(Conformal) geometry as a gauge PDE

Maxim Grigoriev
Institute for Theoretical and Mathematical Physics, Lomonosov MSU \&
Lebedev Physical Institute

Based on: 2208.02933, 2008.11690, 1903.02820, 1606.07532, 1312.5296, 1204.1793, 1012.1903

Collaborations with: Glenn Barnich, Konstantin Alkalaev, Alexei Kotov, Ivan Dneprov, and Slava Gritzaenko Also: Alik Verbovetsky, Alexey Sharapov

Geometric structures and supersymmetry,
Tromsø, August 24, 2022

Background

- Batalin-Vilkovisky (BV) formalism.
- BV on jet-bundles, local BRST cohomology Henneaux et all
- Alexandrov, Kontsevich, Schwartz, Zaboronsky (AKSZ) construction of BV for Lagrangian topological models
- Unfolded approach in higher spin gauge theories
M. Vasiliev
- Vinogradov's approach to PDEs

Vinogradov, Krasilshik, ...

- FDA approach to SUGRA
d'Auria, Fre, ...
- BRST first quantized (also known as L_{∞}) approach to SFT and gauge fields Zwiebach; Thorn, Bochicchio, Stern, Ouvry, ...
- Fedosov quantization

Linear local BV-BRST system

$\mathcal{H}_{0} \rightarrow X$ - vector bundle of fields; \mathcal{H}_{1} - of equations; \mathcal{H}_{1} - of gauge parameters, etc.

$$
\begin{gathered}
\mathcal{H}=\oplus \mathcal{H}_{i} \quad \text { vect. bundle. with } \mathbb{Z} \text {-graded fiber } \\
\Omega=\sum_{i} \Omega_{(i)}: \Gamma(\mathcal{H}) \rightarrow \gamma(\mathcal{H}), \quad \operatorname{gh}(\Omega)=1, \quad \Omega^{2}=0
\end{gathered}
$$

a differential operator. This defines linear local BV gauge theory. As $\operatorname{gh}(\Omega)=1, \Omega^{2}=0$ can be seen as a complex:

$$
\ldots \xrightarrow{\Omega_{(-2)}} \Gamma\left(\mathcal{H}_{-1}\right) \xrightarrow{\Omega_{(-1)}} \Gamma\left(\mathcal{H}_{0}\right) \xrightarrow{\Omega_{(0)}} \Gamma\left(\mathcal{H}_{1}\right) \xrightarrow{\Omega_{(1)}} \ldots
$$

If $\Phi_{i} \in \Gamma\left(\mathcal{H}_{i}\right)$, equations of motion and gauge symmetries:

$$
\Omega \Phi_{0}=0, \quad \delta \Phi_{0}=\Omega \Phi_{-1},
$$

+ extra requirements (exact in positive degree on jets).

If in addition $\Gamma(\mathcal{H})$ is equipped with degree -1 inner product $\int d^{n} x\langle\cdot, \cdot\rangle$ such that Ω is formally symmetric:

$$
S\left[\Phi_{0}\right]=\int d^{n} x\left\langle\Phi_{0}, \Omega \Phi_{0}\right\rangle
$$

Gauge invariant action familiar from SFT and first quantized BRST approach. The approach can be seen as formal BRST quantum mechanics.

Interactions can be introduced by polydifferential operators

$$
l_{i}: \Gamma(\mathcal{H}) \otimes \ldots \otimes \Gamma(\mathcal{H}) \rightarrow \Gamma(\mathcal{H}), \quad i>1, \quad \operatorname{gh}\left(l_{i}\right)=1
$$

Compatibility: L_{∞}-conditions for $l_{0}=\Omega, l_{1}, l_{2}, \ldots$ so that $\Gamma(\mathcal{H})$ remains an L_{∞} algebra. Gives a standard setup for perturbatove QFT. E.g. perturbatoive S-matrix can be obtained as a minimal model with a proper choice of solution space. Zwiebach, Lada, Stasheff, Jurco, Arvanitakis, Saemann, Wolf, Hohm,...

