Super Geometric Quantization

Rita Fioresi, Unibo

References

- C. Carmeli, R. F., V. S. Varadarajan, *Unitary Harish-Chandra Representations of Lie supergroups*, JNCG, https://arxiv.org/abs/2103.16131, 2021.
- C. Carmeli, R. Fioresi, V. S. Varadarajan, *Highest weight Harish-Chandra supermodules and their geometric realizations*, Transformation Groups, 2019.
- M.-K. Chuah, R. Fioresi, *Super Geometric Quantization and highest weight Harish-Chandra unitary supermodules* in preparation, 2022.

- Linear Supergeometry
- The functor of points: supermanifolds and superschemes
- Supergroups, SHCP, representations
- Unitary Representations: infinitesimal and global
- Super Quantization and Super Moment map

Linear Supergeometry

- Super vector space: V = V₀ ⊕ V₁.
 Example: k^{m|n} := k^m ⊕ kⁿ, superspace of dimension m|n, k = ℝ, ℂ.
- Superalgebra: super vector space with product respecting parity, p.
- **Commutative Superalgebra**: $ab = (-1)^{p(a)p(b)}ba$, (or p(a) = |a|) Prototype of commutative superalgebra: polynomial superalgebra.

$$k[x_1 \ldots x_m, \xi_1 \ldots \xi_n] = Sym(x_1 \ldots x_m) \otimes \wedge (\xi_1 \ldots \xi_n)$$

• **Supermodules**: modules over commutative superalgebras. $A^{m|n} := A \otimes k^{m|n}$ free *A*-module of dimension m|n. $A_0^{m|n} := A_0 \otimes k^m \oplus A_1 \otimes k^n = \{(a_1, \dots, a_m, \alpha_1, \dots, \alpha_n)\}$ $A_1^{m|n} := A_0 \otimes k^n \oplus A_1 \otimes k^m = \{(\alpha_1, \dots, \alpha_m, a_1, \dots, a_n)\}$

EVEN: latin letters, ODD: greek letters.

The functor of points approach

The A points of the supervector space $V = k^{m|n}$ are:

$$V(A) := (A \otimes V)_0 = A_0^{m|n} = A_0 \otimes k^m \oplus A_1 \otimes k^n = \{(a_1, \dots, a_m, \alpha_1, \dots, \alpha_n)\}$$

where A is a commutative (always!) superalgebra.

We may interpret them as:

$$V(A) = \{f : k[x_1 \dots x_m, \xi_1 \dots \xi_n] \longrightarrow A\} =$$
$$= \operatorname{Hom}_{(\operatorname{salg})}(k[x_1 \dots x_m, \xi_1 \dots \xi_n], A)$$

In fact:

$$\begin{array}{cccc} f: & k[x_1 \dots x_m, \xi_1 \dots \xi_n] & \longrightarrow & A \\ & & x_i & \mapsto & a_i \\ & & \xi_j & \mapsto & \alpha_j \end{array}$$

The Categories of Supermanifolds and Superschemes

- Supermanifold: (M_0, \mathcal{O}_M) M_0 topological space $\mathcal{O}_M|_U \cong C^{\infty}_{M_0}|_U \otimes \wedge (\xi_1, \dots, \xi_n)$ sheaf of comm. superalgebras on M_0
- Superscheme: (M_0, \mathcal{O}_M) M_0 topological space $\mathcal{O}_M|_U \cong SpecA$ sheaf of commutative superalgebras on M_0
- Functor of points of *M* supermanifold or (affine) superschemes:

 $M: (smflds)^o \longrightarrow (sets), \qquad T \mapsto Hom(T, M) = Hom(\mathcal{O}(M), \mathcal{O}(T)),$

$$M(\phi)(f) = f \circ \phi$$

The functor of points of GL(m|n)

The A points of GL(m|n) are:

$$\operatorname{GL}(m|n)(A) = \operatorname{Hom}_{(\operatorname{salg})}(C^{\infty}(x_{ij}) \otimes \wedge(\xi_{kl})[u^{-1}, v^{-1}], A)$$

$$u = det(x_{ij})_{1 \le i,j \le m}, \qquad v = det(x_{kl})_{m+1 \le k,l \le n}$$

