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Some motivations

Supergravity backgrounds based on supergroups  
1. Geometric backgrounds solving Einstein’s equations plus non-trivial fluxes 
2. Chern-Simons gauge theories on supergroups (3D supergravity)  
3. JT supergravity  

Structure of supergravity theories 

1. Self-dual form backgrounds 
2. Free Differential Algebras  
3. Superspace formulations 
4. Auxiliary fields

Superstring theories 

1. Supermoduli spaces (integration of vertex operators) 
2. Pure spinor formulation and target space PCO 
3. WZW -models with supergroups as target space 
4.  / -algebra and integral forms A∞ L∞



1. Review of Lie Algebra Chevalley-Eilenberg (CE) Cohomology — Example SL(3) 

2. Review of Equivariant CE Cohomology — Example SL(3)/GL(2) 

3. Review of Poincaré Polynomials — Greub-Halperin-Vanstone Theorem 

4. Lie Superalgebra CE  Cohomology — Example OSp(1|2)  

5. Lie Superalgebra CE Cohomology  — New Results for OSp(2|2) 

SUMMARY



CE cohomology for Lie algebras

Xa ∈ 𝔤, a = 1,…, dim 𝔤,

We denote by  a simple Lie algebra. Its generators are given by the vector fields  𝔤

[Xa, Xb] = f c
ab Xc

where   are the structure constants. f c
ab

We introduce linear functionals (forms) of the dual space   denoted by 𝔤⋆

Va, Va ∧ Vb = − Vb ∧ Va , ⟨Va, Xb⟩ = δa
b

The exterior algebra   is filtered with the form number and it is  endowed  

with a differential  

Ω(𝔤⋆) = ⊕dim𝔤
p=0 Ωp(𝔤⋆)

dCE : Ωp(𝔤⋆) → Ωp+1(𝔤⋆)

the forms  have a grading: FORM NUMBER Va

dVa = f a
bc Vb ∧ Vc , d2 = 0

The Chevalley-Eilenberg coholomogy (with trivial coefficients) is defined as follows 

H(d, Ω(𝔤⋆), ℝ) = ⊕dim𝔤
p=0 H(p)(d, Ω(𝔤⋆), ℝ)



CE Cohomology of Lie algebra 𝔰𝔩(3)
Its CE cohomology (in the trivial module ) is represented by the ring of formsℝ

ω̃ (3) = ηabVa ∧ dVb = fabcVa ∧ Vb ∧ Vc ,ω̃ (0) = 1 ,

ω̃ (5) = dabcVa ∧ dVb ∧ dVc = dars f r
bc f s

deV
a ∧ Vb ∧ Vc ∧ Vd ∧ Ve ,

ω̃ (8) = ω̃ (3) ∧ ω̃ (5) = ϵabcdefghVa ∧ … ∧ Vh ,

where  are the invariant tensors corresponding to the Casimirs (in the enveloping algebra) ηab, dabc

The Lie algebra  has several subalgebras , in terms of which we can construct some  
homogenous spaces. One can build the CE cohomologies of  starting from the  
CE cohomologies of subalgebras  and of its cosets spaces. Since this turns out a very  
powerful methods for Lie superlgebras, I will briefly review it. 

𝔰𝔩(3) 𝔥
𝔰𝔩(3)

𝔥

C2 = ηabXa ⊗ Xb , C3 = dabcXa ⊗ Xb ⊗ Xc

The “Volume” form  represents the top form and it transforms under automorphisms  
as the determinant, we will rename it as . In the case of compact real forms,  
this represents the Haar measure of the corresponding Lie group. 

ω̃ (8)

det 𝔤⋆



Equivariant CE Cohomology

For homogeneous spaces, the correct definition is not the Chevalley-Eilenberg cohomology, but rather the 
equivariant CE cohomology (the cohomology of d on basic and invariant - under the subgroup - forms)

For example in the case of SL(3)/GL(2)  one has to study the action of the differential d  
up to gauge transformations of the subgroup GL(2). 

