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Background

• Batalin-Vilkovisky (BV) formalism.

• BV on jet-bundles, local BRST cohomology Henneaux et all

• Alexandrov, Kontsevich, Schwartz, Zaboronsky (AKSZ) con-
struction of BV for Lagrangian topological models

• Unfolded approach in higher spin gauge theories M.Vasiliev

• Vinogradov’s approach to PDEs Vinogradov, Krasilshik, . . .

• FDA approach to SUGRA d’Auria, Fre, . . .

• BRST first quantized (also known as L∞) approach to SFT
and gauge fields Zwiebach; Thorn, Bochicchio, Stern, Ouvry, . . .

• Fedosov quantization



Linear local BV-BRST system

H0 → X – vector bundle of fields; H1 – of equations; H1 – of
gauge parameters, etc.

H = ⊕Hi vect. bundle. with Z-graded fiber

Ω =
∑
i

Ω(i) : Γ(H)→ γ(H), gh(Ω) = 1, Ω2 = 0

a differential operator. This defines linear local BV gauge theory.
As gh(Ω) = 1, Ω2 = 0 can be seen as a complex:

. . .
Ω(−2)−−−−→ Γ(H−1)

Ω(−1)−−−−→ Γ(H0)
Ω(0)−−−→ Γ(H1)

Ω(1)−−−→ . . .

If Φi ∈ Γ(Hi), equations of motion and gauge symmetries:

ΩΦ0 = 0 , δΦ0 = ΩΦ−1 , . . .

+ extra requirements (exact in positive degree on jets).



If in addition Γ(H) is equipped with degree −1 inner product∫
dnx〈·, ·〉 such that Ω is formally symmetric:

S[Φ0] =
∫
dnx〈Φ0,ΩΦ0〉

Gauge invariant action familiar from SFT and first quantized

BRST approach. The approach can be seen as formal BRST

quantum mechanics.

Interactions can be introduced by polydifferential operators

li : Γ(H)⊗ . . .⊗ Γ(H)→ Γ(H), i > 1 , gh(li) = 1

Compatibility: L∞-conditions for l0 = Ω, l1, l2, . . . so that Γ(H)

remains an L∞ algebra. Gives a standard setup for perturbatove

QFT. E.g. perturbatoive S-matrix can be obtained as a minimal

model with a proper choice of solution space. Zwiebach, Lada,

Stasheff, Jurco, Arvanitakis, Saemann, Wolf, Hohm,. . .



BV perspective

Replace vector bundle H → X with a bundle of graded mani-

folds whose fiber x is Hx considered as a graded manifold (i.e.

associated algebra is Sym(H∗x))

J∞(F ) is naturally equipped with Cartan distribution and BRST

differential

sΨ = ΩΨ , Ψ = ψAeA

ψAeA – known as string field. In the Lagrangian case:

SBV =
∫
dnx〈Ψ,ΩΨ〉 , Ψ = ψAeA – string field

(cf. quadratic SFT action) Bochicchio, Thorn 1986



Def [Henneaux,. . . , Barnich,MG; Lyakhovich,Sharapov] BV (EOM-level)

E → X, J∞(E) is equipped with vertical evolutionary s, gh(s) =

1, s2 = 0 + technical conditions

L∞-setup reproduced upon perturb. expansion about a solution.

Convenient to pull-back J∞(E) to T [1]X. Algebra of functions

– horizontal local forms on J∞(E).

s2 = 0, gh(s) = 1, [s, dh] = 0 , dh = θaDa

Cohomology H(s|dh)-local BRST cohomology: deformations,

anomalies, global symmetries, conservation laws etc.

In fact invariant information is contained in Q = s + dh (total

degree = form deg + gh). Solutions, gauge symmetries, can be

defined in terms of Q and dX Barnich, MG



Towards gauge PDEs

The notion of BV is restricted to jets. Generalization?
Def Q-manifold (M,Q) is a Z-graded supermanifold M equipped
with the odd nilpotent vector field of degree 1, i.e.

Q2 = 0 , gh(Q) = 1

φ : (M1, Q1)→ (M2, Q2) is a Q-map if φ∗ ◦Q2 = Q1 ◦ φ∗
Example: Odd tangent bundle: (T [1]X, dX). If θa are coordinates

on the fibres of T [1]M in the basis
∂

∂xa
:

dX := θa
∂

∂xa

Example: CE complex (g[1], Q). If g is a Lie algebra then g[1] is
equipped with Q structure. If cα are coordinates on g[1] in the
basis eα then

Q =
1

2
cαcβU

γ
αβ

∂

∂cγ
, [eα, eβ] = U

γ
αβeγ



Example: (V [1](M), Q) where V (M) Lie algebroid. Indeed generic

Q of degree 1 locally reads as:

Q = cαRα −
1

2
cαcβU

γ
αβ(z)

∂

∂cγ

Rα gives anchor, Uγαβ bracket, Q2 = 0 encodes compatibility.

