"On Finite W-algebras for superalgebras and Super Yangians"

Elena Poletaeva

University of Texas Rio Grande Valley

Joint work with
Vera Serganova, UC Berkeley
"Geometric Structures and Supersymmetry 2022"
August 26, 2022

1. Introduction

- For a finite-dimensional semi-simple Lie algebra \mathfrak{g}, the Yangian of \mathfrak{g} is an infinitedimensional Hopf algebra $Y(\mathfrak{g})$. It is a deformation of the universal enveloping algebra of the Lie algebra of polynomial currents of $\mathfrak{g}: \mathfrak{g}[t]=\mathfrak{g} \otimes \mathbb{C}[t]$.
- A finite W-algebra is a certain associative algebra attached to a pair (\mathfrak{g}, e) where \mathfrak{g} is a complex semi-simple Lie algebra and $e \in \mathfrak{g}$ is a nilpotent element. It is a generalization of the universal enveloping algebra $U(\mathfrak{g})$. For $e=0$ it coincides with $U(\mathfrak{g})$.
(A. Premet, Adv. Math., 2002)

Theorem. (B. Kostant, Invent. Math. 1978)
For a reductive Lie algebra \mathfrak{g} and a regular nilpotent element $e \in \mathfrak{g}$, the finite W-algebra coincides with the center of $U(\mathfrak{g})$.

- This theorem does not hold for Lie superalgebras, since the finite W-algebra has a non-trivial odd part, while the center of $U(\mathfrak{g})$ is even.
(V. Kac, M. Gorelik, A. Sergeev)
- J. Brown, J. Brundan and S. Goodwin proved that the finite W-algebra for $\mathfrak{g}=\mathfrak{g l}(m \mid n)$ associated with regular (principal) nilpotent element is a quotient of a shifted version of the super-Yangian $Y(\mathfrak{g l}(1 \mid 1))$ (Algebra Namber Theory, 2013)

2. The queer Lie superalgebra $\mathfrak{g}=\mathbf{Q}(\mathbf{n})$

- Equip $\mathbb{C}^{n \mid n}$ with the odd operator ζ such that $\zeta^{2}=-\mathrm{Id}$.
$Q(n)$ is the centralizer of ζ in the Lie superalgebra $\mathfrak{g l}(n \mid n)$:

$$
\zeta=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right), \quad Q(n)=\left\{\left.\binom{A \mid B}{\hline B \mid A} \right\rvert\, A, B \text { are } n \times n \text { matrices }\right\}
$$

- Supercommutator: $[X, Y]=X Y-(-1)^{p(X) p(Y)} Y X$.
- Standard bases in A and B respectively:

$$
e_{i, j}=\left(\begin{array}{c|c}
E_{i j} & 0 \\
\hline 0 & E_{i j}
\end{array}\right), \quad f_{i, j}=\left(\begin{array}{c|c}
0 & E_{i j} \\
\hline E_{i j} & 0
\end{array}\right)
$$

- $\mathfrak{g}=Q(n)$ admits an odd non-degenerate \mathfrak{g}-invariant super-symmetric bilinear form

$$
\begin{aligned}
(X \mid Y): & =\operatorname{otr}(X Y) \text { for } X, Y \in Q(n) \\
& \text { otr }\left(\begin{array}{c|c}
A & B \\
\hline B & A
\end{array}\right)=\operatorname{tr} B
\end{aligned}
$$

- $\mathfrak{g}^{*} \cong \Pi(\mathfrak{g})$, where Π is the parity functor.

3. The super-Yangian of $Q(n)$

The super-Yangian $Y(Q(n))$ was introduced by M. Nazarov. (Lecture Notes in Math. 1992)

Let $\mathfrak{g l}(n \mid n)$ be the general linear Lie superalgebra with the standard basis $E_{i j}$,
where $i, j= \pm 1, \ldots, \pm n$;
$p(i)=0$ if $i>0$ and $p(i)=1$ if $i<0$.
Define an involutive automorphism η of $\mathfrak{g l}(n \mid n)$ by

$$
\eta\left(E_{i j}\right)=E_{-i,-j}
$$

- $Q(n)$ is the fixed point subalgebra in $\mathfrak{g l}(n \mid n)$ relative to η.

Consider the twisted polynomial current Lie superalgebra

$$
\mathfrak{g}=\{X(t) \in \mathfrak{g l}(n \mid n)[t] \mid \eta(X(t))=X(-t)\} .
$$

As a vector space, \mathfrak{g} is spanned by the elements

$$
E_{i j} t^{m}+E_{-i,-j}(-t)^{m},
$$

where $m=0,1,2, \ldots$ and $i, j= \pm 1, \ldots, \pm n$.

