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INTRODUCTION

A convex cone is an open convex R+ invariant domain

V ⊂W = Rn without straight lines.

It is called homogeneous , if the linear group

Aut(V) = {A ∈ GL(W),AV = V}

acts transitively in V.
Then there exists a solvable subgroup G ⊂ Aut(V) (the Vinber

group) which acts simply transitively in V.
The adjoint (dual) cone is the convex cone

V∗ = {ξ ∈W∗, ξ(X) > 0∀X ∈ V}

If V is homogeneous, then V∗ is homogeneous.

A homogeneous convex (HC) cone V is self-adjoint if there is a

metric g : V→ V∗ s.t. g ◦ V = V∗.
2 / 35



Characteristic function and canonical metric of a HC cone

The function

χ(x) =

∫
V

∗ e
<ξ,x>dξ, dξ := dξ1 ∧ · · · ∧ dξn

(Vinberg-Koszul characteristic function) is the density of the �nite

invariant measure µ = χ(x)dx in V where dx = dx1 ∧ · · · ∧ dxn.
Points x ∈ V correspond to probability measures in V∗ ("the
exponantial family")

px(ξ) :=
e−<ξ,x>

χ(x)
.

The Hessian metric gV = −Hess(lnχ(x)) is Aut(V)-invariant
complete Riemannian metric (the Koszul -Vinberg metric).

The manifold (V, gV) is a symmetric manifold i� V is selfdual.
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Remark on applications of HC cones

Theory of homogeneous convex cones has many applications to

di�erent parts of physics (quantum physics, supergravity, quantum

�eld theory and renormalization), di�erential geometry (special

K�ahler and quaternionic K�ahler geometry, Frobenious manifolds),

harmonic analysis, information geometry, multivariate statistics,

Souriau thermodynamics on Lie groups, convex optimization,

combinatorics, numerical integration of di�erential equations etc.
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Examples of homogeneous convex (HC) cones

i). V = R+ ⊂ R.
ii). A direct product V1 × V2 ⊂W1 ×W2, Vi ⊂Wi, i = 1, 2.
In particular, the polyhedral cone (R+)n ⊂ Rn.

(see Noemie Combe,Yuri I. Manin, Matilde Marcolli,Moufang

Patterns and Geometry of Information, 2021, for relations of the

polyhedral cone (R+)n with Moufang loops, F-manifolds, 3-webs,

Latin squares, perfect tensors, quantum information theory,

quantum error connection codes etc.)

iii). Herm+
n (K) ⊂ Hermn(K), K = R,C,H and for n = 3 O.

iv).The Lorentz cone

R1,n+1
t = Herm2(Rn) =

{X =

(
λ v
v∗ µ

)
,− detX =< v∗, v > −λµ > 0, λ, µ > 0}

(see Jh. Baez, Jh. Huerta Division Algebras and Supersymmetry,(

for quantum mechanical interpretation of Herm+
2 (K) ). It was

extended to special rank 3 Vinberg cones (A-Cortes, 2021).
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K�ocher-Vinberg theorem

There are 1-1 between sefsimilar HC cones V = IntJ2 and the

Euclidean Jordan algebras J. In particular, indecomposable HC

cones are cones iii), iv).

(Due to Jordan-von Neumann-Wigner classi�cation of EJA (1933)).

The cone Hermn(K) = G/K := GLn(K)/K is a symmetric space

where the group G acts by

G 3 A : X 7→ A(X) := AXA∗, X ∈ Hermn(K)

and the simply transitive Vinberg group G = Tn(K) is the group of

upper triangular matrices with positive diagonal elements.
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Vinberg construction of HC cones as the orbit
Herm+

n = G (Id ) = {X = A · A∗} ⊂ Hermn of the upper
trangular group G of matrices in Hermn

1. The algebra T of rank n upper triangular matrices is an

associative algebra of upper triangular matrices of the form

B =


b11 b12 b13 · · · b1n
0 b22 b23 · · · b2n
0 0 b33 · · · b3n
· · · · · · · · · · · ·
0 0 0 · · · bnn


where bii ∈ R and o�-diagonal elements bij ∈ Vij belong to

Euclidean vector spaces Vij and the matrix multiplication is de�ned

by a system of isometric maps

Vij ×Vjk → Vik, (bij, bjk) 7→ bij · bjk
|bij · bjk| = |bij| · |bjk| i < j < k, .
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Space Hermn of Hermitian matrices

2. A triangular matrtix B = ||bij || ∈ T is extended to the Hermitian

matrix

X = X (B) = ||xij || =


b11 b12 b13 · · · b1n
b∗12 b22 b23 · · · b2n
b∗13 b∗23 b33 · · · b3n
· · · · · · · · · · · ·
b∗1n b∗2n b∗3n · · · bnn


where b∗ji = g ◦ bij ∈ V ∗ij .
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Vinberg upper triangular group G and its action in Hermn

3. The (connected) Vinberg group

G = {A = ||aij ||, aii > 0} ⊂ T

of invertible upper triangular matrices has a naturtal linear

reprersentation ρ : G → GL(Hermn) in the space Hermn = {X} of
Hermitian matices.