Proposition: [AKSZ] Let (M,Q) a Q-manifol, p ∈M and Q|p = 0

then TpM is an L∞ algebra.



Equivalence of Q-manifolds:
Idea: restrict to local analysis. Let

M = N × T [1]V , Q = QN + dT [1]V

with V a graded space. Then (M,Q) and (N,QN) are equivalent.
Q-manifold (T [1]V, dT [1]V ) is called contractible. In coordinates:

Q = QN + vα
∂

∂wα
, QN = qi(φ)

∂

∂φi
.

Often one finds a “minimal” equivalent Q-man. In the formal
setup this gives a minimal model of the respective L∞ algebra.

Geometric charachterization: let wa be independent functions
such that wa, Qwa are also independent then the surface wa =
0 = Qwa is a Q-submanifold isomorphic to (N,QN). Simple ge-
ometric picture of the homotopy transfer

In the context of gauge theories: wα, vα – are known as “gener-
alized auxiliary fields” Henneaux, 1990; Barnich, M.G. 2004.



Def. [Kotov, Strobl] Locally trivial bundle π : E → M of Q-

manifolds is called Q-bundle if π is a Q-map. Section σ : M → E

is called Q-section if it’s a Q-map.

In general, π : E →M is not a locally trivial Q-bundle.

Indeed, although locally E ∼= M × F (product of manifolds) in

general Q is not a product Q-structure of QF and QM .

Example: let πX : E → X be a fiber bundle then

π = dπX : (T [1]E, dE)→ (T [1]X, dX) is a Q-bundle.

Def. (M,Q) is called an equivalent reduction of (M ′, Q′) if

(M ′, Q′) is a locally trivial Q-bundle over (M,Q) with a con-

tractible fiber and (M ′, Q′) admits a global Q-section.

This generates an equivalence relation for Q-manifolds.



Gauge PDEs

Def. Gauge pre-PDE (E, T [1]X,Q) is a Q-bundle (E, Q) over

(T [1]X,dX)

Equivalence of Q-manifolds extends to Q-bundles over T [1]X,

giving the notion of equivalent reduction and equivalence of

gauge pre-PDEs. Notion of gauge pre-PDE is too wide:

gauge PDE: equivalent to nonnegatively graded, realizable in

term of super-jet bundle in a regular way. In applications we

often (but not always!) also want gauge PDE to be proper – i.e.

that all the gauge symmetries of the underlying PDE are taken

into account by Q.



Equations of motion and gauge symmetries

Solutions: σ : T [1]X → E is a solution if

dX ◦ σ∗ = σ∗ ◦Q

Gauge transformations:

δσ∗ = dX ◦ ε∗σ + ε∗σ ◦Q,

Gauge parameter: ε∗σ : C∞(E)→ C∞(T [1]X),

gh(ε∗σ) = −1, ε∗σ(fg) = ε∗σ(f)σ∗(g) + σ∗(f)ε∗σ(g)

Gauge for gauge symmetries . . .



Example: BV formulation (EOM level)

Take as E bundle J∞(E) pulled back to T [1]X (horizontal forms

on J∞(E)) and Q = dh + s. Locally, gauge system determined

by (E, T [1]X,Q) is equivalent to the one encoded in the BV for-

mulation (J∞(E), s). Barnich, MG 2010

The notion of gauge PDE includes BV as a particular case and

hence all reasonable gauge theories. Justifies definition.



Example: zero-curvature equation

Take E = (T [1]X, dX)×(g[1], Q), where g is a Lie algebra and Q is

a CE differential seen as a vector field. If Cα denote coordinates

on g[1] then QCα = −1
2U

α
βγC

βCγ. Denoting σ∗(Cα) = Aαa(x)θa

we get

dX ◦ σ∗ = σ∗ ◦Q =⇒ dA+
1

2
[A,A] = 0

Gauge transformations:

δA = dε+ [A, ε]

Topological PDE. E can be thought of as a finite-dimensional

BV analog of the Vinogradov’s diffiety. Example known from AKSZ



Example: PDE

Let E0 → X be a bundle equipped with Cartan distribution. Ex-
tend to a bundle E → T [1]X, the Cartan distribution defines dh
on E:

dh = θaDa , (θa ≡ dxa)

We arrive at Q-bundle (E, T [1]X, dh).
Seen as a section of E → T [1]X, a solution is a Q-section. If
ψA are local fiber coordinates the section is parametrized by
σA(x) = σ∗(ψA)
Q-map condition dX ◦ σ∗ = σ∗ ◦ dh gives:

∂

∂xa
σA(x) = ΓAa (σ(x), x) , dh = θaDa = θa(

∂

∂xa
+ ΓAa (ψ, x)

∂

∂ψA
)

also known as “unfolded” representation M.Vasiliev .
Usual PDEs are gauge PDEs with horizontal degree.