BV perspective

Replace vector bundle $\mathcal{H} \rightarrow X$ with a bundle of graded manifolds whose fiber x is \mathcal{H}_{x} considered as a graded manifold (i.e. associated algebra is $\operatorname{Sym}\left(\mathcal{H}_{x}^{*}\right)$)
$J^{\infty}(F)$ is naturally equipped with Cartan distribution and BRST differential

$$
s \Psi=\Omega \Psi, \quad \Psi=\psi^{A} e_{A}
$$

$\psi^{A} e_{A}$ - known as string field. In the Lagrangian case:

$$
S_{B V}=\int d^{n} x\langle\Psi, \Omega \Psi\rangle, \quad \psi=\psi^{A} e_{A} \quad-\text { string field }
$$

(cf. quadratic SFT action)

Def [Henneaux,..., Barnich,MG; Lyakhovich,Sharapov] BV (EOM-level)
$E \rightarrow X, J^{\infty}(E)$ is equipped with vertical evolutionary $s, \mathrm{gh}(s)=$ $1, s^{2}=0+$ technical conditions
L_{∞}-setup reproduced upon perturb. expansion about a solution. Convenient to pull-back $J^{\infty}(E)$ to $T[1] X$. Algebra of functions

- horizontal local forms on $J^{\infty}(E)$.

$$
s^{2}=0, \quad \operatorname{gh}(s)=1, \quad\left[s, d_{\mathrm{h}}\right]=0, \quad d_{\mathrm{h}}=\theta^{a} D_{a}
$$

Cohomology $H\left(s \mid d_{h}\right)$-local BRST cohomology: deformations, anomalies, global symmetries, conservation laws etc.
In fact invariant information is contained in $Q=s+d_{\mathrm{h}}$ (total degree $=$ form deg +gh). Solutions, gauge symmetries, can be defined in terms of Q and d_{X} Barnich, MG

Towards gauge PDEs

The notion of BV is restricted to jets. Generalization?
Def Q-manifold (M, Q) is a \mathbb{Z}-graded supermanifold M equipped with the odd nilpotent vector field of degree 1, i.e.

$$
Q^{2}=0, \quad \operatorname{gh}(Q)=1
$$

$\phi:\left(M_{1}, Q_{1}\right) \rightarrow\left(M_{2}, Q_{2}\right)$ is a Q-map if $\phi^{*} \circ Q_{2}=Q_{1} \circ \phi^{*}$ Example: Odd tangent bundle: $\left(T[1] X, d_{X}\right)$. If θ^{a} are coordinates on the fibres of $T[1] M$ in the basis $\frac{\partial}{\partial x^{a}}$:

$$
d_{X}:=\theta^{a} \frac{\partial}{\partial x^{a}}
$$

Example: CE complex $(\mathfrak{g}[1], Q)$. If \mathfrak{g} is a Lie algebra then $\mathfrak{g}[1]$ is equipped with Q structure. If c^{α} are coordinates on $\mathfrak{g}[1]$ in the basis e_{α} then

$$
Q=\frac{1}{2} c^{\alpha} c^{\beta} U_{\alpha \beta}^{\gamma} \frac{\partial}{\partial c^{\gamma}}, \quad\left[e_{\alpha}, e_{\beta}\right]=U_{\alpha \beta}^{\gamma} e_{\gamma}
$$

Example: $(V[1](M), Q)$ where $V(M)$ Lie algebroid. Indeed generic Q of degree 1 locally reads as:

$$
Q=c^{\alpha} R_{\alpha}-\frac{1}{2} c^{\alpha} c^{\beta} U_{\alpha \beta}^{\gamma}(z) \frac{\partial}{\partial c^{\gamma}}
$$

R_{α} gives anchor, $U_{\alpha \beta}^{\gamma}$ bracket, $Q^{2}=0$ encodes compatibility.
Proposition: [AKSZ] Let (M, Q) a Q-manifol, $p \in M$ and $\left.Q\right|_{p}=0$ then $T_{p} M$ is an L_{∞} algebra.

Equivalence of Q-manifolds:
Idea: restrict to local analysis. Let

$$
M=N \times T[1] V, \quad Q=Q_{N}+d_{T[1] V}
$$

with V a graded space. Then (M, Q) and $\left(N, Q_{N}\right)$ are equivalent. Q-manifold $\left(T[1] V, d_{T[1] V}\right)$ is called contractible. In coordinates:

$$
Q=Q_{N}+v^{\alpha} \frac{\partial}{\partial w^{\alpha}}, \quad Q_{N}=q^{i}(\phi) \frac{\partial}{\partial \phi^{i}}
$$

Often one finds a "minimal" equivalent Q-man. In the formal setup this gives a minimal model of the respective L_{∞} algebra. Geometric charachterization: let w^{a} be independent functions such that $w^{a}, Q w^{a}$ are also independent then the surface $w^{a}=$ $0=Q w^{a}$ is a Q-submanifold isomorphic to (N, Q_{N}). Simple geometric picture of the homotopy transfer
In the context of gauge theories: w^{α}, v^{α} - are known as "generalized auxiliary fields" Henneaux, 1990; Barnich, M. G. 2004.