We can write the A points of GL(m|n) as matrices:

$$\operatorname{GL}(m|n)(A) = \left\{ \begin{pmatrix} (t_{ij}) & (\theta_{il}) \\ (\theta_{kj}) & (t_{kl}) \end{pmatrix} \right\}$$

 (t_{ij}) , (t_{kl}) invertible matrices with entries in A_0 , (θ_{il}) , (θ_{kj}) matrices with entries in A_1 . In fact, we can write a morphism as (both supermanifolds, superschemes):

The functor of points is very useful for the action language! We naturally recover the action of GL(m|n) on $k^{m|n}$:

$$\begin{array}{ccc} \operatorname{GL}(m|n)(A) \times k^{m|n}(A) & \longrightarrow & k^{m|n}(A) \\ \begin{pmatrix} (t_{ij}) & (\theta_{il}) \\ (\theta_{kj}) & (t_{kl}) \end{pmatrix}, \begin{pmatrix} \mathfrak{a}_1 \\ \vdots \\ \alpha_n \end{pmatrix} & \mapsto & \begin{pmatrix} (t_{ij}) & (\theta_{il}) \\ (\theta_{kj}) & (t_{kl}) \end{pmatrix} \begin{pmatrix} \mathfrak{a}_1 \\ \vdots \\ \alpha_n \end{pmatrix} \end{array}$$

Super Harish-Chandra pairs (SHCP)

Supergroup *G* as a **Super Harish-Chandra pair**: $G \sim (G_0, \mathfrak{g})$,

- *G*₀: Lie group;
- \mathfrak{g} : Lie superalgebra, $\mathfrak{g}_0 = \operatorname{Lie}(G_0)$;
- G_0 acts on \mathfrak{g} , on \mathfrak{g}_0 as Ad $(Ad(g): X \mapsto gXg^{-1})$

Example

 $\operatorname{GL}(m|n) = (\operatorname{GL}(m) \times \operatorname{GL}(n), \mathfrak{gl}(m|n))$, where $\mathfrak{gl}(m|n)$ is the vector superspace of m + n matrices with entries in \mathbb{R} or \mathbb{C} and parity $(u_{ij}, v_{kl} \in k)$:

$$\begin{pmatrix} (u_{ij}) & 0 \\ 0 & (u_{kl}) \end{pmatrix} \quad \text{ even}, \quad \begin{pmatrix} 0 & (v_{il}) \\ (v_{kj}) & 0 \end{pmatrix} \quad \text{ odd}$$

The bracket:

$$[X, Y] = XY - (-1)^{p(X)p(Y)}YX$$

Antisymmetry and Jacobi identity come with signs.

Rita Fioresi

A **Representation** of G in $V = V_0 \oplus V_1$ is equivalently as follows:

- **3** Action of G on V via functor of points: $G(A) \times V(A) \rightarrow V(A)$
- **2** Natural transformation: $G(A) \rightarrow GL(V)(A)$
- SHCP representation,

 $\pi_0: G_0 \to \operatorname{GL}(V_0) \times \operatorname{GL}(V_1) \qquad \rho^{\pi}: \mathfrak{g} \to \operatorname{End}(V)$

with compatibility conditions

$$\pi_0(g)
ho^\pi(X)\pi_0(g)^{-1}=
ho^\pi(\operatorname{\mathsf{Ad}}(g)X),\qquad \left.
ho^\pi\right|_{\mathfrak{g}_0}\simeq \mathrm{d}\pi_0$$

Example of SHCP representations: Osp(1|2)

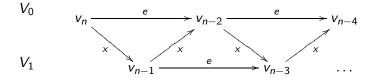
$$Osp(m|2n)(A) := \{ X \in GL(m|2n)(A) \mid X^{t}JX = J \}, \quad J = \begin{pmatrix} I_{m} & 0 & 0 \\ 0 & 0 & I_{n} \\ 0 & -I_{n} & 0 \end{pmatrix}$$