ω̃ (0)
SL(3) = ω(0)

GL(2) ∧ ω(0)
SL(3)/GL(2)

ω̃ (3)
SL(3) = ω(3)

GL(2) ∧ ω(0)
SL(3)/GL(2) + ω(1)

GL(2) ∧ ω(2)
SL(3)/GL(2)

ω̃ (5)
SL(3) = ω(3)

GL(2) ∧ ω(2)
SL(3)/GL(2) + ω(1)

GL(2) ∧ ω(2)
SL(3)/GL(2) ∧ ω(2)

SL(3)/GL(2)

ω̃ (8)
SL(3) = ω(3)

GL(2) ∧ ω(2)
SL(3)/GL(2) ∧ ω(2)

SL(3)/GL(2)

where  are the cohomology classes of  ω(0)
GL(2), ω(1)

GL(2), ω(3)
GL(2), ω(1)

GL(2) ∧ ω(3)
GL(2) 𝔤𝔩(2)

and  are the cohomologies of the coset SL(3)/GL(2)ω(0)
SL(3)/GL(2), ω(2)

SL(3)/GL(2)



The complex 

0 → Ω0(𝔤⋆) → … → Ωdimg(𝔤⋆) → 0

is finite dimensional and it displays the duality between  Ωp(𝔤⋆) ⟷ Ωdimg−p(𝔤⋆)

This Poincaré duality allows us to split the complex in two isomorphic parts (for even dimensional algebras)

Ω(𝔤⋆) = ( ⊕dim 𝔤/2
p=0 Ω(p)

S ) ⊕ ( ⊕dim 𝔤
p=dim 𝔤/2 Ω(p)

I )
and the elements of the first complex  are related to those of the complement complex by the relations Ω(p)

S (𝔤⋆)

ω(p)
S ∧ ω(dim𝔤−p)

I = det(𝔤⋆)
where  is the top form of the complex.det(𝔤⋆)

The part  can also be identified with the chains Ω(p)
I (𝔤⋆)

Ω̂(p)
I = ιX1

…ιXp
det(𝔤⋆)

It follows that 
HCE(d, ΩS) ∼ H(dK, Ω̂I)

where  is the Koszul differential acting on chains . dK Ω̂I



Poincaré Polynomials
This is a very important tool to study the cohomology and they are defined as follows 

ℙ𝔤(t) =
dim 𝔤

∑
p=0

dim H(p)(d, Ω)(−1)ptp =
∞

∏
q=0

(1 − tq)N(q)

1.  is the dimension of the cohomology at a given form number,  

2.  encodes the form number (or, physics wise, the scaling of the Maurer-Cartan forms), 

3.  encodes the parity of the corresponding cohomologies 

dim H(p)(d, Ω)

tp

(−1)p



For example for , we have 𝔰𝔩(3)

ℙ𝔰𝔩(3)(t) = (1 − t3)(1 − t5) = 1 − t3 − t5 + t8 = (1 − t3) − t8(t−3 − 1)

The 3 different expressions call for different interpretations. 

1. The first is the usual Hopf decomposition of a Lie algebra in terms of sphere cohomologies.  
    Each binomial  takes into account a rank of the group, the power  takes care of the  
    dimension of the sphere.  

(1 − tx) x

2. The second equality describes the 4 cohomologies classes:   
    1 denotes the cosntat cohomology,  
     denotes the 3-cocycle (always presents for a Lie algebra) ,  
     corresponds to the 5-cocycle  related to the 3-Casimir,  

  corresponds to the top form   .

−t3 ω(3)

−t5 ω(5)

t8 ω(8)

3. The last equality separates the polynomials into two parts, corresponding to  and . The isomorphism  
is evident, notice that even though it seems trivial, the two parts of the polynomial represent two  
different cohomologies. 