Riemannian geometry as a gauge PDE

Take E = S2(T ∗X) ⊕ T [1]X. Consider J∞(E) pulled back to

T [1]X. Local trivialization:

xa, θa , gab, gab|c, . . . , ξa, ξa|c . . .

In a suitable trivialization (cf. AKSZ):

Q = dx + γ , γgab = ξcgab|c + ξc|agcb + ξc|bgac , γξa = ξcξa|c , . . .

E.g. Lagrangians: Hn(Q, localfunctions), n = dimX. Applies to

generic off-shell (equivalent to jets) gauge PDEs. MG, 2010

Locally, E = (T [1]X, dX)× (F , q), i.e. Locally-trivial Q-bundle.



Minimal model

Restrict to local analysis. Γa(bc|d...) form contractible pairs with

ξabcd... and gab with symmetric part of ξab . Resulting minimal

model Stora; Barnich, Brandt, Henneaux; Vasiliev . . . :

Coordinates: xµ, θµ , ξa, ρab, Rab
c
d, Ra(b

c
de), . . . , Ra(b

c
de...), . . .

Qxµ = θµ , Qξa = ρac ξ
c , qρab = ρac ρ

cb + λξaξb + ξcξdRabcd ,

QRRab
c
d = ξeRa(b

c
de) + ρa

fRfb
c
d + . . . , . . .

For instance H0(Q) immediately gives Riemannian invariants.

On-shell version: R are totally traceless (only Weyl tensors).



Section:

σ∗(ξa) = eaµ(x)θµ, σ∗(ρab) = ωabµ (x)θµ, σ∗(Rab
c
d) = Rab

c
d(x), . . .

Equations of motion:

dXe+ ωe = 0 , dXω + ωω = R , . . .

Cartan structure equations. Taking a total degree “gh+form

degree” is crucial. Frame-like formulations.

On shell version – equivalent form of Einstein equations.

What about Lagrangians in the on-shell version?



Presymplectic structure and Cartan-Weyl action

Presymplectic structure on the fiber F of the minimal model:
Alkalaev, M.G. 2013

ω = εabcdξ
adξbdρcd , ω = dχ

LQω = 0 , dω = 0 ⇒ dH = iQω

AKSZ-like action

S[σ] =
∫
T [1]X

σ∗(χ)(dX)− σ∗(H) =
∫
T [1]X

(dXω
ab + ωacω

cb)εabcde
ced

Familiar Cartan-Weyl action for GR. Generalization for general
n > 4 and Λ 6= 0 is straightforward.

What about remaining components of section? What about full-
scale BV formulation available in usual AKSZ?
Idea: assume ω regular and take the symplectic quotient. But ω
is not regular for n > 3!



Restrict to local analysis. Refined idea: locally, sections are

fiber-valued functions, take:

Smaps(T [1]X,F ) = Smaps(X, F̄ ) , F̄ = Smaps(Rn[1], F ))

F̄ is finite-dimensional provided F is. Natural lift of ω to F̄

ω̄ =
∫
dnθ ωAB(ψ(θ))dψA(θ) ∧ dψB(θ) , gh(ω̄) = −1

Now assume that ω̄ regular and take a symplectic quotient. We

have arrived at BV formulation! With BV symplectic structure

determined by ω̄!

State of the art: for a Lagrangian system such a representation

always exists but not necessarily in the minimal model. Counter-

example: massive spin-2 field.



Regularity

Smaps(Rn, F ) explicitly:

σ̂∗(ξa) =
0
ξa(x) + eaµθ

µ +
2
ξaµνθ

µθν + . . . ,

σ̂∗(ρab) =
0
ρab + ωabµ θ

µ +
2
ρabµνθ

µθν + . . . ,

form-degree k components carry ghost degree 1− k.
Prop.[Kotov, MG 2020] ω̄ is regular provided eaµ is invertible.

S[σ̂] =
∫
σ̂∗(χ)(dX)− σ̂∗(H)

induces a proper BV action on the symp. quotient.