Def. [Kotov, Strobl] Locally trivial bundle $\pi: E \rightarrow M$ of Q manifolds is called Q-bundle if π is a Q-map. Section $\sigma: M \rightarrow E$ is called Q-section if it's a Q-map.
In general, $\pi: E \rightarrow M$ is not a locally trivial Q-bundle.
Indeed, although locally $E \cong M \times F$ (product of manifolds) in general Q is not a product Q-structure of Q_{F} and Q_{M}.

Example: let $\pi_{X}: E \rightarrow X$ be a fiber bundle then $\pi=d \pi_{X}:\left(T[1] E, d_{E}\right) \rightarrow\left(T[1] X, d_{X}\right)$ is a Q-bundle.

Def. (M, Q) is called an equivalent reduction of (M^{\prime}, Q^{\prime}) if (M^{\prime}, Q^{\prime}) is a locally trivial Q-bundle over (M, Q) with a contractible fiber and (M^{\prime}, Q^{\prime}) admits a global Q-section.

This generates an equivalence relation for Q-manifolds.

Gauge PDEs

Def. Gauge pre-PDE $(\mathcal{E}, T[1] X, Q)$ is a Q-bundle (\mathcal{E}, Q) over ($T[1] X, \mathrm{~d}_{X}$)

Equivalence of Q-manifolds extends to Q-bundles over $T[1] X$, giving the notion of equivalent reduction and equivalence of gauge pre-PDEs. Notion of gauge pre-PDE is too wide:
gauge PDE: equivalent to nonnegatively graded, realizable in term of super-jet bundle in a regular way. In applications we often (but not always!) also want gauge PDE to be proper - i.e. that all the gauge symmetries of the underlying PDE are taken into account by Q.

Equations of motion and gauge symmetries

Solutions: $\sigma: T[1] X \rightarrow \mathcal{E}$ is a solution if

$$
d_{X} \circ \sigma^{*}=\sigma^{*} \circ Q
$$

Gauge transformations:

$$
\delta \sigma^{*}=d_{X} \circ \epsilon_{\sigma}^{*}+\epsilon_{\sigma}^{*} \circ Q,
$$

Gauge parameter: $\epsilon_{\sigma}^{*}: \mathcal{C}^{\infty}(\mathcal{E}) \rightarrow \mathcal{C}^{\infty}(T[1] X)$,

$$
\operatorname{gh}\left(\epsilon_{\sigma}^{*}\right)=-1, \quad \epsilon_{\sigma}^{*}(f g)=\epsilon_{\sigma}^{*}(f) \sigma^{*}(g)+\sigma^{*}(f) \epsilon_{\sigma}^{*}(g)
$$

Gauge for gauge symmetries ...

Example: BV formulation (EOM level)

Take as \mathcal{E} bundle $J^{\infty}(E)$ pulled back to $T[1] X$ (horizontal forms on $J^{\infty}(E)$) and $Q=d_{\mathrm{h}}+s$. Locally, gauge system determined by $(\mathcal{E}, T[1] X, Q)$ is equivalent to the one encoded in the BV formulation $\left(J^{\infty}(\mathcal{E}), s\right)$.

The notion of gauge PDE includes BV as a particular case and hence all reasonable gauge theories. Justifies definition.

Example: zero-curvature equation

Take $\mathcal{E}=\left(T[1] X, d_{X}\right) \times(\mathfrak{g}[1], Q)$, where \mathfrak{g} is a Lie algebra and Q is a CE differential seen as a vector field. If C^{α} denote coordinates on $\mathfrak{g}[1]$ then $Q C^{\alpha}=-\frac{1}{2} U_{\beta \gamma}^{\alpha} C^{\beta} C^{\gamma}$. Denoting $\sigma^{*}\left(C^{\alpha}\right)=A_{a}^{\alpha}(x) \theta^{a}$ we get

$$
d_{X} \circ \sigma^{*}=\sigma^{*} \circ Q \quad \Longrightarrow \quad d A+\frac{1}{2}[A, A]=0
$$

Gauge transformations:

$$
\delta A=d \epsilon+[A, \epsilon]
$$

Topological PDE. \mathcal{E} can be thought of as a finite-dimensional BV analog of the Vinogradov's diffiety. Example known from AKSz

Example: PDE

Let $\mathcal{E}_{0} \rightarrow X$ be a bundle equipped with Cartan distribution. Extend to a bundle $\mathcal{E} \rightarrow T[1] X$, the Cartan distribution defines d_{h} on \mathcal{E} :

$$
d_{\mathrm{h}}=\theta^{a} D_{a}, \quad\left(\theta^{a} \equiv d x^{a}\right)
$$

