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Background

Batalin-Vilkovisky (BV) formalism.
BV on jet-bundles, local BRST cohomology  Henneaux et all

Alexandrov, Kontsevich, Schwartz, Zaboronsky (AKSZ) con-
struction of BV for Lagrangian topological models

Unfolded approach in higher spin gauge theories M. Vasiliev
Vinogradov's approach to PDEs Vinogradov, Krasilshik, . . .
FDA approach to SUGRA d’Auria, Fre, ...

BRST first quantized (also known as L) approach to SFT
and gauge fields Zwiebach; Thorn, Bochicchio, Stern, Ouvry, . ..

Fedosov quantization



Linear local BV-BRST system

Ho — X — vector bundle of fields; Hq — of equations; Hi — of
gauge parameters, etc.

H = DH; vect. bundle. with Z-graded fiber

Q= Q) T(H) >v(H), gh(D =1, Q°=0
i
a differential operator. This defines linear local BV gauge theory.
As gh(2) = 1, 2 =0 can be seen as a complex:

2O ) 2D, r () O F () —,

If &, € N'(H;), equations of motion and gauge symmetries:

+ extra requirements (exact in positive degree on jets).



If in addition M(#H) is equipped with degree —1 inner product
[d™x(-,-) such that € is formally symmetric:

Slbol = [ d"a(®o, 2%0)

Gauge invariant action familiar from SFT and first quantized
BRST approach. The approach can be seen as formal BRST
quantum mechanics.

Interactions can be introduced by polydifferential operators

L T(H)®...0T(H) = T(H), i>1, gh(l) =1

Compatibility: Loo-conditions for lg = €2,11,1l5,... so that "'(H)
remains an Lo algebra. Gives a standard setup for perturbatove
QFT. E.g. perturbatoive S-matrix can be obtained as a minimal
model with a proper choice of solution space. Zwiebach, Lada,

Stasheff, Jurco, Arvanitakis, Saemann, Wolf, Hohm,. ..



BV perspective

Replace vector bundle H — X with a bundle of graded mani-
folds whose fiber ; is H,; considered as a graded manifold (i.e.

associated algebra is Sym(HY))
J°(F) is naturally equipped with Cartan distribution and BRST

differential
sW = QW W = ey
wAeA — known as string field. In the Lagrangian case:
Spy = /d%<w, QW),  Ww=qyAe, - string field

(cf. quadratic SFT action) Bochicchio, Thorn 1986



Def [Henneaux,. .., Barnich, MG, Lyakhovich,Sharapov] BV (EOM-level)
E — X, J®°(F) is equipped with vertical evolutionary s, gh(s) =
1, s2 = 0 4+ technical conditions

Loo-setup reproduced upon perturb. expansion about a solution.
Convenient to pull-back J*°(FE) to T[1]X. Algebra of functions
— horizontal local forms on J°(F).

s2=0, gh(s)=1, [s,dn] =0, dp = 0D,

Cohomology H(s|dy)-local BRST cohomology: deformations,
anomalies, global symmetries, conservation laws etc.

In fact invariant information is contained in Q = s + d,, (total
degree = form deg + gh). Solutions, gauge symmetries, can be
defined in terms of Q and dx Barnich, MG



Towards gauge PDEs

The notion of BV is restricted to jets. Generalization?
Def @Q-manifold (M, Q) is a Z-graded supermanifold M equipped
with the odd nilpotent vector field of degree 1, i.e

Q?=0, gh(Q) = 1

¢ (M1,Q1) — (M2,Q2) is a Q-map if ¢* o Qr = Q10 ¢"
Example: Odd tangent bundle: (T[1]X,dx). If 6% are coordinates

on the fibres of T[1]M in the basis a%

dx = eaax“
Example: CE complex (g[1],Q). If g is a Lie algebra then g[1] is

equipped with @ structure. If ¢® are coordinates on g[l] in the
basis e, then

Q = 5 O‘cﬁU 58& lea, eg] = Ugﬁefy



Example: (V[1](M),Q) where V(M) Lie algebroid. Indeed generic
() of degree 1 locally reads as:

1 0
Q = c®Ry — ECO‘CBU(ZB(Z)%

R, gives anchor, Ugﬁ bracket, Q2 — 0 encodes compatibility.