In SHCP notation: $Osp(1|2) = (SL_2(k), osp(1|2))$ where:

$$\operatorname{osp}(1|2) = \left\{ \begin{pmatrix} 0 & \alpha & \beta \\ \beta & B \\ -\alpha & B \end{pmatrix} | B \in \operatorname{sl}_2 \right\} \subset \mathfrak{gl}(1|2), \text{ with basis}$$
$$\operatorname{sl}_2(k): \quad e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, h = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$
$$x = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, y = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \quad [x, x] = e, [y, y] = -f$$

Classification of highest weight Osp(1|2) representations

Theorem. Let $V = V_0 \oplus V_1$ be the highest weight representation of $Osp(1|2) = (SL_2(k), osp(1|2))$ with highest weight $\lambda \in \mathbb{C}$, v_{λ} highest weight vector. V is finite dimensional if and only if $\lambda = n \in \mathbb{Z}_{\geq 0}$. V₀: highest weight module for sl_2 with highest weight λ . V₁: highest weight module for sl_2 with highest weight $\lambda - 1$.



Note: $span\{e, f, h\} \cong sl_2$; y and f reverse the arrows of x and e.

Hermitian and Super Hermitian products

V: complex super vector space

Definition. (,) is a super hermitian product on V if:

$$(u,v)=(-1)^{|u||v|}\overline{(v,u)}, \quad orall u,v\in V$$
 $(u,v)=0 \quad ext{for} \quad |u|
eq |v|$

If X is an endomorphism of V, its adjoint X^* is

$$(Xu, v) = (-1)^{|u||X|}(u, X^*v),$$

Observation.hermitian product $\langle \, , \, \rangle \iff$ (,) super hermitian product:

$$\langle u,v
angle = egin{cases} i(u,v) & |u| = |v| = 1\ (u,v) & ext{otherwise} \end{cases}$$

(assuming V_0 and V_1 are orthogonal).

Unitary representations of Lie superalgebras

 \mathfrak{g} : real Lie superalgebra; $\gamma:\mathfrak{g}\longrightarrow \mathrm{End}(V)$ representation.

Definition. $\gamma : \mathfrak{g} \longrightarrow \operatorname{End}(V)$ is **unitary** if and only if

$$\gamma(X)^* = egin{cases} -\gamma(X), & |X|=0 \ +\gamma(X), & |X|=1 \end{cases}$$
 or $\gamma(X)^\dagger = egin{cases} -\gamma(X), & |X|=0 \ -i\gamma(X), & |X|=1 \end{cases}$

 $\gamma(X)^*$ adjoint for (,), $\gamma(X)^{\dagger}$ adjoint for \langle, \rangle .

Equivalently (Carmeli, Cassinelli, Toigo, Varadarajan): **Proposition.** γ is *unitary* if and only if V is equipped with an ordinary hermitian product \langle , \rangle in which V_0 and V_1 are orthogonal, and **(U1)** For all $X \in \mathfrak{g}_0$, $i\gamma(X)$ is symmetric on V. **(U2)** For all $Z \in \mathfrak{g}_1$, $\gamma(Z) := e^{-i\pi/4}\gamma(Z)$ is symmetric on V. **Definition**. Let $G = (G_0, \mathfrak{g})$ be a real supergroup. A supergroup morphism $\pi : G \longrightarrow \operatorname{Aut}(\mathcal{H})$ is a **unitary representation** for G in the Hilbert superspace \mathcal{H} if:

- **1** π_0 is an even unitary representation of G_0 in \mathcal{H} ;
- **③** \mathcal{H} is the completion of V.

V: complex super vector space (infinite dimensional) $\mathfrak{g}_{\mathbb{C}}$: complex contragredient Lie superalgebra ($\mathfrak{g}_{\mathbb{C}}$ is A(m, n), B(m, n), C(n), D(m, n), F(4), G(3)) $\mathfrak{g}_{\mathbb{C}} = \mathfrak{k}_{\mathbb{C}} \oplus \mathfrak{p}_{\mathbb{C}}$: Cartan decomposition (complexified) E.g. $\mathfrak{su}(p, q | r, s) = \mathfrak{su}(p) \oplus \mathfrak{su}(q) \oplus \mathfrak{su}(r) \oplus \mathfrak{su}(s) \oplus i\mathbb{R} \oplus i\mathbb{R} \oplus \mathfrak{p}$ $\pi : \mathfrak{g}_{\mathbb{C}} \longrightarrow \operatorname{End}(V)$ a representation.