ΩS ΩI



Poincaré Polynomials for Cosets

Following Grueb-Halperin-Vanstone theorem considering the biggest subalgebra  with  
the same rank as  we have 

𝔥
𝔤

ℙℙ2(t) =
(1 − t4)(1 − t6)
(1 − t2)(1 − t4)

= 1 + t2 + t4

where  is the Poincaré polynomial for the equivariant cohomology of the coset space G/H.  
The exponents  and  depend upon the group G and its subgroup H. 

ℙ𝔤/𝔥(t)
Ng(q) Nh(q)

In the case of , if we choose , we have  as the coset space (of the real forms SU(3)/U(2))  
and therefore we have 

𝔰𝔩(3) 𝔤𝔩(2) ℙ2

ℙ𝔤/𝔥(t) =
∏∞

q=0 (1 − tq+1)Ng(q)

∏∞
q=0 (1 − tq+1)Nh(q)

The cohomology of  is entirely described in terms of its Kähler form  ℙ2 K2

H(ℙ2) = {1,K2, K2 ∧ K2}
corresponding to the three terms of the Poincaré polynomial. 



Lie Superalgebras

We use the same symbol , generated by even vectors  with  where   
is the bosonic dimension, and by odd vectors  with  where  is the fermionic dimension. 

𝔤 Xa a = 1,…, dim 𝔤0 dim 𝔤0
X̂α α = 1,…, dim 𝔤1 dim 𝔤1

[Xa, Xb] = f c
ab Xc , [Xa, X̂α] = f β

aα X̂β , [X̂α, X̂β]+ = f a
αβ Xa .

where  are the structure constants. The Lie algebra respects the parity of the generators. f c
ab , f β

aα f a
αβ

We introduce the linear functionals  defined as Va, ψα

⟨Va, Xb⟩ = δa
b , ⟨Va, X̂β⟩ = 0 , ⟨ψα, Xb⟩ = 0 , ⟨ψα, X̂β⟩ = δα

β ,

Va ∧ Vb = − Vb ∧ Va , Va ∧ ψα = ψα ∧ Va , ψα ∧ ψβ = ψβ ∧ ψα ,

The Chevalley-Eilenberg differential is defined 

dVa = f a
αβ ψα ∧ ψβ + f a

bc Vb ∧ Vc , dψα = f α
aβ Va ∧ ψβ ,

the differential is nilpotent because of the super Jacobi identities. 



FUKS’ THEOREM

This theorem states that the cohomology of the Lie Superalgebra (in the present  
example of the orthosymplectic one) is isomorphic only to one sector of the bosonic subalgebra.  
So, we wondered what happened at the rest of the cohomology, if any.  

H∙
CE(𝔬𝔰𝔭(n |m)) = {

H∙
CE(𝔰𝔬(n)), if n ≥ 2m ,

H∙
CE(𝔰𝔭(m)), if n < 2m



In terms of those generators, we can build the space  which locally can be written as  Ω(𝔤⋆)

ω(n) = ω[a1…ap],(α1…αq)Va1 ∧ … ∧ Vap ∧ ψα1 ∧ … ∧ ψαq ∈ Ω(𝔤⋆)

where the coefficients are constant. The total form number is n=p+q.  
All elements of the Chevalley-Eilenberg cohomology are scalars with respect to automorphisms.  

1. There is no-top form in  (where is the Berezinian?)  Ω(𝔤⋆)

2. The space  is unbounded from above, the form number can be Ω(𝔤⋆) n ≥ 0

3. There is no Poincaré duality (this can be easily checked by counting the dimensions of each space )  Ω(p)(𝔤⋆)

4. The introduction of new ingredient is motivated also from supermanifold point of view: integration theory  
for supermanifold is not equivalent to normal manifold and new ingredients have to be introduced.  