Proposition: [AKSZ] Let (M, Q) a Q-manifol, p€ M and Q|, =0
then Ty, M is an Lo algebra.



Equivalence of Q-manifolds:
Idea: restrict to local analysis. Let

M =N x T[1]V, Q@ =QN +dry

with V a graded space. Then (M, Q) and (NN, Q) are equivalent.
Q-manifold (T'[1]V,dp[q)y) is called contractible. In coordinates:

— a 0 — 1 0
Q=0Qn+v5 -, Qv=d(®)5;
Often one finds a “minimal’ equivalent @-man. In the formal
setup this gives a minimal model of the respective L~ algebra.

Geometric charachterization: let w® be independent functions
such that w?, Qw® are also independent then the surface w® =
0 = Qw® is a @-submanifold isomorphic to (NV,Qp). Simple ge-
ometric picture of the homotopy transfer

In the context of gauge theories: w®,v®* — are known as ‘gener-
alized auxiliary fields” Henneaux, 1990; Barnich, M.G. 2004.



Def. [Kotov, Strobl] Locally trivial bundle = | E — M of Q-
manifolds is called -bundle if 7 is a Q-map. Section o . M — FE
is called @-section if it's a Q-map.

In general, w: E — M is not a locally trivial Q-bundle.

Indeed, although locally E = M x F (product of manifolds) in
general @ is not a product Q-structure of Qr and Qjy.

Example: let mx: E — X be a fiber bundle then
m=dnry: (T[1]E,dr) — (T[1]X,dx) is a Q-bundle.

Def. (M,Q) is called an equivalent reduction of (M’ Q') if
(M, Q") is a locally trivial Q-bundle over (M,Q) with a con-
tractible fiber and (M’, Q") admits a global Q-section.

This generates an equivalence relation for Q-manifolds.



Gauge PDEs

Def. Gauge pre-PDE (&,T[1]X,Q) is a Q-bundle (&,Q) over
(T'[1]X,dx)

Equivalence of @-manifolds extends to Q-bundles over T[1]X,
giving the notion of equivalent reduction and equivalence of
gauge pre-PDEs. Notion of gauge pre-PDE is too wide:

gauge PDE: equivalent to nonnegatively graded, realizable in
term of super-jet bundle in a regular way. In applications we
often (but not always!) also want gauge PDE to be proper —i.e.
that all the gauge symmetries of the underlying PDE are taken

into account by Q.



Equations of motion and gauge symmetries

Solutions: o : T[1]X — £ is a solution if
dxy oo =0c"0Q
Gauge transformations:
00" =dx oe; + €, 0Q,
Gauge parameter: € : C®(E) — C(T[1]X),
gh(ey) = -1, e (fg9) = e5(f)o"(9) + 07 (fes(g)

Gauge for gauge symmetries . ..



Example: BV formulation (EOM level)

Take as € bundle J*°(FE) pulled back to T'[1]X (horizontal forms
on J®(F)) and Q = d + s. Locally, gauge system determined
by (£€,T[1]X, Q) is equivalent to the one encoded in the BV for-
mulation (J°°(&), s). Barnich, MG 2010

The notion of gauge PDE includes BV as a particular case and
hence all reasonable gauge theories. Justifies definition.



Example: zero-curvature equation

Take &€ = (T'[1]X,dx) x(g[1],@Q), where g is a Lie algebra and Q is
a CE differential seen as a vector field. If C* denote coordinates
on g[1] then QC% = —%Ug,ycﬁm. Denoting o*(C%) = A%(z)0°
we get

dyoo* =c*0(Q = dA—l—%[A,A] —0
Gauge transformations:
0A = de + [A, €]

Topological PDE. £ can be thought of as a finite-dimensional
BV analog of the Vvinogradov’s diffiety. Example known from AKSZ



Example: PDE

Let &g — X be a bundle equipped with Cartan distribution. EXx-
tend to a bundle & — T[1]X, the Cartan distribution defines d
on &:

dn = 0°Dy, (0% = dz?)