Infinitesimal Harish-Chandra highest weight unitary representations

Definition. Harish-Chandra homomorphism β :

$$eta \colon Z(\mathfrak{g}_{\mathbb{C}}) \longrightarrow S(\mathfrak{h}_{\mathbb{C}})^W$$

$$u \mapsto \beta(u) \cong u \mod(\mathcal{P}), \quad \mathcal{P} = \sum_{\alpha > 0} \mathcal{U}(\mathfrak{g}_{\mathbb{C}})\mathfrak{g}_{\mathbb{C}_{\alpha}}$$

Theorem. (Kac). The Harish-Chandra homomorphism identifies the center $Z(\mathfrak{g}_{\mathbb{C}})$ of the universal enveloping superalgebra with the subalgebra $I(\mathfrak{h}_{\mathbb{C}})$ of $S(\mathfrak{h}_{\mathbb{C}})^W$:

$$I(\mathfrak{h}_{\mathbb{C}}) = \{ \phi \in \mathcal{S}(\mathfrak{h}_{\mathbb{C}})^{W} \, | \, \phi(\lambda + t\alpha) = \phi(\lambda), \, \forall \, \lambda \in \langle \alpha \rangle^{\perp}, \, \alpha \text{ isotropic}, \, \forall \, t \in \mathbb{C} \}$$

This is a new super phenomenon!

Theorem (Carmeli-F.-Varadarajan, 2021). Let $\lambda \in \mathfrak{h}^*_{\mathbb{C}}$ and let π_{λ} be the irreducible highest weight representation of highest weight λ . Then:

 π_{λ} is unitary if and only if $(-i)^{|a|}\beta(a^*a)(\lambda) > 0$ for all $a \in \mathcal{U}(\mathfrak{g}_{\mathbb{C}})$.

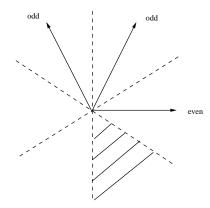
In particular it is necessary to be in the Harish-Chandra cone:

- $\lambda(H_{\alpha}) \geq 0$ for α even compact
- 2 $\lambda(H_{\alpha}) < 0$ for α non compact.

Furthermore the weight spaces are orthogonal.

Note: $*: \mathcal{U}(\mathfrak{g}_{\mathbb{C}}) \longrightarrow \mathcal{U}(\mathfrak{g}_{\mathbb{C}})$ antiautomorphism extending the adjoint.

The Harish-Chandra cone in $\mathfrak{sl}(2|1)$



Example: $\mathfrak{g}_{\mathbb{C}} = \operatorname{osp}_{\mathbb{C}}(1|2)$ and its real form $\operatorname{osp}_{\mathbb{R}}(1|2)$.

Theorem. Let V_t be the universal (Verma) $\operatorname{osp}_{\mathbb{C}}(1|2)$ module of highest weight $t \in \mathbb{C}$. (Note: $t = \lambda(H_{\alpha})$).

- $\textcircled{0} \quad V_t \text{ is a unitary module for } \operatorname{osp}_{\mathbb{R}}(1|2) \text{ if and only if } t \in \mathbb{R}, \ t < 0$
- **2** V_t unitary is irreducible.
- 3 All unitary representation of the real Lie supergroup $Osp_{\mathbb{R}}(1|2) = (SL_2(\mathbb{R}), osp(1|2))$ are given on the completion \mathcal{H} of V_t :
 - $V_t \subset C^\omega(\pi_0)$ analytic vectors
 - π_0 : unitary representation of $SL_2(\mathbb{R})$ in \mathcal{H} integrating $(V_t)_0$.