We arrive at Q-bundle $\left(\mathcal{E}, T[1] X, d_{\mathrm{h}}\right)$.
Seen as a section of $\mathcal{E} \rightarrow T[1] X$, a solution is a Q-section. If ψ^{A} are local fiber coordinates the section is parametrized by $\sigma^{A}(x)=\sigma^{*}\left(\psi^{A}\right)$
Q-map condition $d_{X} \circ \sigma^{*}=\sigma^{*} \circ d_{\mathrm{h}}$ gives:
$\frac{\partial}{\partial x^{a}} \sigma^{A}(x)=\Gamma_{a}^{A}(\sigma(x), x), \quad d_{\mathrm{h}}=\theta^{a} D_{a}=\theta^{a}\left(\frac{\partial}{\partial x^{a}}+\Gamma_{a}^{A}(\psi, x) \frac{\partial}{\partial \psi^{A}}\right)$
also known as "unfolded" representation M.Vasiliev. Usual PDEs are gauge PDEs with horizontal degree.

Riemannian geometry as a gauge PDE

Take $E=S^{2}\left(T^{*} X\right) \oplus T[1] X$. Consider $J^{\infty}(E)$ pulled back to $T[1] X$. Local trivialization:

$$
x^{a}, \theta^{a}, \quad g_{a b}, g_{a b \mid c}, \cdots, \quad \xi^{a}, \xi^{a}{ }_{\mid c} \cdots
$$

In a suitable trivialization (cf. AKSZ):
$Q=d_{x}+\gamma, \quad \gamma g_{a b}=\xi^{c} g_{a b \mid c}+\xi^{c}{ }_{\mid a} g_{c b}+\xi^{c}{ }_{\mid b} g_{a c}, \quad \gamma \xi^{a}=\xi^{c} \xi^{a}{ }_{\mid c}, \ldots$
E.g. Lagrangians: $H^{n}(Q$, localfunctions $), n=\operatorname{dim} X$. Applies to generic off-shell (equivalent to jets) gauge PDEs. MG, 2010

Locally, $\mathcal{E}=\left(T[1] X, d_{X}\right) \times(\mathcal{F}, q)$, i.e. Locally-trivial Q-bundle.

Minimal model

Restrict to local analysis. $\Gamma_{(b c \mid d \ldots . .)}^{a}$ form contractible pairs with $\xi_{b c d \ldots}^{a}$ and $g_{a b}$ with symmetric part of ξ_{b}^{a}. Resulting minimal model Stora; Barnich, Brandt, Henneaux; Vasiliev

Coordinates: $\left.\quad x^{\mu}, \theta^{\mu}, \quad \xi^{a}, \rho^{a}{ }_{b}, \quad R_{a b}{ }^{c}{ }_{d}, R_{a\left(b^{c}{ }^{c} d e\right)}, \ldots, R_{a(b}{ }^{c}{ }^{d e \ldots}\right), \ldots$

$$
\begin{gathered}
Q x^{\mu}=\theta^{\mu}, \quad Q \xi^{a}=\rho^{a}{ }_{c} \xi^{c}, \quad q \rho^{a b}=\rho^{a}{ }_{c} \rho^{c b}+\lambda \xi^{a} \xi^{b}+\xi^{c} \xi^{d} R_{c d}^{a b}, \\
\left.Q R^{R_{a b}{ }^{c}{ }_{d}}=\xi^{e} R_{a(b}{ }^{c}{ }_{d e}\right)+\rho_{a}{ }^{f} R_{f b}{ }^{c}{ }_{d}+\ldots, \quad \ldots
\end{gathered}
$$

For instance $H^{0}(Q)$ immediately gives Riemannian invariants. On-shell version: R are totally traceless (only Weyl tensors).

Section:
$\sigma^{*}\left(\xi^{a}\right)=e_{\mu}^{a}(x) \theta^{\mu}, \quad \sigma^{*}\left(\rho^{a b}\right)=\omega_{\mu}^{a b}(x) \theta^{\mu}, \quad \sigma^{*}\left(R_{a b}{ }^{c}{ }_{d}\right)=\mathrm{R}_{a b}{ }^{c}{ }_{d}(x), \ldots$
Equations of motion:

$$
d_{X} e+\omega e=0, \quad d_{X} \omega+\omega \omega=\mathrm{R}, \quad \ldots
$$

Cartan structure equations. Taking a total degree "gh+form degree" is crucial. Frame-like formulations.

On shell version - equivalent form of Einstein equations.
What about Lagrangians in the on-shell version?