We arrive at Q-bundle (£, T[1]X,d}).
Seen as a section of £ — T[1]X, a solution is a Q-section. If
wA are local fiber coordinates the section is parametrized by
oA (z) = o* ()
Q-map condition dx oo® = o™ o dy, gives:

0 0
5a 5o T (,2)

also known as “unfolded”’” representation M. Vasiliev.
Usual PDEs are gauge PDEs with horizontal degree.

0

o(2) = Tg(o(2),2),  dn=0"Da=0% .




Riemannian geometry as a gauge PDE

Take E = S2(T*X) @ T[1]X. Consider J*®(E) pulled back to
T[1]X. Local trivialization:

xaa 6 9 9ab> gab|ca I gaa £a|c cee
In a suitable trivialization (cf. AKSZ):

Q=dz+7v, YGap = gcgab|c + £C|agcb + €C|bgac, ’Yfa = §c§a|c7 .

E.g. Lagrangians: H"(Q,local functions), n = dim X. Applies to
generic off-shell (equivalent to jets) gauge PDEs. MG, 2010

Locally, &€ = (T[1]X,dx) x (F,q), i.e. Locally-trivial Q-bundle.



Minimal model

Restrict to local analysis. I“(”bdd“) form contractible pairs with
§hg ANd gg, with symmetric part of &'. Resulting minimal

model Stora; Barnich, Brandt, Henneaux; Vasiliev . ...

Coordinates: zt, 0, E% 0% Rap"ds Ra de)s -+ Ba(v de..)s - - -

Qut =01, Q&% =p%t’,  qp" =pcp” + " + €€ Ry,
QR d = E°Ry gy + pa! Rppa+ -

For instance HO(Q) immediately gives Riemannian invariants.
On-shell version: R are totally traceless (only Weyl tensors).



Section:

o* (&) = el ()", o (p™) = Wil (@)0", *(Rap‘a) = Rap a(x), ...
Equations of motion:
dxye +we=0, dyw—+ww=R,

Cartan structure equations. Taking a total degree “gh-+4form
degree” is crucial. Frame-like formulations.

On shell version — equivalent form of Einstein equations.
What about Lagrangians in the on-shell version?



Presymplectic structure and Cartan-Weyl action

Presymplectic structure on the fiber F' of the minimal model:
Alkalaev, M.G. 2013

W = €apeal®de’dp®,  w = dx

Low =0, dw=0 = dH=1iguw
AKSZ-like action
g :/ * d oM (H :/ d ab a , .cb c_d
01 = [ OO oD = | (dxew™ 4 e eqpepe’e
Familiar Cartan-Weyl action for GR. Generalization for general
n >4 and A %= 0 is straightforward.

What about remaining components of section? What about full-
scale BV formulation available in usual AKSZ?

Idea: assume w regular and take the symplectic quotient. But w
IS not reqgular for n > 3!



Restrict to local analysis. Refined idea: locally, sections are
fiber-valued functions, take:

Smaps(T[1]X, F) = Smaps(X,F), F = Smaps(R"[1],F))

F' is finite-dimensional provided F is. Natural lift of w to F

&= [d"0 wap(©@)dpt(0) Aap©),  gh(@) = -1

Now assume that w regular and take a symplectic quotient. We
have arrived at BV formulation! With BV symplectic structure
determined by w!

State of the art: for a Lagrangian system such a representation
always exists but not necessarily in the minimal model. Counter-
example: massive spin-2 field.



Regularity
Smaps(R"™, F') explicitly:

o) 2
5%(€%) = £%(a) + 0" + E0,0M0" + ... |
54 (™) = P 4 wibor 4 b oreY 4 ...

form-degree k components carry ghost degree 1 — k.
Prop.[Kotov, MG 2020] w IS regular provided ez IS invertible.