- The enveloping algebra $U(\mathfrak{g})$ has a deformation, called the Yangian of $Q(n)$.
- M. Nazarov and A. Sergeev described the centralizer construction of the Yangian of $Q(n)$.
(Studies in Lie Theory, 2006)

Let A_{n}^{m} be the centralizer of $Q(n) \subset Q(n+m)$ in the associative superalgebra $U(Q(n+m))$ for each $m=1,2, \ldots$

They constructed a sequence of surjective homomorphisms

$$
U(Q(n)) \longleftarrow A_{n}^{1} \longleftarrow A_{n}^{2} \longleftarrow \ldots
$$

and described the inverse limit of the sequence of centralizer algebras $A_{n}^{1}, A_{n}^{2}, \ldots$ in terms of the Yangian of $Q(n)$.

- $Y(Q(n))$ is the associative unital superalgebra over \mathbb{C} with the countable set of generators.

$$
T_{i, j}^{(m)} \text { where } m=1,2, \ldots \text { and } i, j= \pm 1, \pm 2, \ldots, \pm n .
$$

- The $\mathbb{Z}_{2^{-}}$-grading of the algebra $Y(Q(n))$ is defined as follows:

$$
p\left(T_{i, j}^{(m)}\right)=p(i)+p(j), \text { where } p(i)=0 \text { if } i>0 \text { and } p(i)=1 \text { if } i<0
$$

- To write down defining relations for these generators we employ the formal series in $Y(Q(n))\left[\left[u^{-1}\right]\right]:$

$$
\begin{align*}
& \qquad T_{i, j}(u)=\delta_{i, j} \cdot 1+T_{i, j}^{(1)} u^{-1}+T_{i, j}^{(2)} u^{-2}+\ldots \\
& \left(u^{2}-v^{2}\right)\left[T_{i, j}(u), T_{k, l}(v)\right] \cdot(-1)^{p(i) p(k)+p(i) p(l)+p(k) p(l)} \tag{1}\\
& =(u+v)\left(T_{k, j}(u) T_{i, l}(v)-T_{k, j}(v) T_{i, l}(u)\right) \\
& -(u-v)\left(T_{-k, j}(u) T_{-i, l}(v)-T_{k,-j}(v) T_{i,-l}(u)\right) \cdot(-1)^{p(k)+p(l)}
\end{align*}
$$

$$
\begin{equation*}
T_{i, j}(-u)=T_{-i,-j}(u) \tag{2}
\end{equation*}
$$

- $Y(Q(n))$ is a Hopf superalgebra with comultiplication given by

$$
\Delta\left(T_{i, j}^{(r)}\right)=\sum_{s=0}^{r} \sum_{k}(-1)^{(p(i)+p(k))(p(j)+p(k))} T_{i, k}^{(s)} \otimes T_{k, j}^{(r-s)}
$$

The evaluation homomorphism ev : $Y(Q(n)) \rightarrow U(Q(n))$ is defined as follows

$$
T_{i, j}^{(1)} \mapsto-e_{j, i}, \quad T_{-i, j}^{(1)} \mapsto-f_{j, i} \text { for } i, j>0, \quad T_{i, j}^{(0)} \mapsto \delta_{i, j}, \quad T_{i, j}^{(r)} \mapsto 0 \text { for } r>1
$$

$$
\text { Basis in } Q(n): e_{i, j}=\left(\begin{array}{c|c}
E_{i j} & 0 \\
\hline 0 & E_{i j}
\end{array}\right), \quad f_{i, j}=\left(\begin{array}{c|c}
0 & E_{i j} \\
\hline E_{i j} & 0
\end{array}\right)
$$

4. The finite W-algebra for $Q(n)$

- We fix the Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}=Q(n)=\left\{\left(\frac{A \mid B}{B \mid A}\right)\right\}$
to be the set of matrices with diagonal A and B :

$$
\mathfrak{h}=\operatorname{Span}\left\{e_{i, i} \mid f_{i, i}\right\}, \quad i=1, \ldots, n
$$

- \mathfrak{n}^{+}(respectively, \mathfrak{n}^{-}) is the nilpotent subalgebra consisting of matrices with strictly upper triangular (respectively, low triangular) A and B.
- The Lie superalgebra \mathfrak{g} has the triangular decomposition

$$
\mathfrak{g}=\mathfrak{n}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}^{+}
$$

Set $\mathfrak{b}=\mathfrak{n}^{+} \oplus \mathfrak{h}$.