Presymplectic structure and Cartan-Weyl action

Presymplectic structure on the fiber F of the minimal model:

$$
\begin{gathered}
\omega=\epsilon_{a b c d} \xi^{a} d \xi^{b} d \rho^{c d}, \quad \omega=d \chi \\
L_{Q} \omega=0, \quad d \omega=0 \quad \Rightarrow \quad d H=i_{Q} \omega
\end{gathered}
$$

AKSZ-like action
$S[\sigma]=\int_{T[1] X} \sigma^{*}(\chi)\left(d_{X}\right)-\sigma^{*}(H)=\int_{T[1] X}\left(d_{X} \omega^{a b}+\omega^{a}{ }_{c} \omega^{c b}\right) \epsilon_{a b c d} e^{c} e^{d}$
Familiar Cartan-Weyl action for GR. Generalization for general $n>4$ and $\Lambda \neq 0$ is straightforward.
What about remaining components of section? What about fullscale BV formulation available in usual AKSZ?
Idea: assume ω regular and take the symplectic quotient. But ω is not regular for $n>3$!

Restrict to local analysis. Refined idea: locally, sections are fiber-valued functions, take:

$$
\left.\operatorname{Smaps}(T[1] X, F)=\operatorname{Smaps}(X, \bar{F}), \quad \bar{F}=\operatorname{Smaps}\left(\mathbb{R}^{n}[1], F\right)\right)
$$

\bar{F} is finite-dimensional provided F is. Natural lift of ω to \bar{F}

$$
\bar{\omega}=\int d^{n} \theta \omega_{A B}(\psi(\theta)) d \psi^{A}(\theta) \wedge d \psi^{B}(\theta), \quad \operatorname{gh}(\bar{\omega})=-1
$$

Now assume that $\bar{\omega}$ regular and take a symplectic quotient. We have arrived at BV formulation! With BV symplectic structure determined by $\bar{\omega}$!

State of the art: for a Lagrangian system such a representation always exists but not necessarily in the minimal model. Counterexample: massive spin-2 field.

Regularity

$\operatorname{Smaps}\left(\mathbb{R}^{n}, F\right)$ explicitly:

$$
\begin{aligned}
& \hat{\sigma}^{*}\left(\xi^{a}\right)=\stackrel{0}{\xi}_{\xi^{a}}(x)+e_{\mu}^{a} \theta^{\mu}+\stackrel{2_{\xi}^{a}}{a} \theta^{\mu} \theta^{\nu}+\ldots, \\
& \widehat{\sigma}^{*}\left(\rho^{a b}\right)={ }_{\rho}^{0 a b}+\omega_{\mu}^{a b} \theta^{\mu}+\stackrel{2}{\rho}_{\mu \nu}^{a b} \theta^{\mu} \theta^{\nu}+\ldots,
\end{aligned}
$$

form-degree k components carry ghost degree $1-k$. Prop.[Kotov, MG 2020] $\bar{\omega}$ is regular provided e_{μ}^{a} is invertible.

$$
S[\widehat{\sigma}]=\int \widehat{\sigma}^{*}(\chi)\left(d_{X}\right)-\widehat{\sigma}^{*}(H)
$$

induces a proper BV action on the symp. quotient.

$$
\text { Formal path integral: } \quad Z=\int_{L} \exp \left(\frac{i}{\hbar} S_{B V}\right)
$$

L comprise gauge condition and gauge condition for zero modes of $\bar{\omega}$. No need to take symplectic quotient explicitly! AKSZ-like

Conformal geometry as a gauge PDE

Take $E=S^{2}\left(T^{*} X\right) \oplus T[1] X \oplus \mathcal{C}^{\infty}(X)[1]$. Consider as \mathcal{E} the $J^{\infty}(E)$ pulled back to $T[1] X$. Local trivialization:

$$
x^{a}, \theta^{a}, \quad g_{a b \mid c \ldots}, \quad \xi_{\mid c \ldots}^{a}, \quad \lambda_{\mid c \ldots}
$$

In a suitable trivialization:

$$
\begin{gathered}
Q=d_{x}+\gamma, \quad \gamma g_{a b}=\xi^{c} g_{a b \mid c}+\xi^{c}{ }_{\mid a} g_{c b}+\xi^{c}{ }_{\mid b} g_{a c}-2 \lambda g_{a b} \\
\gamma \xi^{a}=\xi^{c} \xi^{a}{ }_{\mid c}, \quad \gamma \lambda=\xi^{a} \lambda_{\mid a} \cdots
\end{gathered}
$$

