a_{2k} - b_{2k}).$

Theorem 3. $\operatorname{Ext}^1(\Pi(\Gamma_g), \Gamma_f) \neq 0$ if and only if x_1 is an arbitrary complex number and x_k for k > 1 satisfies the recurrence relation

$$x_{k+1} = (x_1 x_k - x_k + a_{2k}) x_1$$

Conjecture. Let S be a simple finite-dimensional YQ(1)-module. Let $n \ge 1$, $\mathbf{s} = (s_1, s_2, \dots, s_n)$ be regular typical and f(u) and g(u) be given by $f(u) = \sum_{k\ge 0} a_{2k}u^{-2k}, \quad g(u) = \sum_{k\ge 0} b_{2k}u^{-2k}, \quad a_0 = b_0 = 1, \quad x_k = \frac{1}{2}(a_{2k} - b_{2k}).$ Then $Ext^1(S, V(\mathbf{s}) \otimes \Gamma_f) \neq 0,$

if and only if $S \simeq V(\mathbf{s}) \otimes \Pi(\Gamma_g)$, where x_k satisfies the recurrence relation $x_{k+1} = (x_1 x_k - x_k + a_{2k}) x_1.$ **Remark.** The short exact sequences

$$0 \longrightarrow \Gamma_f \longrightarrow \mathbb{C}^{1|1} \longrightarrow \Pi(\Gamma_g) \longrightarrow 0$$

is non-split.

If $n \geq 2$, then the short exact sequence

$$0 \longrightarrow V(s) \otimes \Gamma_f \longrightarrow V(s) \otimes \mathbb{C}^{1|1} \longrightarrow V(s) \otimes \Pi(\Gamma_g) \longrightarrow 0$$

is non-split.

If n = 1, then it is non-split if and only if $x_1 \neq s_1$.

16. The category (W^n) -mod

Let W^n -mod be the category of finite-dimensional W^n -modules, and $(W^n)^{\chi}$ -mod be the full subcategory of modules admitting generalized central character χ . Recall that simple W^n -modules are $S(\mathbf{t}; \lambda_1, \ldots, \lambda_q)$.

If q = 0, we use the notation $S(\mathbf{t})$.

Simple modules in the subcategory $(W^n)^{\chi=0}$ -mod are exactly the 1-dimensional modules $S(\mathbf{t})$ up to change of parity.

17. The subcategory $(W^n)^{\chi=0}$ -mod

Let σ_k be the k-th elementary symmetric polynomial.

Theorem 4. Fix $\mathbf{t} = (t_1, \ldots, t_p)$ and $\mathbf{t}' = (t'_1, \ldots, t'_q)$, where $p, q \leq \frac{n}{2}$. Consider the W^n -modules $S(\mathbf{t})$ and $S(\mathbf{t}')$. Define $a_{2k} = \sigma_k(t_1, \ldots, t_p)$ for $k = 1, \ldots, p$, $a_{2k} = 0$ for k > p. Similarly, define $b_{2k} = \sigma_k(t'_1, \ldots, t'_q)$ for $k = 1, \ldots, q$, $b_{2k} = 0$ for k > q. Let $x_k = \frac{1}{2}(a_{2k} - b_{2k})$.

(a) If $S(\mathbf{t})$ is a nontrivial W^n -module, then $\operatorname{Ext}^1(\Pi(S(\mathbf{t'})), S(\mathbf{t})) \neq 0$ if and only if $x_1 \neq 0$ and x_k satisfy the recurrence relation

$$x_{k+1} = (x_1 x_k - x_k + a_{2k}) x_1.$$

or $S(\mathbf{t}')$ is isomorphic to $S(\mathbf{t})$ and n > 2p.

(b) If $S(\mathbf{t}) = \mathbb{C}^{1|0}$ is the trivial W^n -module, then $\operatorname{Ext}^1(\Pi(S(\mathbf{t}')), S(\mathbf{t})) \neq 0$ if and only if $S(\mathbf{t}') = \mathbb{C}^{1|0}$ or $\mathbf{t}' = (t'_1)$ with $t'_1 = -2$.