- We define the finite W-algebra associated with the regular even nilpotent element φ in the coadjoint representation of $Q(n)$.
- Choose $\varphi \in \mathfrak{g}^{*}$ such that

$$
\varphi\left(f_{i, j}\right)=0, \quad \varphi\left(e_{i, j}\right)=\delta_{i, j+1}
$$

Remark. Let $E=\sum_{i=1}^{n-1} f_{i, i+1}(\mathbf{o d d})$. Then $\varphi(x)=(x \mid E)$ for $x \in \mathfrak{g}$.

$$
E=\left(\begin{array}{cccccc|cccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots & 0 \\
\cdots & \cdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
\hline 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\cdots & \cdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

φ is regular nilpotent $\Longleftrightarrow E$ has a single Jordan block

Let I_{φ} be the left ideal in $U(\mathfrak{g})$ generated by $x-\varphi(x)$ for all $x \in \mathfrak{n}^{-}$, and $\pi: U(\mathfrak{g}) \rightarrow U(\mathfrak{g}) / I_{\varphi}$ be the natural projection.

Definition. The finite W-algebra associated with φ is

$$
\begin{gathered}
W^{n}:=\left\{\pi(y) \in U(\mathfrak{g}) / I_{\varphi} \mid \operatorname{ad}(x) y \in I_{\varphi} \text { for all } x \in \mathfrak{n}^{-}\right\} . \\
\pi\left(y_{1}\right) \pi\left(y_{2}\right)=\pi\left(y_{1} y_{2}\right)
\end{gathered}
$$

- We identify $U(\mathfrak{g}) / I_{\varphi}$ with $U(\mathfrak{b})$, then W^{n} is a subalgebra of $U(\mathfrak{b})$.

Definition. The Harish-Chandra homomorphism is the natural projection

$$
\vartheta: U(\mathfrak{b}) \rightarrow U(\mathfrak{h})
$$

with the kernel $\mathfrak{n}^{+} U(\mathfrak{b})$.
Proposition 1. (P.--S., Adv. Math., 2016) The restriction

$$
\vartheta: W^{n} \longrightarrow U(\mathfrak{h})
$$

is injective.

We consider W^{n} as a subalgebra of $U(\mathfrak{h})$.

5. W^{n} IS A QUOTIENT of $Y Q(1)$

Define $\Delta_{n}: Y Q(1) \longrightarrow Y Q(1)^{\otimes n}$ by

$$
\Delta_{n}:=\Delta_{n-1, n} \circ \cdots \circ \Delta_{2,3} \circ \Delta .
$$

Let $\varphi_{n}: Y Q(1) \rightarrow U(Q(1))^{\otimes n} \simeq U(\mathfrak{h})$ be

$$
\varphi_{n}:=e v^{\otimes n} \circ \Delta_{n} .
$$

Proposition 2. (P.-S., J. Math. Phys. 2017)
The map φ_{n} is a surjective homomorphism from $Y Q(1)$ onto W^{n}, realized as a subalgebra of $U(\mathfrak{h})$:

$$
\varphi_{n}(Y Q(1))=\vartheta\left(W^{n}\right) \simeq W^{n}
$$

6. The structure of $U(\mathfrak{h})$

- The Cartan subalgebra of $\mathfrak{g}=Q(n)$ is

$$
\begin{gathered}
\mathfrak{h}=\operatorname{Span}\left\{e_{i, i} \mid f_{i, i}\right\} . \\
{\left[f_{i, i}, f_{j, j}\right]=0 \text { if } i \neq j,\left[f_{i, i}, f_{i, i}\right]=2 e_{i, i} .}
\end{gathered}
$$

Set $\xi_{i}=(-1)^{i+1} f_{i, i}, x_{i}=\xi_{i}^{2}=e_{i, i}$. Then

- $U(\mathfrak{h})=\mathbb{C}\left[\xi_{1}, \ldots, \xi_{n}\right] /\left(\xi_{i} \xi_{j}+\xi_{j} \xi_{i}\right)_{i<j \leq n}$.
- The center of $U(\mathfrak{h})$ coincides with $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
- The center $Z(U(\mathfrak{g}))$ was described by A.Sergeev.
- The center of W^{n} coincides with $W^{n} \bigcap \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]=\vartheta(Z(U(\mathfrak{g})))$. (P.-S., Adv. Math., 2016)

7. The structure of W^{n}

- We define the following set of generators of W^{n} :
n odd generators ϕ_{k} and n even generators z_{k}.