We have to introduce a new generator δ(ψα) with the (distribution like) properties

ψαδ(ψα) = 0 , δ(ψα) ∧ δ(ψβ) = − δ(ψβ) ∧ δ(ψα) ,

dδ(ψα) = dψαδ′ (ψα) = − Vααδ(ψα) + ∑
β≠α

Vαβψβδ′ (ψα)

ψαδ′ (ψα) = − δ(ψα) δ(ψα) ∧ Va = − Va ∧ δ(ψα)



In this enlarged space a generic form has the following generic structure 

ω(t|r) = ω[a1…ap],(α1…αq)[β1…βr]V
a1 ∧ … ∧ Vap ∧ ψα1 ∧ … ∧ ψαq ∧ δ(g1)(ψβ1) ∧ … ∧ δ(gr)(ψβr)

where  is the g-the derivative of , δ(g)(ψα) =
∂g

∂gψα
δ(ψα) δ(ψα)

The form number of   and there is another grading (PICTURE) = t = p + q −
m

∑
i=1

gi r

r = 0 , t ≥ 0 , r = m , t ≤ n , r ≠ 0,m , t ∈ ℤ

Top form (Berezinian) 

ω(n|m) = ω[a1…an],[β1…βm]Va1 ∧ … ∧ Van ∧ δ(ψβ1) ∧ … ∧ δ(ψβm)

which transforms as  where  is the Jacobian of the transformation. ω(n|m) → Sdet(J ) ω(n|m) J

1. It plays the role of the “volume” form 

2. On supermanifolds  defines a meaningful geometrical integration theory. For supergroups  
this corresponds to the Maurer-Cartan forms and  is the super Haar measure,

ω(n|m)

ω(n|m)



The differential  preserves the filtrationd

The space of form  can be decomposed according to the two numbers  Ω(p|q)(𝔤⋆)

Ω(𝔤⋆) = ⊕dim𝔤1
q=0 ⊕p Ω(p|q)(𝔤⋆)

q = 0 , p ≥ 0 , q = m , p ≤ n , q ≠ 0,m , p ∈ ℤ

d : Ω(p|q)(𝔤⋆) ⟶ Ω(p+1|q)(𝔤⋆)

At the moment is it not clear if the complex  is a double complex. Nobody was able to  
construct a covariant vertical differential (new progresses with Noja, Cremonini and Aschieri) 

Ω(𝔤⋆)

There are also some new interesting operators, a.k.a. Picture Changing Operators  and 𝕐 (0|1) ℤ(0|−1)

𝕐 (0|1) : Ω(p|q)(𝔤⋆) ⟶ Ω(p|q+1)(𝔤⋆)

ℤ(0|−1) : Ω(p|q)(𝔤⋆) ⟶ Ω(p|q−1)(𝔤⋆)



SPECTRUM OF FORMS FOR A SUPERMANIFOLD

0
d�!

Z"
...

· · · ⌦(�1|s) d�!
...

Z"
· · · ⌦(�1|m) d�!

⌦(0|0) d�! · · · ⌦(r|0) · · · d�! ⌦(n|0)

Z"# Y Z"# Y Z"# Y

...
...

...

⌦(0|s) d�! · · · ⌦(r|s) · · · d�! ⌦(n|s)
...

...
...

Z"# Y Z"# Y Z"# Y

⌦(0|m) d�! · · · ⌦(r|m) · · · d�! ⌦(n|m)

d�! ⌦(n+1|0) · · ·
# Y

...
d�! ⌦(n+1|s) · · ·

...

# Y

d�! 0

Figure 1: Structure of the supercomplex of forms on a supermanifold of dimension (m|n) . The form degree r changes

going from left to right while the picture degree s changes going from up to down. The rectangle contains the subset of the

supercomplex where the various pictures are isomorphic.

coming from dxa1 . . . dxal plus (m + h � 1)(m + h � 2) . . .m/h! coming from d✓↵1 . . . d✓↵h . In the

same way, if we consider the integral forms ⌦(n�p|m) of the last line, we see that we can have powers

of dx and derivatives on the Dirac delta functions as

dxi1 . . . dxil�g(↵1)(d✓↵1) . . . �g(↵m)(d✓↵m) (2.13)

where g(x) is the order of the derivative on �(x). The form degree is l �
Pm

k=1
g(↵k).