Formal path integral: Z =
∫
L
exp(

i

~
SBV )

L comprise gauge condition and gauge condition for zero modes
of ω̄. No need to take symplectic quotient explicitly! AKSZ-like



Conformal geometry as a gauge PDE

Take E = S2(T ∗X)⊕T [1]X⊕C∞(X)[1]. Consider as E the J∞(E)
pulled back to T [1]X. Local trivialization:

xa, θa , gab|c..., ξa|c..., λ|c...
In a suitable trivialization:

Q = dx + γ , γgab = ξcgab|c + ξc|agcb + ξc|bgac − 2λgab
γξa = ξcξa|c , γλ = ξaλ|a . . .

Minimal model T [1]X × F (locally):
Degree 1 variables:

ξa, ρab κa, λ

Degree 0 variables:

Wab
c
d , Wa(b

c
de) , Wa(b

c
d...) , . . .



The Q structure (a version of that obtained by Boulanger,2004)

Q = ρacξ
c + ξaλ ,

Qρab = ρacρ
c
b + (ξaκb − ξbκa) +

1

2
ξcξdW a

bcd ,

Qκb = κcρ
c
b + λκb +

1

2
ξcξdCbcd ,

Qλ = κcξ
c .

Here Cabc = Wab
d
cd – Cotton tensor.

QW a
bcd = ξkW a

bcd|k − ρk
aW k

bcd + . . . ,

QCabc = ξkCabc|k + ρa
kCkbc + . . . .

Resulting equations of motion (Cartan structure equations):

dXA+
1

2
[A,A] = eaeb(W cd

abJcd + Cab
cKc) , A = eaTa+ωabJab+faKa+vD

(Bach-flat version – all W... are o(n− 1,1)-irreducible)



Restrict to conformal gravity in n = 4 (i.e. Bach-flat metrics).

The compatible presymplectic structure: Dneprov, MG 2022

ω = ωW − 2ωC ,

ωW = d(ρab)d(W abnmεnmpkξ
pξk) , ωC = d(ξa)d(Cabcε

bcpkξpξk)

dω = 0, LQω = 0, gh(ω) = n− 1

Defines presymplectic AKSZ system. The action:

S[e, ω,W,C] =
∫
X

[
(dωab + ωacω

c
b)W

abnmεnmpke
pek+

+Wabcde
cedW abnmεnmpke

pek − 2(dea + ωade
d)Cabcε

bcpkepek
]
,

Equivalent to CGR Lagrangian
√
gW2 upon elimination of auxil-

iary fields and passing to the symplectic quotient. First principle

frame-like action (cf. Kaku et all)



Presymplectic structures: general setup

Def. Compatible presymplectic structure on gauge PDE (E, T [1]X,Q)

is a vertical 2-form ω on E satisfying:

dω = 0 , LQω = 0 , gh(ω) = n− 1

Here n = dimX and vertical forms are understood as equivalence

classes + techincal assumptions.

Defines “Hamiltonian” (or, better, covariant BRST charge) via

iQω = dH , gh(H) = n

ω is directly related to the BV symplecic structure
n
ω extended

as ω =
n
ω+

n−1
ω + . . .

0
ω to be a cocycle of dh + s, i.e. Ldh+sω = 0.



Intrinsic BV action

Action functional on the space of section of (E, T [1]X,Q, ω)

S[σ] =
∫
T [1]X

(σ∗(χ)(dX)− σ∗(H))

where χ is a presymplectic potential, i.e. ω = dχ. χ → χ + dρ
adds boundray term.

BV extension (AKSZ-type). Supersection σ̂:

SBV [σ̂] =
∫
T [1]X

(σ̂∗(χ)(dX)− σ̂∗(H))

R gh(C) = 1 then σ∗(C) = Aa(x)θa while σ̂∗(C) =
0
Ca + Aaθa +

2
ξabθ

aθb + . . . ,
As before: interpretation through the symplectic quotient on
Smaps(Rn, F )



Example: Maxwell

Recall: E = T [1]X × F , Fiber coordinates:

C, gh(C) = 1 , F a|b, F a|b1b2, . . . F a|b1...bl . . . gh(F ...) = 0

Qxa = θa, Qθa = 0, QC =
1

2
F a|bθaθb, QF a|b = θcF

a|bc, . . .

indexes rised/lowered with Minkowski metric. F a|b1...bl – irre-
ducible tensors (totally traceless + Young condition)

Presymplectic structure: Alkalaev, M.G. 2013 (also A. Sharapov 2017)

ω = (θ)(n−2)
ab dF a|bdC ,

indexes rised/lowered with Minkowski metric
Intrinsic action (σ∗(C) = Aa(x)θa, σ∗(F a|b) = F a|b(x)):

S[σ] =
∫
dnx(∂aAb − ∂bAa)F a|b −

1

2
(F a|b)2



Presymplectic structure on supermaps gives correct BV form!

