(Almost) everything you ever wanted to know about fourdimensional supersymmetry* (*but were afraid to ask)

Geometric structures and supersymmetry Universitetet i Tromsø August 2022

José Figueroa-O'Farrill (University of Edinburgh)

Veronica Stanciu in memoriam

(1925-2022)

Based on several collaborations

- Paul de Medeiros and Andrea Santi
- "Kinematical superspaces" (arXiv:1908.11278) with Ross Grassie
- **Andrew Beckett**
- "Kaluza–Klein reductions of maximally supersymmetric five-dimensional Internetian spacetimes" (arXiv:2207.07430) with Guido Franchetti

"Killing superalgebras for lorentzian four-manifolds" (arXiv:1605.00881) with

• "Killing superalgebras for lorentzian five-manifolds" (arXiv:2105.05775) with

Which 4-dimensional geometries can support N=1supersymmetry? (What are "physically interesting" (4|4)-dimensional supermanifolds?)

Two approaches

Lorentzian supersymmetry

Non-lorentzian supersymmetry

The "body" of the supermanifold is a four-dimensional lorentzian manifold

The "body" of the supermanifold is a four-dimensional kinematical spacetime

Lorentzian d=4 supersymmetry

Poincaré supersymmetry

- (V,η) lorentzian 4-dimensional vector space $\mathfrak{so}(V)$ Lie algebra of skew-symmetric endomorphisms
- **Poincaré Lie algebra** $\mathfrak{p} = V \oplus \mathfrak{so}(V)$ [A, B] = AB - BA[A, v] = A(v)[v,w] = 0
 - $\mathfrak{p} \cong$ Lie algebra of isometries of Minkowski spacetime

Golfand+Likhtman '71 Haag+Lopuszanski+Sohnius '74

 $v, w \in V \quad A, B \in \mathfrak{so}(V)$

(also symmetries of asymptotic geometries of Minkowski spacetime)

Dirac current $\kappa: S \times S \to V$

N=1 Poincaré superalgebra $\mathfrak{s}_{\overline{0}} = \mathfrak{p} \quad \mathfrak{s}_{\overline{1}} = S$ $[A, s] = \sigma(A)s$ $[s, s] = \kappa(s)$ [v, s] = 0

Clifford algebra

symplectic Clifford module

$$|_2\rangle = -\langle s_1, v \cdot s_2 \rangle = \langle v \cdot s_2, s_1 \rangle$$

$$\eta(\kappa(s_1, s_2), v) = \langle s_1, v \cdot s_2 \rangle$$

$$\mathfrak{s} = V \oplus S \oplus \mathfrak{so}(V)$$

$$\mathfrak{s} = \mathfrak{s}_{-2} \oplus \mathfrak{s}_{-1} \oplus \mathfrak{s}_0$$

$$\mathbb{Z}$$
-graded

 $A \in \mathfrak{so}(V), s \in S, v \in V$ $\sigma : \mathfrak{so}(V) \to \operatorname{End}(S)$ spin representation

AdS supersymmetry

- $\mathfrak{so}(3,2) \cong$ Lie algebra of isometries of AdS Killing form κ
- $\mathfrak{so}(3,2) \cong \mathfrak{sp}(4,\mathbb{R})$
- $(S \cong \mathbb{R}^4, \langle -, \rangle)$
- $\lambda: S \times S \to \mathfrak{sp}(4, \mathbb{R}) \qquad \kappa(\lambda(s_1, s_2), X)$

 $\mathfrak{s}_{\bar{0}} = \mathfrak{sp}(4,\mathbb{R})$ $\mathfrak{s}_{\overline{1}} = S$

 $\mathfrak{s} = \mathfrak{s}_{\bar{0}} \oplus \mathfrak{s}_{\bar{1}} \cong \mathfrak{osp}(1|4)$

$$X) = \langle s_1, X \cdot s_2 \rangle = - \langle X \cdot s_1, s_2 \rangle = \langle s_2, X \cdot s_1 \rangle$$

(symplectic) spinor representation

"sporadic isogeny" (spin representation)

Zumino '77

Parallel spinors

Both Poincaré and AdS supersymmetry are examples of the following construction:

- (M, g)lorentzian spin 4-dimensional manifold
- \$ spinor bundle (real, rank 4)
- $D = \nabla \beta$ $\beta \in \Omega^1(M, \operatorname{End}\$)$ connection on \$
 - Poincaré $\beta = 0$
- "Killing superalgebra" $\mathfrak{s} = \mathfrak{s}_{\bar{0}} \oplus \mathfrak{s}_{\bar{1}}$

Clifford action

AdS $\beta_X s = \mu X \cdot s$

 $\mathfrak{s}_{\bar{0}} = \text{Killing vector fields}$

 $\mathfrak{s}_{\overline{1}} = \{ s \in \Gamma(\$) \mid Ds = 0 \}$

"Killing spinors"

Killing (super)algebras

- (M^n, g) n-dimensional (pseudo)riemannian spin manifold
- \$ spinor bundle (actually, bundle of Clifford modules)
- $D = \nabla + \cdots$ connection on \$
- $\mathfrak{s}_{\overline{1}} = \{ s \in \Gamma(\$) \mid Ds = 0 \}$ Killing spinors

Question: is *s* a Lie (super)algebra? $\mathfrak{s} = \mathfrak{s}_{\bar{0}} \oplus \mathfrak{s}_{\bar{1}}$