For example, for n = 3,m = 2 the superspace is SM(3|2) and there are three complexes:

⌦(p|0),⌦(p|1) and ⌦(p|2). The first one is bounded from below being ⌦(0|0) the lowest space generated

by constant functions, the last one is bounded from above with ⌦(3|2) the highest space spanned by

the top form and finally, the middle one is unbounded. In addition, the dimension of each space of

the first and of the last one is finite, while for the middle one each ⌦(p|1) is infinite dimensional.

Let us consider the space ⌦(1|0) spanned by dxa, d✓↵ with dimensions (3|2) (which means 3

bosonic generators and 2 fermionic generators). On the other hand the space ⌦(2|2) is spanned by

n
✏abcdx

bdxc�2(d✓), ✏abcdx
adxbdxc◆↵�

2(d✓)
o

where ◆↵�2(d✓) denote the derivative of �2(d✓) with respect d✓↵. It has dimensions (3|2) and

therefore there should be an isomorphism between the two spaces.

Let us consider another example: the space ⌦(2|0) spanned by

n
✏abcdx

bdxc, dxad✓↵, d✓(↵1d✓↵2)

o

with dimensions (6|6). The corresponding space is ⌦(1|2) and it spanned by

n
dxa�2(d✓), ✏abcdx

bdxc◆↵�
2(d✓), ✏abcdx

adxbdxc◆(↵1
◆↵2)

�2(d✓)
o

9



Poincaré Polynomials for Lie Superalgebras

ℙ𝔤(t, t̃ ) =
dim 𝔤1

∑
q=0

∑
p

dim H(p|q)(d, Ω)(−1)p+qtpt̃q

As for Lie algebras, we can construct the Poincaré polynomials/series for  
Lie superalgebra. Due to the presence of two distinct gradings (form number and  
picture number) we  add to variables  and t t̃

q = 0 , p ≥ 0 , q = m , p ≤ n , q ≠ 0,m , p ∈ ℤ

where the second sum is over the ranges

Contrary to Poincaré polynomials for Lie algebra, where the Weyl integration formula  
(Molien-Weyl formula)  provides a direct computation tool to derive the corresponding  
the above expression, in the case of Lie superalgebras, this has never been built.  
It would be very interesting to construct such a formula. (see recent developments 2106.09353 [hep-th]) 

https://arxiv.org/abs/2106.09353


The case OSp(1|2)

The generators of the dual space  are 𝔤⋆ V (αβ) = V (βα), ψα

dV(αβ) = ψαψβ + (V ∧ V )(αβ) , dψα = Vαβϵβγψγ ,

where  and (V ∧ V )(αβ) = ϵρσV (αρ) ∧ V (σβ) ϵαβ = − ϵβα , ϵ12 = 1

1. It preserves the algebraic curve  
2. The dimension is (3|2), three bosonic dimensions and two fermionic dimensions 
3. Rank = 1 

x2
0 − x2

1 − x2
2 + θ1θ2 = R2

The generators of the Lie superalgebra are  and they commutation relations are X(αβ), X̂α

[Xαβ, Xγδ] = ϵαγXδβ + ϵβγXδα + ϵαδXγβ + ϵβδXγα

[Xαβ, X̂γ] = ϵγαX̂β + ϵγβX̂α

[X̂α, X̂β]+ = Xαβ

α, β, γ = 1,2



Cohomology

ℙ𝔬𝔰𝔭(1|2)(t, t̃ ) = (1 − t3)(1 + t̃ 2) = 1 − t3 + t̃ 2 − t3t̃ 2 = (1 − t3) + t̃ 2(1 − t3)

from which we read 

H(p|q)(d, Ω) = {ω(0|0), ω(3|0), ω(0|2), ω(3|2)}

ω(3|0) = ψαψβϵαα′ ϵββ′ Vα′ β′ +
1
3!