Set

$$
\phi_{0}=\sum_{i=1}^{n} \xi_{i}, \quad \phi_{k}=T^{k}\left(\phi_{0}\right), \quad k=0, \ldots, n-1 .
$$

where the matrix of T in the standard basis ξ_{1}, \ldots, ξ_{n} has 0 on the diagonal and

$$
t_{i j}=\left\{\begin{array}{ccc}
x_{j} & \text { if } \quad i<j \\
-x_{j} & \text { if } \quad i>j
\end{array}\right.
$$

Even generators for even $0 \leq k<n$ are given by

$$
z_{k}:=\left[\phi_{0}, \phi_{k}\right] \in \text { center of } W^{n}
$$

Even generators for $o d d 0 \leq k<n$ are given by

$$
z_{k}=\left[\sum_{i_{1} \geq i_{2} \geq \ldots \geq i_{k+1}}\left(x_{i_{1}}+(-1)^{k} \xi_{i_{1}}\right) \ldots\left(x_{i_{k}}-\xi_{i_{k}}\right)\left(x_{i_{k+1}}+\xi_{i_{k+1}}\right)\right]_{\text {even }}
$$

Then

$$
\left[\phi_{i}, \phi_{j}\right]=\left\{\begin{array}{l}
(-1)^{i} 2 z_{i+j} \text { if } i+j \text { is even } \\
0 \text { if } i+j \text { is odd }
\end{array}\right.
$$

- Elements z_{0}, \ldots, z_{n-1} are algebraically independent in W^{n} and they commute with each other.

8. Irreducible REpresentations of W^{n}

Now we give a classification of simple W^{n}-modules for $Q(n)$.
They are all finite-dimensional.

Restriction from $U(\mathfrak{h})$ to W^{n}.
Definition. Let $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{C}^{n}$. We call \mathbf{s} regular if $s_{i} \neq 0$ for all $i \leq n$ and typical if $s_{i}+s_{j} \neq 0$ for all $i \neq j \leq n$.

- All irreducible representations of $U(\mathfrak{h})$ are enumerated by $\mathbf{s} \in \mathbb{C}^{n}$ up to change of parity. Let V be an irreducible representation, then every x_{i} acts by scalar s_{i} Id.

Let I_{s} be the ideal in $U(\mathfrak{h})$ generated by $x_{i}-s_{i}$.
Then the quotient algebra $U(\mathfrak{h}) / I_{\mathrm{s}}$ is isomorphic to the Clifford algebra C_{s} associated with the quadratic form B_{s} :

$$
C_{\mathbf{s}}=\mathbb{C}\left[\xi_{1}, \ldots, \xi_{n}\right] /\left(\xi_{i} \xi_{j}+\xi_{j} \xi_{i}-2 \delta_{i, j} s_{i}\right),
$$

and V is a simple C_{s}-module.

Let m be the number of non-zero coordinates of \mathbf{s}. Then

- $C_{\mathbf{s}}$ has one simple \mathbb{Z}_{2}-graded module $V(\mathbf{s})$ for odd m, and two simple modules $V(\mathbf{s})$ and $\Pi V(\mathbf{s})$ for even m.
- The dimension of $V(\mathbf{s})$ equals 2^{k}, where $k=\lceil m / 2\rceil$.
- We denote by the same symbol $V(\mathbf{s})$ the restriction to W^{n}.

Proposition 3. If \mathbf{s} is typical, then $V(\mathbf{s})$ is a simple W^{n}-module.

9. Simple W^{2}-modules for $Q(2)$

- The generators of W^{2} are

Even: $z_{0}=x_{1}+x_{2}, z_{1}=x_{1} x_{2}-\xi_{1} \xi_{2}$,
Odd: $\phi_{0}=\xi_{1}+\xi_{2}, \quad \phi_{1}=x_{2} \xi_{1}-x_{1} \xi_{2}$.

- $V(\mathbf{s})$ is simple as W^{2}-module if and only if $s_{1} \neq-s_{2}$.
- If $s_{1}=-s_{2} \neq 0$, we have the following nonsplit exact sequence:

$$
0 \rightarrow \Pi \Gamma_{-s_{1}^{2}+s_{1}} \rightarrow V(\mathbf{s}) \rightarrow \Gamma_{-s_{1}^{2}-s_{1}} \rightarrow 0,
$$

where Γ_{t} is one-dimensional simple module on which ϕ_{0}, ϕ_{1} and z_{0} act by zero and z_{1} acts by the scalar t.
10. General construction of simple W^{n}-modules

Let W^{n} be the finite W-algebra for $Q(n)$.
Let $i+j=n$. There is natural embedding of the Lie superalgebras:

$$
Q(i) \oplus Q(j) \hookrightarrow Q(n) .
$$

This induces the isomorphism

$$
U(\mathfrak{h}) \simeq U\left(\mathfrak{h}_{i}\right) \otimes U\left(\mathfrak{h}_{j}\right),
$$

where \mathfrak{h}_{r} denotes the Cartan subalgebra of $Q(r)$.
Lemma. Let $i+j=n$. Then W^{n} is a subalgebra in the tensor product $W^{i} \otimes W^{j}$, where $W^{r} \subset U\left(\mathfrak{h}_{r}\right)$ denotes the W-algebra for $Q(r)$.