Remark. $t = \lambda(H_{\alpha}) < 0$, α the only (non compact) root. [osp(m|2n) does not admit compact forms]

Assume:

- G: real Lie supergroup (e.g. G = SU(r, s|p, q))
- T: maximal compact torus (e.g. T purely imaginary diagonal)
- A: maximal non compact torus (e.g. A real diagonal matrices)
- $\mathfrak{g} = \operatorname{Lie}(G)$: contragredient superalgebra

٩

$$\mathrm{rk}\,\mathfrak{k}=\mathrm{rk}\,\mathfrak{h},\qquad \mathfrak{h}=\mathfrak{t}\oplus\mathfrak{a},\qquad \mathfrak{a}=i\mathfrak{t}$$

where:

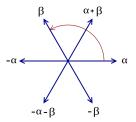
 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p},$ Super Cartan decomposition (e.g. $\mathfrak{k} = \mathfrak{su}(r) \oplus \mathfrak{su}(s) \oplus \mathfrak{su}(p) \oplus \mathfrak{su}(q) \oplus i\mathbb{R} \oplus i\mathbb{R}))$

Admissible Positive Systems

Fix a positive system Δ^+ admissible for $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$:

$$\Delta_{\mathfrak{k}} + \Delta_{\mathfrak{p}}^+ \subset \Delta_{\mathfrak{p}}^+, \qquad \Delta_{\mathfrak{p}}^+ + \Delta_{\mathfrak{p}}^+ \subset \Delta_{\mathfrak{p}}^+$$

Example: admissible systems for A_2 , $\Delta_{\mathfrak{k}} = \{\pm \alpha\}$, $\Delta_{\mathfrak{p}} = \{\pm \beta, \pm (\alpha + \beta)\}$



 $\begin{array}{l} \{\alpha,\beta,\alpha+\beta\}: \text{ admissible} \\ \{\alpha+\beta,-\beta,\alpha\}: \text{ not admissible} \end{array}$

Key Point: P^+ subsupergroup of superalgebra $\mathfrak{p}^+_{\leftarrow}$

Rita Fio<u>resi</u>

Fix an admissible positive system for $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}^- \oplus \mathfrak{p}^+$. Let P^{\pm} the complex supergroup associated with the subalgebras \mathfrak{p}^{\pm} .

Theorem (Harish-Chandra decomposition). We have an isomorphism onto the image:

$$egin{array}{ccc} P^- imes K imes P^+ & \longrightarrow & G \ (p^-,k,p^+) & \mapsto & p^-kp^+ \end{array}$$

Corollary.

$$G_{\mathbb{R}}/K_{\mathbb{R}} \subset G_{\mathbb{R}}KP^+/KP^+$$

hence $G_{\mathbb{R}}/K_{\mathbb{R}}$ acquires naturally a $G_{\mathbb{R}}$ invariant complex structure. **Example:** The upper half plane $SL_2(\mathbb{R})/SO(2)$ Define the super Lagrangian ${\cal L}$ as:

 $\mathcal{L} = \operatorname{Osp}(m|2n)/P,$

where:

$$P(A) = \left\{ \begin{pmatrix} a & 0 & \alpha_2 \\ \beta_1 & b_{11} & b_{12} \\ 0 & 0 & b_{22} \end{pmatrix} \right\} \subset \operatorname{Osp}(m|2n)(A).$$
$$\operatorname{Osp}(m|2n)(A) := \{ X \in \operatorname{GL}(m|2n)(A) \mid X^t J X = J \}$$
$$J = \begin{pmatrix} I_m & 0 & 0 \\ 0 & 0 & I_n \\ 0 & -I_n & 0 \end{pmatrix}$$

The Siegel superspace

Define the **Siegel superspace**:

$$\mathcal{S}(A) = \{(z,\zeta) \mid \zeta^t \zeta + z^t - z = 0, \ z = x + iy, \ |y| > 0\} \subset \mathbb{C}^{n^2|mn}(A),$$

It is an analytic supermanifold of dimension $n^2 - n(n-1)/2|mn$.