(V ∧ V ∧ V )

ω(0|2) = δ2(ψ) + (V ∧ V )αβ ∂
∂ψα

∂
∂ψβ

δ2(ψ) ω(3|2) = V ∧ V ∧ V ∧ δ2(ψ)

Interpretation of the Poincaré polynomial 

1. The second equality gives the different classes of the cohomology. Parity and gradings are indicated 
2. The third equality shows the duality between to different type of generators leading again to 

Ω(𝔤⋆) = ΩS ⊗ ΩI
where we denote  the space of superforms (zero picture) and  the space of integral forms (picture =2)ΩS ΩI

ω(0|0) = 1

and we also notice the duality H(d, ΩS) ∼ H(d, ΩI)



Cohomology of the Coset

Let us consider the supercoset OSp(1|2)/Sp(2). This is a purely fermionic coset whose geometry  
is easily described using the corresponding Maurer-Cartan equations as follows

Rαβ ≡ dVαβ − (V ∧ V )αβ = ψαψβ , ∇ψα ≡ dψα − Vαβϵβγψγ = 0

where  is the curvature of Sp(2) and  is the covariant derivative w.r.t. to the connection Rαβ ∇ Vαβ

This implies that  are covariantly closed and therefore any function of them is  
automatically closed. Then, it is easy to compute the cohomology 

ψα

H(d, Ω) = {ω(0|0), ω(0|2)}

where 
ω(0|0) = 1 , ω(0|2) = ϵαβδ(ψα)δ(ψβ)

This is in accord with the Poincaré polynomial (computed using GHV theorem) 

ℙ𝔤/𝔥(t, t̃) = 1 + t̃2

Again we have the duality between  and . ΩS = {ω(0,0)} ΩI = {ω(0|2)}



Using the ring structure we can reconstruct the cohomology of  from the  
cohomology of its subalgebra  and its coset

𝔬𝔰𝔭(1 |2)
𝔰𝔩(2)

ω̃ (0|0) = ω(0|0)
sl(2) ∧ ω(0|0)

osp/sp , ω̃ (3|0) = ω(3|0)
sl(2) ∧ ω(0|0)

osp/sp

ω̃ (0|2) = ω(0|0)
sl(2) ∧ ω(0|2)

osp/sp , ω̃ (3|2) = ω(3|0)
sl(2) ∧ ω(0|2)

osp/sp

up to d-exact terms. 

So, we are able to reconstruct completely the cohomology of the original algebra in  
terms of the cosets and of its subgroup. This can be formalised into the usual procedure  
of spectral sequence. Indeed, the result can be computed also in that way. 

There is another way to interpret the result by considering the two complexes 

0 → Ω(0|0) → Ω(1|0) → Ω(2|0) → … → Ω(n|0) → Ω(n+1|0) → …

… → Ω(−1|2) → Ω(0|2) → Ω(1|2) → Ω(2|2) → Ω(3|2) → 0

The first complex is of the superforms  and the second one of  of the integral forms.  
However, this point of view is misleading since one is erroneously brought to think that there is  
double complex, but nobody has found the vertical differential.  

ΩS ΩI

The cohomology class  can be used to map vertically  ω̃ (0|2) H(p|0) → H(p|2)



The crucial case OSp(2|2)
Let us come to the crucial case, this is a new result that requires a deeper understanding.

1. It is rank =2 example 
2. The bosonic subgroup SO(2)xSp(2) 
3. It preserves the algebraic curve   
4. The  Lie superalgebra is generated by the (4|4) vectors  (with )