Corollary. If $i_{1}+\cdots+i_{p}=n$, then W^{n} is a subalgebra in $W^{i_{1}} \otimes \cdots \otimes W^{i_{p}}$.

Let $n=r+2 p+q$, where $r, p, q \geq 0$, and $\mathbf{t}=\left(t_{1}, \ldots, t_{p}\right) \in \mathbb{C}^{p}, t_{1}, \ldots, t_{p} \neq 0$, $\lambda=\left(\lambda_{1}, \ldots, \lambda_{q}\right) \in \mathbb{C}^{q}, \lambda_{1}, \ldots, \lambda_{q} \neq 0$, such that $\lambda_{i}+\lambda_{j} \neq 0$ for any $1 \leq i \neq j \leq q$.

We have an embedding

$$
W^{n} \hookrightarrow W^{r} \otimes\left(W^{2}\right)^{\otimes p} \otimes W^{q} .
$$

Set

$$
S(\mathbf{t}, \lambda):=\mathbb{C} \boxtimes \Gamma_{t_{1}} \boxtimes \cdots \boxtimes \Gamma_{t_{p}} \boxtimes V(\lambda) .
$$

Theorem 1. (P.-S., J. Algebra, 2021)
(a) $S(\mathbf{t}, \lambda)$ is a simple W^{n}-module;
(b) Every simple W^{n}-module is isomorphic to $S(\mathbf{t}, \lambda)$ up to change of parity.

Proposition 4.

Two simple modules $S(\mathbf{t}, \lambda)$ and $S\left(\mathbf{t}^{\prime}, \lambda^{\prime}\right)$ are isomorphic if and only if $\mathbf{t}^{\prime}=\sigma(\mathbf{t})$ and $\lambda^{\prime}=\tau(\lambda)$ for some $\sigma \in S_{p}$ and $\tau \in S_{q}$.

11. The structure of the super Yangian of $Q(1)$

- $Y Q(1)$ has generators $T_{1,1}^{(m)}(\mathbf{e v e n})$ and $T_{1,-1}^{(m)}(\mathbf{o d d})$

Let

$$
\eta_{0}=T_{1,-1}^{(1)}, \quad \eta_{i}=\left(-\frac{1}{2}\right)^{i} \mathrm{ad}^{i} T_{1,1}^{(2)}\left(T_{1,-1}^{(1)}\right), \quad Z_{2 i}=\frac{1}{2}\left[\eta_{0}, \eta_{2 i}\right] .
$$

- The surjective homomorphism $\varphi_{n}: Y Q(1) \rightarrow W^{n}$ acts on generators by

$$
\varphi_{n}\left(\eta_{i}\right)=\phi_{i}, \quad \varphi_{n}\left(Z_{2 i}\right)=z_{2 i}, \quad 0 \leq i \leq n-1 .
$$

Lemma.

(1) The following analogue of the relations in W^{n} holds:

$$
\left[\eta_{i}, \eta_{j}\right]= \begin{cases}(-1)^{i} 2 Z_{i+j} & \text { if } i+j \text { is even } \\ 0 & \text { if } i+j \text { is odd }\end{cases}
$$

(2) The elements $\left\{Z_{2 i} \mid i \in \mathbb{N}\right\}$ are algebraically independent generators of the center of $Y Q(1)$.
(3) The elements η_{0} and $\left\{T_{1,1}^{(2 i)} \mid i \in \mathbb{N}\right\}$ generate $Y Q(1)$.

12. Representations of the super Yangian of $Q(1)$

- Using the surjective homomorphism $\varphi_{n}: Y Q(1) \rightarrow W^{n}$ we equip $V(\mathbf{s})$ with a $Y Q(1)$-module structure.
- Let M be a simple $Y Q(1)$-module. Then M admits a central character χ. Set $\chi_{2 i}=\chi\left(Z_{2 i}\right)$ and consider the generating function

$$
\chi(u)=\sum_{i=0}^{\infty} \chi_{2 i} u^{-2 i-1}
$$

Proposition 5. Let M be a finite-dimensional simple $Y Q(1)$-module admitting central character χ. Then $\chi(u)$ is a rational function of the form

$$
\frac{a_{0} u^{-1}+\cdots+a_{q-1} u^{-2 q+1}}{1+c_{1} u^{-2}+\cdots+c_{q} u^{-2 q}}
$$

Proposition 6. For any rational $\chi(u)$ there exist n and a regular typical $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ such that $V(\mathbf{s})$ admits central character $\chi . V(\mathbf{s})$ is a simple $Y Q(1)$-module.