Theorem

- $\operatorname{Osp}_{\mathbb{R}}(m|2n)$ acts transitively on the super Siegel space.
- **②** The stabilizer of the topological point $(iI, 0) \in S$ is the subgroup:

$$\mathcal{K}_{\mathbb{R}} = Stab(il, 0) = \left\{ \left(egin{array}{cc} a & 0 & 0 \\ 0 & b_{11} & b_{12} \\ 0 & -b_{12} & b_{22} \end{array}
ight) \in \mathrm{Osp}_{\mathbb{R}}(m|2n)
ight\}$$

We have:

$$\mathcal{S} \cong \operatorname{Osp}_{\mathbb{R}}(m|2n)/K_{\mathbb{R}}$$

hence $\operatorname{Osp}_{\mathbb{R}}(m|2n)/K_{\mathbb{R}}$ acquires naturally a complex structure.

Define super sections of a super line bundle on G/B:

$$L_{\chi}(U)=\{f\in \mathcal{H}(U)|f(ga)=\chi^{-1}(a)f(g)\},\qquad \chi=e^{\lambda},\lambda\in\mathfrak{it}^*\subset\mathfrak{h}^*$$

Theorem (Main Result 1, Carmeli-F.-Varadarajan, 2019). Assume $L_{\chi}(G_{\mathbb{R}}B^+/B^+) \neq 0$ modulo *J* the odd ideal. Then:

- $L_{\chi}(G_{\mathbb{R}}B^+/B^+)$ contains ψ analytic continuation of the const. poly. 1;

●
$$\lambda(H_{\alpha}) \in \mathbb{Z}_{\geq 0}$$
 for all compact positive roots α .

Hence:

•
$${f V}=\langle\ell({\cal U}({\mathfrak g}))\psi
angle$$
 HC highest weight module for ${\mathfrak g}$

• $\mathcal{H} = \overline{\ell(\mathcal{U}(\mathfrak{g}))\psi}$ HC module for $G_{\mathbb{R}}$.

Note. $(\lambda + \rho)(H_{\alpha}) < 0$, α non compact $\implies V$ irreducible.

Iwasawa decomposition: $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \oplus \mathfrak{a} \oplus \mathfrak{n}_{\mathbb{C}}^{-}$ Hence $GAN_{\mathbb{C}}$ is *open* in $G_{\mathbb{C}}$.

Examples

•
$$G = \mathrm{SU}(1|1), \ G_{\mathbb{C}} = \mathrm{SL}(1|1):$$

$$N_{\mathbb{C}}(A) = \left\{ \begin{pmatrix} 1 & 0 \\ \nu & 1 \end{pmatrix} \right\} \subset G_{\mathbb{C}} = \left\{ \begin{pmatrix} a & \alpha \\ \beta & b \end{pmatrix} \right\}$$

Hence:

$$X = \mathcal{G}_{\mathbb{C}}/\mathcal{N}_{\mathbb{C}} \cong \mathcal{S}^{1|2} \longrightarrow \mathcal{G}_{\mathbb{C}}/\mathcal{B}_{\mathbb{C}} \cong \mathbb{P}^{0|1}$$

 $\textcircled{O} \ \ \mathcal{G} = \mathrm{Osp}(1|2)_{\mathbb{R}}, \ \mathcal{G}_{\mathbb{C}} = \mathrm{Osp}(1|2)_{\mathbb{C}}$

$$X = \mathcal{G}_{\mathbb{C}}/\mathcal{N}_{\mathbb{C}} = (\mathbb{C}^{1|1})^{ imes} \longrightarrow \mathcal{G}_{\mathbb{C}}/\mathcal{B}_{\mathbb{C}} = \mathbb{P}^{1|1}$$

Super Geometric Quantization

Question. Determine "all" *irreducible unitary representations* of a real supergroup *G* at once in the superspace of holomorphic sections of a super line bundle on the supermanifold $X = GA \subset G_{\mathbb{C}}/N_{\mathbb{C}}$ (open).