x2
0 − x2

1 − x2
2 + y2 + θ1θ2 + θ′ 1θ′ 2 = R2

Xαβ, X0, X̂I
α I = 1,2

[Xαβ, Xγδ] = ϵαγXδβ + ϵβγXδα + ϵαδXγβ + ϵβδXγα

[Xαβ, X̂I
γ] = ϵγαX̂I

β + ϵγβX̂I
α

[X̂I
α, X̂J

β]+ = XαβηIJ + X0ϵIJϵαβ

[Xαβ, X0] = 0 , [X0, X0] = 0 ,

[X0, X̂I
α] = ϵIJηIJ X̂J

α

The linear functionals are generated by   with the differential Vαβ, V0, ψα
I

dVαβ = ψα
I ∧ ψβ

J ηIJ + (V ∧ V )αβ , dV0 = ψα
I ∧ ψβ

J ϵIJϵαβ

dψα
I = Vαβϵβγ ∧ ψγ

I + V0ϵIJηJK ∧ ψα
K

 is the euclidean metric. ηIJ



using the spectral sequences (using the decomposition under the subgroup OSp(1|2))  
we obtain the result

ℙOSp(2|2)(t, t̃ ) = (1 − t3)(1 − tt̃ 2)(1 + t̃ 2) = (1 − t3)(1 + t̃ 2 − tt̃ 2 − tt̃4)

= (1 − t3) + (1 − t3)t̃ 2 − (1 − t3)tt̃ 2 + (1 − t3)tt̃4

where we have selected four sectors corresponding to following decomposition 

Ω(𝔤⋆) = ΩS(𝔤⋆) ⊕ ΩP(𝔤⋆) ⊕ ΩI(𝔤⋆)

where we added the sector of PSEUDOFORMS  (corresponding to the two central pieces  
of the equation). Locally, they can be written as  

ΩP(𝔤⋆)

ω(t|2) = ω[a1…ap],(α1…αq)[β1β2]V
a1 ∧ … ∧ Vap ∧ ψα1 ∧ … ∧ ψαq ∧ δ(g1)(ψβ1) ∧ δ(g2)(ψβ2)

The expressions  are not tensorial under automorphisms δ(g)(ψα)

δ(ψ′ α) = δ(ψα + Λα
βψβ) = δ(ψα) + Λα

βψβ ∂
∂ψα

δ(ψα) + 𝒪(Λ)



Notice that increasing the power of  we can increase the number of derivatives of ,  
and the form number does not change. This means that the subspaces  are  
infinitely generated. 

ψα δ(g)(ψα)
Ω(p|2)(𝔤⋆)

… → Ω(−n|2) → … → Ω(−1|2) → Ω(0|2) → Ω(1|2) → … → Ω(n|2) → …

is unbounded from below and from above. 

The geometry of pseudoforms is not yet studied in detail.  

In works 1907.07152 and 1912.10807 with C.A. Cremonini we show how the computations are  
consistent and some physical applications. 

https://arxiv.org/abs/1907.07152
https://arxiv.org/abs/1912.10807


Cohomology of the Cosets of OSp(2|2) 

In order to compute the cohomology it is convenient as shown above to compute the  
cohomology of the coset OSp(2|2)/SO(2)xSp(2). The geometry is described by 

Rαβ ≡ dVαβ − (V ∧ V )αβ = ψα
I ψβ

J ηIJ ,

∇ψα
I ≡ dψα

I − Vαβϵβγψ
γ
I − V0ϵIJηJKψα

K = 0

R ≡ dV0 = ψα
I ψβ

J ϵIJϵαβ

where  are the curvature of Sp(2) and of SO(2). Rαβ, R

The computation can be done using again the GHV theorem 

ℙ𝔤/𝔥(t, t̃ ) =
(1 − t4)(1 − t2t̃ 2)(1 + t̃ 2)

(1 − t2)(1 − t4)
=

(1 − t2t̃ 2)(1 + t̃ 2)
(1 − t2)

=
1

(1 − t2)
+ t̃ 2 +

1

(1 − 1
t2 )

t̃4

The cohomology of the coset (which is purely fermionic) is described entirely by the  
generators . Any invariant expression is clearly closed. ψα

I



Let us discuss the three different pieces 

The first piece 
1

(1 − t2)
⟹ ΩS(𝔤/𝔥)

corresponds to superforms. Therefore the explicit expressions should be written in  
terms of . The only invariant combination is ψα

I

K2 = ψα
I ψβ

J ϵIJϵαβ

which is a 2-form, commuting and closed  and not exact. Therefore any power  
of it represents a cohomology class  The counting of them  
reproduces exactly the Poincaré series above. 