ω̄ = d
0
C ∧

2
F
a|b
ab + dAa ∧

1
F
a|b
b + d

0
F a|b ∧

2
Cab

Here:

σ̂∗(C) =
0
C(x) +Aa(x)θa +

1

2

2
Cab(x)θaθb . . .

σ̂∗(F a|b) =
0
F a|b(x) +

1
F
a|b
c (x)θc +

1

2

2
F
a|b
cd (x)θcθd + . . .

All the fields are in the kernel except for:

C =
0
C, C∗ =

2
F
a|b
ab , Aa, Aa∗ =

1
F
a|b
b , F a|b, F ∗ab =

2
Cab

BV master action (standrad BV for Maxwell in first order for-
malism. Extension to YM is straitforward.):

SBV = S +
∫
dnxF

a|b
b ∂a

0
C



Conclusions

• Gauge PDEs as geometric objects. Well suited to work with

diffeomorphims-invariant and topological models. Notion of

equivalence.

• Determines a “canonical” first-order realization in terms of

a jet-bundle associated to the equation manifold

• Comprise “frame-like” formulation of the system. The re-

spective FDA arise from BRST differential. E.g. the Cartan-

Weyl form of gravity arises from a minimal model of the

respective BRST complex.

• Full scale BV and its BV symplectic structure are encoded

in the graded presympletic structure on the gauge PDE.



• In the case of variational systems unifies Lagrangian and
Hamiltonian BRST formalism, cf. BV/BFV approach of Cat-

taneo et all.

• Gives an invariant approach to study boundary values of
gauge fields. In particular in the AdS/CFT correspondence
context. Bekaert, M.G. 2012. In particular, Fefferman-Graham
construction (and tractor calculus) can be seen as a certain
gauge PDE. M.G. 2012, M.G. Waldron 2011, Bekaert, M.G. Skvortsov

2017

• Succesful applications in constructing new models of HS the-
ory, e.g. Type-B theory (AdS holographic dual to conformal
spinor on the boundary) M.G. Skvortsov 2018

• Recent construction of Lagrangians for AdS4 higher spin
gravity in terms of presymplectic AKSZ. Sharapov, Skvortsov

2020



Presymplectic structures and intrinsic actions

Lagrangian induces presymplectic structure ω ∈ Ω(n−1,2)(E) on

the equation manifold.

Kijowski, Tulczyjew 1979, Crnkovic, Witten, 1987, Hydon 2005, Khavkine

2012, Alkalaev M.G. 2013, Sharapov 2016

Given a Lagrangian L ∈
∧n,0(J∞(F)) define χ̂ ∈

∧n−1,1(J∞(F)):

dvL = dvφ
iδ
ELL
δφi

− dhχ̂

Define ω̂ = dvχ̂

dvω = dhω = 0 , ω = ω̂|E



More generally, let a generic ω
∧n−1,2(E) satisfies the above. It

follows ω = d(χ + l) for some χ ∈
∧n−1,1(E), l ∈

∧n,0(E). These

define a natural action functional on section of E called intrinsic

action: MG, 2016

Sc[σ] =
∫
X
σ∗(χ+ l)

What this has to do with the PDE in question?

Sc doesn’t depend on fields in the vertical kernel of ω. Assuming

regularity take a symplectic quotient. The resulting Lagrangian

system is weaker, E ⊂ Ec. For a class of systems containing

YM, Gravity etc. there exists ω such that Sc is equivalent to

the standard Lagrangian. Counterexample: systems with degree

zero differential consequences, e.g. massive spin-2 system. M.G.

Gritzaenko 2021



Example: scalar field

Lagrangian:

L =
1

2
ηabφaφb − V (φ)

E is coordinatized by xa, φ, φa, φab, . . . with φabc... traceless.

dhx
a = dxa , dhφ = dxaφa, , dhφa = dxb(φab −

1

n
ηab

∂V

∂φ
) , . . .

The presymplectic potential and 2-form:

χ = (dx)n−1
a φadvφ , ω = (dx)n−1

a dvφ
advφ

The Hamiltonian:

H = (dx)n(φaφ
a − L|E) =

1

2
φaφa + V (φ)

The intrinsic Larangian: Schwinger

Lc = (dx)n
(
φa(∂aφ−

1

2
φa)− V (φ)

)