Lemma. $\left[T_{1,1}^{(2 k)}, T_{1,1}^{(2 l)}\right]=0$.

Definition.

Let \mathbf{A} be the commutative subalgebra in $Y Q(1)$ generated by $T_{1,1}^{(2 k)}$ for $k \geq 0$.

Proposition 7.

$Y Q(1) /$ ideal generated by odd elements $\simeq \mathbf{A}$.

Hence \mathbf{A} is a commutative cocommutative Hopf algebra with comultiplication

$$
\Delta T_{1,1}\left(u^{-2}\right)=T_{1,1}\left(u^{-2}\right) \otimes T_{1,1}\left(u^{-2}\right),
$$

where $T_{1,1}\left(u^{-2}\right)=\sum T_{1,1}^{(2 k)} u^{-2 k}$.

Let $f(u)=1+\sum_{k>0} f_{2 k} u^{-2 k}$. Let Γ_{f} be the one-dimensional A-module, where the action of $T_{1,1}\left(u^{-2}\right)$ is given by the generating function $f(u)$.

Lemma. The isomorphism classes of one-dimensional $Y Q(1)$-modules are in bijection with the set $\left\{\Gamma_{f}\right\}$, and

$$
\Gamma_{f} \otimes \Gamma_{g} \simeq \Gamma_{f g} .
$$

Theorem 2. (P.-S., J. Algebra 2021).
(1) Any simple finite-dimensional $Y Q(1)$-module is isomorphic to $V(\mathbf{s}) \otimes \Gamma_{f}$ or $\Pi V(\mathbf{s}) \otimes \Gamma_{f}$ for some regular typical \mathbf{s} and $f(u)=1+\sum_{k>0} f_{2 k} u^{-2 k}$. (2) $V(\mathbf{s}) \otimes \Gamma_{f}$ and $V\left(\mathbf{s}^{\prime}\right) \otimes \Gamma_{g}$ are isomorphic up to change of parity if and only if \mathbf{s}^{\prime} is obtained from \mathbf{s} by permutation of coordinates and $f(u)=g(u)$.

13. The Relation Between W^{n}-modules and $Y Q(1)$-modules

The following diagram commutes:

Proposition 8. The simple $Y Q(1)$-module $V(\mathbf{s}) \otimes \Gamma_{f}$ is lifted from some W^{m+n}-module if and only if $f \in \mathbb{C}\left[u^{-2}\right]$. The smallest m is equal to the degree of the polynomial f.

Proof. Note that $m=2 p$ is even. $S\left(t_{1}, \ldots, t_{p}, \lambda\right) \simeq V(\lambda) \otimes \Gamma_{f}$ where

$$
f=\prod_{i=1}^{p}\left(1+t_{i} u^{-2}\right)
$$

Remark. Not all irreducible finite-dimensional representations of the Yangian $Y Q(1)$ are obtained by lift from those of W-algebras and the classification is not a straightforward consequence of the classification for W-algebras.

14. The category $Y Q(1)-\bmod$

Let $Y Q(1)-\bmod$ be the category of finite-dimensional $Y Q(1)$-modules, and $(Y Q(1))^{\chi}-\bmod$ be the full subcategory of modules admitting generalized central character χ.

- What are the blocks in $(Y Q(1))^{\chi}-\bmod$?

If there is a non-split short exact sequence $0 \longrightarrow M_{i} \longrightarrow M \longrightarrow M_{j} \longrightarrow 0$ with $\{i, j\}=\{1,2\}$, then M_{1} and M_{2} belong to the same block, and we say that they are linked.

15. The subcategory $(Y Q(1))^{\chi=0}-\bmod$

- The simple modules in the subcategory $(Y Q(1))^{\chi=0}-\bmod$ are exactly the 1 -dimensional modules Γ_{f} up to change of parity.
Let Γ_{f} and Γ_{g} be two $Y Q(1)$-modules, where

$$
f(u)=\sum_{k \geq 0} a_{2 k} u^{-2 k}, \quad g(u)=\sum_{k \geq 0} b_{2 k} u^{-2 k}, \quad a_{0}=b_{0}=1 .
$$