Facts in ordinary geometry (Guillemin-Chuah 2000):

- There is a unique (up to scalar) $G_0 \times T$ invariant Kahler form ω_0 on $X_0 = G_0 A$ ($T = T_0$, $A = A_0$, H = TA).
- $\omega_0 = i \partial \overline{\partial} F_0$ globally
- There is an hermitian line bundle \mathcal{L}_0 on X_0 ; ω_0 is its Chern class (trivial as C^{∞} line bundle, ω_0 exact)
- There exist a unique $G_0 \times T$ invariant non vanishing holomorphic section s_0 of \mathcal{L}_0
- The hermitian product on the fiber \mathcal{L}_z is determined by:

$$\langle s_0, s_0 \rangle_z = e^{-F_0(z)}, \qquad z \in X_0$$

Quantization and Unitary representations of G_0

Key fact. *s*⁰ realizes the identification:

$$\mathcal{H}(\mathcal{L}_0)\cong\mathcal{H}(X_0)$$

The hermitian structure on \mathcal{L}_0 gives an hermitian product on $\mathcal{H}^2(\mathcal{L}_0)$:

$$\langle f,g\rangle = \int_{X_0} \langle fs_0,gs_0\rangle_z = \int_{X_0} f(z)\overline{g(z)}e^{-F_0(z)}dz$$

 $\mathcal{H}^2(\mathcal{L}_0)$: section for which the integral exists and it is finite.

$$\mathcal{H}(\mathcal{L}_0)_\lambda = \{f \in \mathcal{H}(\mathcal{L}_0) | f(\mathsf{ga}) = \chi^{-1}(\mathsf{a}) f(\mathsf{g})\} \subset \mathcal{H}(\mathcal{L}_0)$$

Theorem. (Guillemin, Chuah 2000). Let $\mathcal{H}(\mathcal{L}_0)_{\lambda}$ be the (infinite dimensional) representation of G with character $\chi = e^{\lambda}$, $\lambda \in i\mathfrak{t}^*$. Then $\mathcal{H}(\mathcal{L}_0)_{\lambda} \subset \mathcal{H}^2(\mathcal{L}_0)$ if and only if λ is in the image of the moment map $\Phi_0 : X_0 \longrightarrow \mathfrak{g}_0$ for the hamiltonian action of G_0 on $X_0 = G_0 A$.

Ingredients:

- The super 1|0 hermitian bundle: $\mathcal{L} = \mathcal{L}_0 \otimes \wedge (\xi)$
- There exist a unique $G \times T$ invariant ω super Kahler form.
- $\omega = i\partial\overline{\partial}F$ globally, with F super kahler potential
- G left acts on X = GA open in $G_{\mathbb{C}}/N_{\mathbb{C}}$
- T right acts on X with a Hamiltonian action.
- The super moment map $\Phi: X \longrightarrow \mathfrak{t}^*$ is well defined
- We can define the super representations:

$$\mathcal{H}(\mathcal{L})_\lambda = \{f \in \mathcal{H}(\mathcal{L}) | f(ga) = \chi^{-1}(a) f(g) \}, \quad \chi = e^\lambda, \lambda \in \mathfrak{h}^* \quad ext{integral}$$

Let $\lambda \in \mathfrak{h}^*$ be typical, integral and in the Harish-Chandra cone:

$$C = \{\lambda \in \mathfrak{h} | (\alpha, \lambda) \ge 0 \text{ for all } \alpha \in \Delta_c^+, \, (\beta, \lambda) < 0 \text{ for all } \beta \in \Delta_n^+ \}$$

 $\Phi: X \longrightarrow \mathfrak{g}^*$ the (super) moment map.

Theorem (Main Result 2, Chuah-F. 2022). The irreducible **unitary** highest weight *G*-representation with HC super character $\chi_{\lambda+\rho}$ occurs in $\mathcal{H}(\mathcal{L})$ if and only if $\lambda \in \text{Im}(\Phi)$, and it is given by

$$\mathcal{H}(\mathcal{L})_\lambda = \{f \in \mathcal{H}(\mathcal{L}) | f(\mathsf{ga}) = \chi^{-1}(\mathsf{a}) f(\mathsf{g}) \}$$