Sl61 = [ () (dx) — 5 (H)
induces a proper BV action on the symp. quotient.
Formal path integral: 7 = /Lech(%SBv)

L comprise gauge condition and gauge condition for zero modes
of w. No need to take symplectic quotient explicitly! AKSZ-like



Conformal geometry as a gauge PDE

Take E = S2(T*X)®T[1] X ®C>®(X)[1]. Consider as &£ the J®(E)
pulled back to T[1]X. Local trivialization:

z¢, 6%, Yablc...> §a|c...7 >‘|c...
In a suitable trivialization:
Q=de+7v, Y9ab=E&9ap|c T & |adeb + & p9ac — 2Agap
Ve = EE Y, A= EN

Minimal model T'[1]X x F (locally):
Degree 1 variables:

£a7 pab Ra, >\

Degree O variables:

Wara,  Waw de)r Wab d.)



The @ structure (a version of that obtained by Boulanger,2004)
Q = p%E°+E7A,
1
Qp“y = pcpy + (€% — Er™) + Efcfdwabcda
1
Qrp = kep'y + Ak + Efcgdcbcda
Q)\ — I‘icfc .
Here C. = W,,%.; — Cotton tensor.
k k
QW %ca = EW hqe — PE"W pea + - - -
QCabe = " Cpep + Pa*Crpe + - - -
Resulting equations of motion (Cartan structure equations):
1

dx A+ [AA] = (W g+ CutKe), A= e*Tytw™ ]+ fiKqe+vD

(Bach-flat version — all W.._ are o(n — 1, 1)-irreducible)



Restrict to conformal gravity in n = 4 (i.e. Bach-flat metrics).

The compatible presymplectic structure: Dneprov, MG 2022
W = Wy — 2w ,
ww = d(pap) AW ek €P€) . we = d(£a)d(C%pee" P Epgs)
dw = 0, Low =0, gh(w)=n-1

Defines presymplectic AKSZ system. The action:

S[e7 W, W7 C] — /X [(dwab _I_ wacwcb)Wabannmpkepek—l-
%% c dWabnm p_k (d d ¢ bepk
+ Wapcede™ e Enmpk€ € (deq + wqqe”)C% e Cp€L| »

Equivalent to CGR Lagrangian \/§W2 upon elimination of auxil-
iary fields and passing to the symplectic quotient. First principle
frame-like action (cf. Kaku et all)



Presymplectic structures: general setup

Def. Compatible presymplectic structure on gauge PDE (E,T[1]X,Q)
IS a vertical 2-form w on FE satisfying:

dw =0, Low =0, gh(w) =n-1

Here n = dim X and vertical forms are understood as equivalence
classes + techincal assumptions.

Defines “Hamiltonian” (or, better, covariant BRST charge) via
iqw = dH, gh(H) =n

w IS directly related to the BV symplecic structure G extended
as w =+ "o +...3 to be a cocycle of dh+s, i.e. Ly 4w =0.



Intrinsic BV action

Action functional on the space of section of (E,T[1]X,Q,w)
S :/ * dx) — o (H
01 = [ 11 (7" 00x) = ()

where x is a presymplectic potential, i.e. w =dx. x — x + dp
adds boundray term.

BV extension (AKSZ-type). Supersection o

BVi~1 ~ ~
s%Vle1 = [ (67 00Wx) 5" ()

0]
R gh(C) = 1 then o*(C) = Aq(2)0% while 5*(C) = C% 4+ A,0% +

2

Ep0%0° + . ..,

As before: interpretation through the symplectic quotient on
Smaps(R™, F)



Example: Maxwell

Recall: E =T[1]X x F', Fiber coordinates:
C, gh(C)=1, Folb palbibz o palbibp o gp(Fe) =0

Q" =0 Q0°=0, QC=_F"0,0, QF =gl

indexes rised/lowered with Minkowski metric. Falb1-bi — jrre-

ducible tensors (totally traceless + Young condition)

Presymplectic structure: Alkalaev, M.G. 2013 (also A. Sharapov 2017)
w= ()2 arltqc,

indexes rised/lowered with Minkowski metric

Intrinsic action (¢*(C) = Aq(x)0%, o*(Falb) = Falb(z)):

Sol = [ d"a(@udy — A FP - %(F“'b)Q



Presymplectic structure on supermaps gives correct BV form!