 $\mathfrak{s}_{\bar{0}} = \{ X \in \mathscr{X}(M) \mid \mathscr{L}_X D = 0 \}$

assumes X is a (conformal) Killing vector field

Three possibilities

- s is not a Lie (super) algebra 1)
- \mathfrak{s} is a 2-graded Lie algebra e.g., $M = S^7$ 2)

s is a Lie superalgebra 3)

 $\mathfrak{s} \cong \mathfrak{so}(9)$ $M = S^8$ $\mathfrak{s} \cong \mathfrak{f}_4$ $M = S^{15}$ $\mathfrak{s}\cong\mathfrak{e}_8$ Adams '96 JMF '07

e.g., Poincaré and AdS

Filtered deformations

Fact: Killing superalgebras are **filtered**

Fact: the associated graded superalgebra is a graded subalgebra of the pseudo-euclidean Lie superalgebra associated with $(V, \eta) = (T_p M, g_p)$

Fact: filtered deformations are classified by **generalised Spencer cohomology**

$$D = \nabla - \beta - compc$$

Geometries with D flat are maximally supersymmetric and Killing superalgebra acts locally transitively!

JMF+Santi '16 Beckett '22

Cheng+Kac '98

onent of a Spencer cocycle

JMF+Hustler '13

Killing superalgebras for lorentzian 4-manifolds

- Poincaré superalgebra (Minkowski)
- osp(1|4) (anti de Sitter)
- filtered deformations of $V \oplus S \oplus \mathfrak{h} \subset V \oplus S \oplus \mathfrak{so}(V)$
 - $\mathfrak{h} \cong \mathfrak{so}(3) \ (-\mathbb{R} \times S^3)$
 - $\mathfrak{h} \cong \mathfrak{so}(2,1)$ ($\mathbb{R} \times \mathrm{AdS}_3$)
 - $\mathfrak{h} \cong \mathfrak{n}\mathfrak{w}$ (CW)

Nappi+Witten algebra

Nappi+Witten '93

Cahen+Wallach '70

Festuccia+Seiberg '11 de Medeiros+JMF+Santi '16

Cahen+Wallach lorentzian symmetric space

Other dimensions

- d=11
- d=6
- d=5
- See Guido Franchetti's talk for new cohomogeneity-one lorentzian 4maximally supersymmetric geometries
- Other calculations in d=10, d=3,5,6 (extended)

JMF+Santi '15

de Medeiros+JMF+Santi '18

Beckett+JMF '21

manifolds admitting Killing superalgebras obtained as quotients of d=5

de Medeiros+JMF (wip) Beckett (wip)

Superspaces

Both Poincaré and AdS supersymmetry are geometrically realised on (4|4)-dimensional (homogeneous) supermanifolds:

Minkowski superspace

AdS superspace

 $(\mathfrak{s},\mathfrak{h})$ super Klein pair $(V \oplus S \oplus \mathfrak{so}(V), \mathfrak{so}(V))$

 $(\mathfrak{osp}(1|4),\mathfrak{so}(3,1))$

 $\mathfrak{so}(3,1) \subset \mathfrak{so}(3,2)$ stabiliser of time-like vector in $\mathbb{R}^{3,2}$

Similarly, all other d=4 maximally supersymmetric Killing superalgebras are of homogeneous lorentzian four-dimensional manifolds:

realised geometrically on homogeneous supermanifolds which are superisations

Santi '10

Non-lorentzian d=4 supersymmetry

Not all spacetimes are lorentzian!

Kinematical spacetimes

Minkowski and AdS are examples of (spatially isotropic) homogeneous kinematical spacetimes.

These are homogeneous spaces of (spatially isotropic) kinematical Lie groups.

Kinematical Lie algebra &

$$\mathfrak{k} \supset \mathfrak{h} \cong \mathfrak{so}(d-1)$$

 $\mathfrak{k} \cong \mathrm{ad} \oplus 2V \oplus \mathbb{R}$

as \mathfrak{h} -modules

"rotations, boosts and translations"

d=4 spatially isotropic homogeneous kinematical spacetimes

JMF+Prohazka '18

d=4 N=1 kinematical superalgebras

- $\mathfrak{s}_{\overline{0}} = \mathfrak{k}$ d=4 kinematical Lie algebra
 - rotational subalgebra $\mathfrak{h} \cong \mathfrak{so}(3) \cong \mathfrak{sp}(1)$
- $\mathfrak{s}_{\overline{1}} = S$ 4-dimensional \mathfrak{k} -module and spinor \mathfrak{h} -module
 - 1-dimensional right quaternionic vector space $S \cong \mathbb{H}$
 - h acting by left quaternion multiplication

There is a nice quaternionic calculus which allows for painless classification.

JMF+Grassie '19

JMF+Grassie '19

Kinematical superspaces (Impressionistically)

JMF+Grassie '19

Conclusion

- These are supersymmetric Klein geometries and their associated gaugings/Cartan geometries might result in novel supergravity theories.
- The supersymmetry algebras are of two types:
 - filtered deformations of graded subalgebras of (possibly extended) Poincaré superalgebras (in the lorentzian case)
 - supersymmetric extensions of kinematical Lie algebras.
- Their representation theory is largely unexplored.

• There are a plethora of lorentzian and non-lorentzian (4)-dimensional supermanifolds, each one laying claim to being an arena for d=4 N=1 supersymmetric field theories.