18. BLOCKS IN THE CATEGORY W^2 -mod

• Every $\mathbf{s} = (s_1, \ldots, s_n)$ defines the central character $\chi_{\mathbf{s}} : Z^n \longrightarrow \mathbb{C}$.

Theorem 5.

(1) Each simple W^2 -module $V(s_1, s_2)$ for $s_1 \neq -s_2, s_1, s_2 \neq 0$ forms a block in $(W^2)^{\chi_s}$ -mod. (2) Each simple W^2 -module V(s, 0) for $s \neq 0$ forms a block in $(W^2)^{\chi_s}$ -mod.

(3) The blocks in the subcategory $(W^2)^{\chi=0}$ -mod are described as follows.

Let $a \in \mathbb{C}$. Define

$$a_n = a - n^2 + n\sqrt{1 - 4a}$$
 for $n = 0, \pm 1, \pm 2, \dots$

Then Γ_a lies in the block formed by Γ_{a_n} if n is even and $\Pi\Gamma_{a_n}$, if n is odd. $\Pi\Gamma_a$ lies in the block formed by $\Pi\Gamma_{a_n}$ if n is even and Γ_{a_n} , if n is odd.

Example. Let a = 0, then $a_n = n(1 - n)$ and Γ_0 lies in the block ..., Γ_{-30} , $\Pi\Gamma_{-20}$, Γ_{-12} , $\Pi\Gamma_{-6}$, Γ_{-2} , $\Pi\Gamma_0$, Γ_0 , $\Pi\Gamma_{-2}$, Γ_{-6} , $\Pi\Gamma_{-12}$, Γ_{-20} , $\Pi\Gamma_{-30}$, ...

19. About non-regular case

Theorem 5. (P.-S., J. Math. Phys. 2017).

Let W^n be the finite W-algebra for Q(n) associated with the *non-regular* even nilpotent coadjoint orbit in the case when the corresponding nipotent element has Jordan blocks each of size l. Then W^n is isomorphic to the image of $YQ(\frac{n}{l})$ under the homomorphism

$$ev^{\otimes l} \circ \Delta_l : YQ(\frac{n}{l}) \longrightarrow U(Q(\frac{n}{l}))^{\otimes l}$$

The regular case is l = n.

20. Open Problems

- \bullet Describe the structure of finite W-algebra for Q(n) associated with an arbitrary nilpotent $\varphi.$
- Classify the simple finite-dimensional modules over the Yangian for Q(n) for n > 1.

21. References

- [1] J. Brown, J. Brundan, S. Goodwin, Principal W-algebras for GL(m|n), Algebra Numb. Theory 7 (2013), 1849–1882.
- [2] B. Kostant, On Wittaker vectors and representation theory, Invent. Math. 48 (1978) 101–184.
- [3] M. Nazarov, Yangian of the "strange" Lie superalgebras, Quantum groups, 90–97, Lecture Notes in Math. 1510, Springer, 1992.
- [4] M. Nazarov, Yangian of the queer Lie superalgebra, Comm. Math. Phys. 208 (1999) 195–223.
- [5] M. Nazarov, A. Sergeev, Centralizer construction of the Yangian of the queer Lie superalgebra, Studies in Lie Theory, 417–441, Progr. Math. 243, Birkhäuser Boston, Boston, MA, 2006.
- [6] E. Poletaeva, V. Serganova, On Kostant's theorem for the Lie superalgebra Q(n). Adv. Math. **300** (2016), 320–359. arXiv:1403.3866v1.
- [7] E. Poletaeva, V. Serganova, On the finite W-algebra for the Lie superalgebra Q(n)in the non-regular case, J. Math. Phys. **58** (2017), no. 11, 111701. arXiv:1705.10200.
- [8] E. Poletaeva, V. Serganova, Representations of principal W-algebra for the superalgebra Q(n) and the super Yangian YQ(1), J. Algebra **570** (2021) 140-163. arXiv:1903.05272v3.
- [9] E. Poletaeva, On extended modules over the super-Yangian of the superalgebra Q(1), preprint MPIM, 2022.

- [10] A. Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002) 1–55.
- [11] A. Sergeev, The centre of enveloping algebra for Lie superalgebra $Q(n, \mathbb{C})$, Lett. Math. Phys. 7 (1983) 177–179.