Minimal model $T[1] X \times F$ (locally):
Degree 1 variables:

$$
\xi^{a}, \rho^{a b} \kappa_{a}, \lambda
$$

Degree 0 variables:

$$
\left.W_{a b}{ }_{d}^{c}, \quad W_{a(b}{ }^{c} d e\right), \quad W_{a(b}{ }^{c}{ }_{d \ldots}, \ldots
$$

The Q structure (a version of that obtained by Boulanger, 2004)

$$
\begin{gathered}
Q=\rho^{a}{ }_{c} \xi^{c}+\xi^{a} \lambda, \\
Q \rho^{a}{ }_{b}=\rho^{a}{ }_{c} \rho^{c}{ }_{b}+\left(\xi^{a} \kappa_{b}-\xi_{b} \kappa^{a}\right)+\frac{1}{2} \xi^{c} \xi^{d} W^{a}{ }_{b c d}, \\
Q \kappa_{b}=\kappa_{c} \rho^{c}{ }_{b}+\lambda \kappa_{b}+\frac{1}{2} \xi^{c} \xi^{d} C_{b c d}, \\
Q \lambda=\kappa_{c} \xi^{c} .
\end{gathered}
$$

Here $C_{a b c}=W_{a b}{ }^{d}{ }_{c d}$ - Cotton tensor.

$$
\begin{gathered}
Q W^{a}{ }_{b c d}=\xi^{k} W^{a}{ }_{b c d \mid k}-\rho_{k}{ }^{a} W^{k}{ }_{b c d}+\ldots, \\
Q C_{a b c}=\xi^{k} C_{a b c \mid k}+\rho_{a}{ }^{k} C_{k b c}+\ldots
\end{gathered}
$$

Resulting equations of motion (Cartan structure equations):
$d_{X} A+\frac{1}{2}[A, A]=e^{a} e^{b}\left(W_{a b}^{c d} J_{c d}+C_{a b}^{c} K_{c}\right), \quad A=e^{a} T_{a}+\omega^{a b} J_{a b}+f^{a} K_{a}+v D$
(Bach-flat version - all W_{\ldots}... are $o(n-1,1)$-irreducible)

Restrict to conformal gravity in $n=4$ (i.e. Bach-flat metrics). The compatible presymplectic structure:

$$
\begin{gathered}
\omega=\omega_{W}-2 \omega_{C}, \\
\omega_{W}=d\left(\rho_{a b}\right) d\left(W^{a b n m} \epsilon_{n m p k} \xi^{p} \xi^{k}\right), \quad \omega_{C}=d\left(\xi_{a}\right) d\left(C_{b c}^{a} \epsilon^{b c p k} \xi_{p} \xi_{k}\right) \\
d \omega=0, \quad L_{Q} \omega=0, \quad \operatorname{gh}(\omega)=n-1
\end{gathered}
$$

Defines presymplectic AKSZ system. The action:

$$
\begin{aligned}
& S[e, \omega, W, C]=\int_{X}\left[\left(d \omega_{a b}+\omega_{a c} \omega^{c}{ }_{b}\right) W^{a b n m} \epsilon_{n m p k} e^{p} e^{k}+\right. \\
& \left.\quad+W_{a b c d} e^{c} e^{d} W^{a b n m} \epsilon_{n m p k} e^{p} e^{k}-2\left(d e_{a}+\omega_{a d} e^{d}\right) C^{a}{ }_{b c} \epsilon^{b c p k} e_{p} e_{k}\right]
\end{aligned}
$$

Equivalent to CGR Lagrangian $\sqrt{g} W^{2}$ upon elimination of auxiliary fields and passing to the symplectic quotient. First principle frame-like action (cf. Kaku et all)

Presymplectic structures: general setup

Def. Compatible presymplectic structure on gauge $\operatorname{PDE}(E, T[1] X, Q)$ is a vertical 2-form ω on E satisfying:

$$
d \omega=0, \quad L_{Q} \omega=0, \quad \operatorname{gh}(\omega)=n-1
$$

Here $n=\operatorname{dim} X$ and vertical forms are understood as equivalence classes + techincal assumptions.

Defines "Hamiltonian" (or, better, covariant BRST charge) via

$$
i_{Q} \omega=d \mathcal{H}, \quad \operatorname{gh}(\mathcal{H})=n
$$

ω is directly related to the BV symplecic structure $\stackrel{n}{\omega}$ extended as $\omega=\stackrel{n}{\omega}+{ }^{n} \bar{\omega}^{1}+\ldots \stackrel{\stackrel{\omega}{\omega}}{ }$ to be a cocycle of $d_{\mathrm{h}}+s$, i.e. $L_{d_{\mathrm{h}}+s} \omega=0$.