Let $x_{k}=\frac{1}{2}\left(a_{2 k}-b_{2 k}\right)$.
Theorem 3. $\operatorname{Ext}^{1}\left(\Pi\left(\Gamma_{g}\right), \Gamma_{f}\right) \neq 0$ if and only if x_{1} is an arbitrary complex number and x_{k} for $k>1$ satisfies the recurrence relation

$$
x_{k+1}=\left(x_{1} x_{k}-x_{k}+a_{2 k}\right) x_{1}
$$

Conjecture. Let S be a simple finite-dimensional $Y Q(1)$-module.
Let $n \geq 1, \mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be regular typical and $f(u)$ and $g(u)$ be given by

$$
f(u)=\sum_{k \geq 0} a_{2 k} u^{-2 k}, \quad g(u)=\sum_{k \geq 0} b_{2 k} u^{-2 k}, \quad a_{0}=b_{0}=1, \quad x_{k}=\frac{1}{2}\left(a_{2 k}-b_{2 k}\right) .
$$

Then

$$
\operatorname{Ext}^{1}\left(S, V(\mathbf{s}) \otimes \Gamma_{f}\right) \neq 0
$$

if and only if $S \simeq V(\mathbf{s}) \otimes \Pi\left(\Gamma_{g}\right)$, where x_{k} satisfies the recurrence relation

$$
x_{k+1}=\left(x_{1} x_{k}-x_{k}+a_{2 k}\right) x_{1} .
$$

Remark. The short exact sequences

$$
0 \longrightarrow \Gamma_{f} \longrightarrow \mathbb{C}^{1 \mid 1} \longrightarrow \Pi\left(\Gamma_{g}\right) \longrightarrow 0
$$

is non-split.
If $n \geq 2$, then the short exact sequence

$$
0 \longrightarrow V(s) \otimes \Gamma_{f} \longrightarrow V(s) \otimes \mathbb{C}^{1 \mid 1} \longrightarrow V(s) \otimes \Pi\left(\Gamma_{g}\right) \longrightarrow 0
$$

is non-split.
If $n=1$, then it is non-split if and only if $x_{1} \neq s_{1}$.

16. The category $\left(W^{n}\right)-\bmod$

Let $W^{n}-\bmod$ be the category of finite-dimensional W^{n}-modules, and $\left(W^{n}\right)^{\chi}-\bmod$ be the full subcategory of modules admitting generalized central character χ. Recall that simple W^{n}-modules are $S\left(\mathbf{t} ; \lambda_{1}, \ldots, \lambda_{q}\right)$. If $q=0$, we use the notation $S(\mathbf{t})$.
Simple modules in the subcategory $\left(W^{n}\right)^{\chi=0}-\bmod$ are exactly the 1-dimensional modules $S(\mathbf{t})$ up to change of parity.

17. The subcategory $\left(W^{n}\right)^{\chi=0}-\bmod$

Let σ_{k} be the k-th elementary symmetric polynomial.
Theorem 4. Fix $\mathbf{t}=\left(t_{1}, \ldots, t_{p}\right)$ and $\mathbf{t}^{\prime}=\left(t_{1}^{\prime}, \ldots, t_{q}^{\prime}\right)$, where $p, q \leq \frac{n}{2}$.
Consider the W^{n}-modules $S(\mathbf{t})$ and $S\left(\mathbf{t}^{\prime}\right)$.
Define $a_{2 k}=\sigma_{k}\left(t_{1}, \ldots, t_{p}\right)$ for $k=1, \ldots, p, a_{2 k}=0$ for $k>p$.
Similarly, define $b_{2 k}=\sigma_{k}\left(t_{1}^{\prime}, \ldots, t_{q}^{\prime}\right)$ for $k=1, \ldots, q, b_{2 k}=0$ for $k>q$.
Let $x_{k}=\frac{1}{2}\left(a_{2 k}-b_{2 k}\right)$.
(a) If $S(\mathbf{t})$ is a nontrivial W^{n}-module, then $\operatorname{Ext}^{1}\left(\Pi\left(S\left(\mathbf{t}^{\prime}\right)\right), S(\mathbf{t})\right) \neq 0$ if and only if $x_{1} \neq 0$ and x_{k} satisfy the recurrence relation

$$
x_{k+1}=\left(x_{1} x_{k}-x_{k}+a_{2 k}\right) x_{1} .
$$

or $S\left(\mathbf{t}^{\prime}\right)$ is isomorphic to $S(\mathbf{t})$ and $n>2 p$.
(b) If $S(\mathbf{t})=\mathbb{C}^{1 \mid 0}$ is the trivial W^{n}-module, then $\operatorname{Ext}^{1}\left(\Pi\left(S\left(\mathbf{t}^{\prime}\right)\right), S(\mathbf{t})\right) \neq 0$ if and only if $S\left(\mathbf{t}^{\prime}\right)=\mathbb{C}^{1 \mid 0}$ or $\mathbf{t}^{\prime}=\left(t_{1}^{\prime}\right)$ with $t_{1}^{\prime}=-2$.