0] 2
mjAFmb+dAaAﬁmb+dF@%«Cw
Here:
0
5(C) = C(z) + Ag(2)0% + % 9ol . ..
5+ (Felby = + PP e + Fa'b< )60 +

All the fields are in the kernel except for.
0 . 24l 1 a/b b L2
c=cCc, «C =Fab, Aq, Al =F, , F, b = Cab

BV master action (standrad BV for Maxwell in first order for-
malism. Extension to YM is straitforward.):

a|b

SBV—S—I—/d” £ 9,



Conclusions

Gauge PDEs as geometric objects. Well suited to work with
diffeomorphims-invariant and topological models. Notion of
equivalence.

Determines a ‘“‘canonical” first-order realization in terms of
a jet-bundle associated to the equation manifold

Comprise ‘“frame-like” formulation of the system. The re-
spective FDA arise from BRST differential. E.g. the Cartan-
Weyl form of gravity arises from a minimal model of the
respective BRST complex.

Full scale BV and its BV symplectic structure are encoded
in the graded presympletic structure on the gauge PDE.



In the case of variational systems unifies Lagrangian and
Hamiltonian BRST formalism, cf. BV/BFV approach of cCat-
taneo et all.

Gives an invariant approach to study boundary values of
gauge fields. In particular in the AdS/CFT correspondence
context. Bekaert, M.G. 2012. In particular, Fefferman-Graham
construction (and tractor calculus) can be seen as a certain
gauge PDE. M.G. 2012, M.G. Waldron 2011, Bekaert, M.G. Skvortsov
2017

Succesful applications in constructing new models of HS the-
ory, e.g. Type-B theory (AdS holographic dual to conformal
spinor on the boundary) M.G. Skvortsov 2018

Recent construction of Lagrangians for AdSs higher spin

gravity in terms of presymplectic AKSZ. Sharapov, Skvortsov
2020



Presymplectic structures and intrinsic actions

Lagrangian induces presymplectic structure w € Q(n=12)(£) on
the equation manifold.

Kijowski, Tulczyjew 1979, Crnkovic, Witten, 1987, Hydon 2005, Khavkine
2012, Alkalaev M.G. 2013, Sharapov 2016

Given a Lagrangian £ € A™9(J®°(F)) define ¥ € A~ L1(J°(F)):

SELL
dv,c — dvqbz (Sqﬁz

s

— dnX

Define & = dyy

AN

dyw = dpyw = 0, w=w|¢g



More generally, let a generic w A"~ 1:2(&) satisfies the above. It
follows w = d(x + 1) for some x € A" 11(&),1 € A»O(E). These
define a natural action functional on section of £ called intrinsic
action: MG, 2016

S¢lo =/ o [
o] = [ o*(x+1)
What this has to do with the PDE in question?

S¢ doesn’t depend on fields in the vertical kernel of w. Assuming
regularity take a symplectic quotient. The resulting Lagrangian
system is weaker, £ C £¢. For a class of systems containing
YM, Gravity etc. there exists w such that S¢ is equivalent to
the standard Lagrangian. Counterexample: systems with degree
zero differential consequences, e.g. massive spin-2 system. M.G.
Gritzaenko 2021



Example: scalar field

LLagrangian:
1
L= >n%ady, — V()
£ is coordinatized by x%, @, ¢a, Oup, - - - With ¢, traceless.

1 v
dnz® = dz®,  dnd = da¢a,, dpda = dzb(Pgp — “ab )

The presymplectic potential and 2-form:
x = (dz)? 1¢%vp, w = (dz)? Ldvo®dye
The Hamiltonian:

H = (do)"($ad” — Llg) = 56"6a + V(¢)

The intrinsic Larangian: Schwinger

£° = ()" (#°@ud — 300) — V(@)