∇K2 = 0
K2, K2 ∧ K2, K2 ∧ K2 ∧ K2, …

The second piece 
1

(1 − 1
t2 )

t̃4 ⟹ ΩI(𝔤/𝔥)

The factor  corresponds to the factor t̃4 δ4(ψ) ≡ δ(ψ1
1) ∧ … ∧ δ(ψ2

2)

The first factor  is relate to the derivative of the delta’s  
1

(1 − 1
t2 )

ι2δ4(ψ) ≡ ϵαβϵIJ ∂
∂ψα

I

∂
∂ψβ

J
δ4(ψ)



Again we can reiterate the differential operator  at wish, and since it counts -2 as  
form degree, resuming all contributions we get the interesting factor. 

ι2

ιn
2δ4(ψ) ⟹ t−2nt̃4

Let us come to the last piece: . This is due to pseudoforms at picture 2. t̃ 2

It is rather difficult to build them. The strategy however was to first notice that the combinations 

F(ψ1) = ϵαβδ(ψ1
α)δ(ψ1

α) , F(ψ2) = ϵαβδ(ψ2
α)δ(ψ2

α) ,

are invariant under Sp(2) transformations. Therefore we need to impose the invariance under  
SO(2) symmetry. This is achieved by requiring if it exists a combination of them such that  
satisfy the differential equation 

TG(F(ψ1), F(ψ2), ψ I
α) = (ψα

1
∂

∂ψα
2

− ψα
2

∂
∂ψα

1 ) G(F(ψ1), F(ψ2), ψ I
α) = 0

this equation can be solve and it has a unique solution which can be easily expressed as the  
Taylor expansion of a modified Bessel function of first kind  I0

G(ψ1, ψ2) = ϵαβδ(ψ1
α)δ(ψ1

α) −
1
4

ψ2
αψ2

β
∂

∂ψ1
α

∂
∂ψ1

β
ϵαβδ(ψ1

α)δ(ψ1
α) + … ,



Now reconstructing the full cohomology from the equivariant cohomology is rather easy, and  
this confirms the result obtained by spectral sequences 

ℙOSp(2|2)(t, t̃ ) = (1 − t3)(1 − tt̃ 2)(1 + t̃ 2) = (1 − t3)(1 + t̃ 2 − tt̃ 2 − tt̃4)

= (1 − t3) + (1 − t3)t̃ 2 − (1 − t3)tt̃ 2 + (1 − t3)tt̃4

where we have 

H(p|0)(d, ΩS) ⟶ (1 − t3)

H(p|2)(d, ΩP) ⟶ (1 − t3)(1 − t) t̃2

H(p|4)(d, ΩI) ⟶ (1 − t3)t̃4

all cohomology groups are isomorphic (using again the duality) and they have been checked  
using spectral sequences, Poincaré polynomials and explicit computations. 

= (1 − t3) + (1 − t3)(1 − t)t̃ 2 + (1 − t3)tt̃4



Conclusions

In general we have 

ℙ𝔬𝔰𝔭(2|2n)(t, t̃ ) = ℙ𝔰𝔭(2n)(t)(1 − tt̃ 2n)(1 + t̃ 2n)

which can be analysed along the same lines. One can establish the spectral sequence  
argument using all possible subgroups of OSp(2|2n). 

1. We have found unexpected and non trivial results in the cohomology of Lie superalgebra in the trivial module. 

2. We have found a way to compute the cohomologies using the Poincaré polynomials (or series)  
extending the theorem by Grueb-Halperin-Vanstone. 

3. We have completed the Fuks theorem to the complete set of forms for a Lie superalgebra.

4. We have found invariant pseudoforms in the spectrum of those cohomologies. 

Thank you for your attention