18. Blocks in the category $W^{2}-\bmod$

- Every $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ defines the central character $\chi_{\mathbf{s}}: Z^{n} \longrightarrow \mathbb{C}$.

Theorem 5.

(1) Each simple W^{2}-module $V\left(s_{1}, s_{2}\right)$ for $s_{1} \neq-s_{2}, s_{1}, s_{2} \neq 0$ forms a block in $\left(W^{2}\right)^{\chi_{\mathrm{s}}-m o d}$.
(2) Each simple W^{2}-module $V(s, 0)$ for $s \neq 0$ forms a block in $\left(W^{2}\right)^{\chi_{s}}$-mod.
(3) The blocks in the subcategory $\left(W^{2}\right)^{\chi=0}-\bmod$ are described as follows.

Let $a \in \mathbb{C}$. Define

$$
a_{n}=a-n^{2}+n \sqrt{1-4 a} \text { for } n=0, \pm 1, \pm 2, \ldots
$$

Then Γ_{a} lies in the block formed by $\Gamma_{a_{n}}$ if n is even and $\Pi \Gamma_{a_{n}}$, if n is odd. $\Pi \Gamma_{a}$ lies in the block formed by $\Pi \Gamma_{a_{n}}$ if n is even and $\Gamma_{a_{n}}$, if n is odd.

Example. Let $a=0$, then $a_{n}=n(1-n)$ and Γ_{0} lies in the block
$\ldots, \Gamma_{-30}, \Pi \Gamma_{-20}, \Gamma_{-12}, \Pi \Gamma_{-6}, \Gamma_{-2},, \Pi \Gamma_{0}, \Gamma_{0}, \Pi \Gamma_{-2}, \Gamma_{-6}, \Pi \Gamma_{-12}, \Gamma_{-20}, \Pi \Gamma_{-30}, \ldots$

19. About non-Regular case

Theorem 5. (P.-S., J. Math. Phys. 2017).
Let W^{n} be the finite W-algebra for $Q(n)$ associated with the non-regular even nilpotent coadjoint orbit in the case when the corresponding nipotent element has Jordan blocks each of size l. Then W^{n} is isomorphic to the image of $Y Q\left(\frac{n}{l}\right)$ under the homomorphism

$$
e v^{\otimes l} \circ \Delta_{l}: Y Q\left(\frac{n}{l}\right) \longrightarrow U\left(Q\left(\frac{n}{l}\right)\right)^{\otimes l}
$$

The regular case is $l=n$.

20. Open Problems

- Describe the structure of finite W-algebra for $Q(n)$ associated with an arbitrary nilpotent φ.
- Classify the simple finite-dimensional modules over the Yangian for $Q(n)$ for $n>1$.

21. References

[1] J. Brown, J. Brundan, S. Goodwin, Principal W-algebras for $G L(m \mid n)$, Algebra Numb. Theory 7 (2013), 1849-1882.
[2] B. Kostant, On Wittaker vectors and representation theory, Invent. Math. 48 (1978) 101-184.
[3] M. Nazarov, Yangian of the "strange" Lie superalgebras, Quantum groups, 90-97, Lecture Notes in Math. 1510, Springer, 1992.
[4] M. Nazarov, Yangian of the queer Lie superalgebra, Comm. Math. Phys. 208 (1999) 195-223.
[5] M. Nazarov, A. Sergeev, Centralizer construction of the Yangian of the queer Lie superalgebra, Studies in Lie Theory, 417-441, Progr. Math. 243, Birkhäuser Boston, Boston, MA, 2006.
[6] E. Poletaeva, V. Serganova, On Kostant's theorem for the Lie superalgebra $Q(n)$. Adv. Math. 300 (2016), 320-359. arXiv:1403.3866v1.
[7] E. Poletaeva, V. Serganova, On the finite W-algebra for the Lie superalgebra $Q(n)$ in the non-regular case, J. Math. Phys. 58 (2017), no. 11, 111701. arXiv:1705.10200.
[8] E. Poletaeva, V. Serganova, Representations of principal W-algebra for the superalgebra $Q(n)$ and the super Yangian $Y Q(1)$, J. Algebra 570 (2021) 140-163. arXiv:1903.05272v3.
[9] E. Poletaeva, On extended modules over the super-Yangian of the superalgebra $Q(1)$, preprint MPIM, 2022.
[10] A. Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002) 1-55.
[11] A. Sergeev, The centre of enveloping algebra for Lie superalgebra $Q(n, \mathbb{C})$, Lett. Math. Phys. 7 (1983) 177-179.