Intrinsic BV action

Action functional on the space of section of $(E, T[1] X, Q, \omega)$

$$
S[\sigma]=\int_{T[1] X}\left(\sigma^{*}(\chi)\left(d_{X}\right)-\sigma^{*}(\mathcal{H})\right)
$$

where χ is a presymplectic potential, i.e. $\omega=d \chi . \chi \rightarrow \chi+d \rho$ adds boundray term.
$B V$ extension (AKSZ-type). Supersection $\widehat{\sigma}$:

$$
S^{B V}[\hat{\sigma}]=\int_{T[1] X}\left(\widehat{\sigma}^{*}(\chi)\left(d_{X}\right)-\widehat{\sigma}^{*}(\mathcal{H})\right)
$$

$\mathrm{R} \operatorname{gh}(C)=1$ then $\sigma^{*}(C)=A_{a}(x) \theta^{a}$ while $\hat{\sigma}^{*}(C)=\stackrel{0}{C}^{a}+A_{a} \theta^{a}+$ $\stackrel{2}{\xi}_{a b} \theta^{a} \theta^{b}+\ldots$,
As before: interpretation through the symplectic quotient on $\operatorname{Smaps}\left(\mathbb{R}^{n}, F\right)$

Example: Maxwell

Recall: $E=T[1] X \times F$, Fiber coordinates:
$C, \operatorname{gh}(C)=1, \quad F^{a \mid b}, \quad F^{a \mid b_{1} b_{2}}, \ldots F^{a \mid b_{1} \ldots b_{l}} \ldots \quad \operatorname{gh}\left(F^{\cdots}\right)=0$
$Q x^{a}=\theta^{a}, \quad Q \theta^{a}=0, \quad Q C=\frac{1}{2} F^{a \mid b} \theta_{a} \theta_{b}, \quad Q F^{a \mid b}=\theta_{c} F^{a \mid b c}, \quad \ldots$
indexes rised/lowered with Minkowski metric. $F^{a \mid b_{1} \ldots b_{l}}$ - irreducible tensors (totally traceless + Young condition)
Presymplectic structure: Alkalaev, M. G. 2013 (also A. Sharapov 2017)

$$
\omega=(\theta)_{a b}^{(n-2)} d F^{a \mid b} d C
$$

indexes rised/lowered with Minkowski metric
Intrinsic action $\left(\sigma^{*}(C)=A_{a}(x) \theta^{a}, \sigma^{*}\left(F^{a \mid b}\right)=F^{a \mid b}(x)\right)$:

$$
S[\sigma]=\int d^{n} x\left(\partial_{a} A_{b}-\partial_{b} A_{a}\right) F^{a \mid b}-\frac{1}{2}\left(F^{a \mid b}\right)^{2}
$$

Presymplectic structure on supermaps gives correct BV form!

$$
\bar{\omega}=d \stackrel{0}{C} \wedge \stackrel{2}{F}_{a b}^{a \mid b}+d A_{a} \wedge \stackrel{1}{F}_{b}^{a \mid b}+d \stackrel{0}{F}^{a \mid b} \wedge \stackrel{2}{C}_{a b}
$$

Here:

$$
\begin{gathered}
\widehat{\sigma}^{*}(C)=\stackrel{0}{C}(x)+A_{a}(x) \theta^{a}+\frac{1}{2} \stackrel{2}{C}_{a b}(x) \theta^{a} \theta^{b} \ldots \\
\widehat{\sigma}^{*}\left(F^{a \mid b}\right)=\stackrel{0}{F}^{a \mid b}(x)+\stackrel{1}{F}_{c}^{a \mid b}(x) \theta^{c}+\frac{1}{2} \stackrel{2}{F}_{c d}^{a \mid b}(x) \theta^{c} \theta^{d}+\ldots
\end{gathered}
$$

All the fields are in the kernel except for:

$$
C=\stackrel{0}{C}, \quad C^{*}=\stackrel{2}{F_{a b}^{a \mid b}}, \quad A_{a}, \quad A_{*}^{a}=\stackrel{1}{F}_{b}^{a \mid b}, \quad F^{a \mid b}, \quad F_{a b}^{*}=\stackrel{2}{C}_{a b}
$$

BV master action (standrad BV for Maxwell in first order formalism. Extension to YM is straitforward.):

$$
S_{B V}=S+\int d^{n} x F_{b}^{a \mid b} \partial_{a} \stackrel{0}{C}
$$

Conclusions

- Gauge PDEs as geometric objects. Well suited to work with diffeomorphims-invariant and topological models. Notion of equivalence.
- Determines a "canonical" first-order realization in terms of a jet-bundle associated to the equation manifold
- Comprise "frame-like" formulation of the system. The respective FDA arise from BRST differential. E.g. the CartanWeyl form of gravity arises from a minimal model of the respective BRST complex.
- Full scale BV and its BV symplectic structure are encoded in the graded presympletic structure on the gauge PDE.
- In the case of variational systems unifies Lagrangian and Hamiltonian BRST formalism, cf. BV/BFV approach of cattaneo et all.
- Gives an invariant approach to study boundary values of gauge fields. In particular in the AdS/CFT correspondence context. Bekaert, M.G. 2012. In particular, Fefferman-Graham construction (and tractor calculus) can be seen as a certain gauge PDE. M. G. 2012, M. G. Waldron 2011, Bekaert, M. G. Skvortsov 2017
- Succesful applications in constructing new models of HS theory, e.g. Type-B theory (AdS holographic dual to conformal spinor on the boundary) M.G. Skvortsov 2018
- Recent construction of Lagrangians for $A d S_{4}$ higher spin gravity in terms of presymplectic AKSZ. Sharapov, Skvortsov 2020

Presymplectic structures and intrinsic actions

Lagrangian induces presymplectic structure $\omega \in \Omega^{(n-1,2)}(\mathcal{E})$ on the equation manifold.

Kijowski, Tulczyjew 1979, Crnkovic, Witten, 1987, Hydon 2005, Khavkine 2012, Alkalaev M.G. 2013, Sharapov 2016

Given a Lagrangian $\mathcal{L} \in \bigwedge^{n, 0}\left(J^{\infty}(\mathcal{F})\right)$ define $\hat{\chi} \in \bigwedge^{n-1,1}\left(J^{\infty}(\mathcal{F})\right)$:

$$
d_{\mathrm{V}} \mathcal{L}=d_{\mathrm{v}} \phi^{i} \frac{\delta^{E L} \mathcal{L}}{\delta \phi^{i}}-d_{\mathrm{h}} \hat{\chi}
$$

Define $\widehat{\omega}=d_{v} \hat{\chi}$

$$
d_{\mathrm{v}} \omega=d_{\mathrm{h}} \omega=0, \quad \omega=\left.\widehat{\omega}\right|_{\mathcal{E}}
$$

More generally, let a generic $\omega \wedge^{n-1,2}(\mathcal{E})$ satisfies the above. It follows $\omega=d(\chi+l)$ for some $\chi \in \Lambda^{n-1,1}(\mathcal{E}), l \in \Lambda^{n, 0}(\mathcal{E})$. These define a natural action functional on section of \mathcal{E} called intrinsic action: MG, 2016

$$
S^{c}[\sigma]=\int_{X} \sigma^{*}(\chi+l)
$$

What this has to do with the PDE in question?
S^{c} doesn't depend on fields in the vertical kernel of ω. Assuming regularity take a symplectic quotient. The resulting Lagrangian system is weaker, $\mathcal{E} \subset \mathcal{E}^{c}$. For a class of systems containing YM, Gravity etc. there exists ω such that S^{c} is equivalent to the standard Lagrangian. Counterexample: systems with degree zero differential consequences, e.g. massive spin-2 system. M.G.
Gritzaenko 2021

Example: scalar field

Lagrangian:

$$
L=\frac{1}{2} \eta^{a b} \phi_{a} \phi_{b}-V(\phi)
$$

\mathcal{E} is coordinatized by $x^{a}, \phi, \phi_{a}, \phi_{a b}, \ldots$ with $\phi_{a b c . .}$ traceless.

$$
d_{\mathrm{h}} x^{a}=d x^{a}, \quad d_{\mathrm{h}} \phi=d x^{a} \phi_{a}, \quad d_{\mathrm{h}} \phi_{a}=d x^{b}\left(\phi_{a b}-\frac{1}{n} \eta_{a b} \frac{\partial V}{\partial \phi}\right),
$$

The presymplectic potential and 2-form:

$$
\chi=(d x)_{a}^{n-1} \phi^{a} d_{\vee} \phi, \quad \omega=(d x)_{a}^{n-1} d_{\vee} \phi^{a} d_{\vee} \phi
$$

The Hamiltonian:

$$
\mathcal{H}=(d x)^{n}\left(\phi_{a} \phi^{a}-\left.L\right|_{\mathcal{E}}\right)=\frac{1}{2} \phi^{a} \phi_{a}+V(\phi)
$$

The intrinsic Larangian: Schwinger

$$
\mathcal{L}^{c}=(d x)^{n}\left(\phi^{a}\left(\partial_{a} \phi-\frac{1}{2} \phi_{a}\right)-V(\phi)\right)
$$