The action is generated by the representgation

ρ : A→ ρ(A), ρ(A)X := AX+XA∗ = AX+(AX )∗, A ∈ g,X ∈ Hermn.

of the Lie algebra g := T.
The new products Vij × Vjk → Vik∀i , j , k are de�ned by the

relations

(Xij · Xjk)∗ := X ∗jk · X ∗ij ,

< X ∗ij ·Xik ,Xjk >=< Xik ,Xij ·Xjk >, < Xik ·X ∗jk ,Xij >=< Xik ,Xij ·Xjk >)
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Vinberg's theorem

Theorem

(Vinberg) The orbit

Herm+
n := G (Id ) = {X = AA∗, A ∈ G}

of the identity matrix is the homogeneous convex cone (the cone of

positive matrices of Hermn).

Conversely, any homogeneous convex cone has the form Herm+
n for

some (associative) upper triangular matrix algebra T.
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Isometric maps and Cli�ord modules

The Vinberg theory partially reduces explicit description of HC

cones to description of isometric maps ϕ : U ⊗ V →W between

Euclidean vector spaces.We consider two cases.

i) dimU = dimV = dimW . Then identifying V = U = W , we get

a structure of the division algebra in V . The division algebras and

associated isometric maps had been classi�ed by A. Hurwitz 1898.

10 / 35



ii) dimU = dimW

Then the isometric map

µ : V × U →W , (v , u) 7→ µvu = ·u

between (pseudo)Euclidean vector spaces, s.t.

g(v · u, v · u) = g(v , v) · g(u, u)

de�nes in the space S = S0 + S1 := U + W the structure of Z2

-graded Cli�ord module over Cl(V ). Then the problem of

description of the isometric maps µ reduces to

a) classi�cation of Z2-graded Cli�ord CL(V )- modules ( obtained

by M. F. Atiyah, R. Bott and A. S. Shapiro (1964) ) and

b) classi�cation of admissible metrics in S (such that the Cli�ord

multiplication is skew-symmetric). It was done by D. A. and V.

Cortes( 1997).

These lead to description on the class of rank 3 homogeneous

convex cones and its generalization to inde�nite case. (A-Cortes,

TG, 2021).
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Special ( rank 3) triangular algebra T, the Vinberg group G
and the dual group G ∗

We associate to a metric Z2-graded Cli�ord Cl(V ) module

(S = S0 + S1, gS) a rank 3 associative upper triangular matrix

algebra T where V12 = V , V23 = S0,V13 = S1. It consists of the
matrix of the form

A =

b1 b12 b13
0 b2 b23
0 0 b3

 bi ∈ R, b12 ∈ V , b23 ∈ S0, b13 ∈ S1 (1)

The Vinberg group G and , respectively its dual G ∗ consists of the
matrices of the form

A =

α1 a12 a13
0 α2 a23
0 0 α3

 , A∗ =

α1 0 0
a∗12 α2 0
a∗13 a∗23 α3

 , α1, α2, α3 > 0.

(2)
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Special (rank 3) Vinberg cone V = Herm+
3 (S) and the dual

cone V′ = Herm−3 (S)

Theorem

(Vinberg, A-Cortes) The orbit V = G (Id ) = {AA∗, A ∈ G},
(resp.,V′ = G ∗(Id ) = {A∗ · A, A∗ ∈ G ∗} of the identity matrix are

homogeneous cones with the simply transitive action of the Vinberg

group G and, respectively, its dual G ∗. If gV and gS are Euclidean

metrics, then the cones V,V′ are convex.

The cone V is called the (inde�nite) special Vinberg cone and the

cone V′ the dual cone.
The metric < X ,Y >= tr XY in Herm3(S) transforms the dual

cone V′ = Herm−3 (S) into the adjoint cone V∗ = g ◦ V′.
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Two types of natural coordinates in Vinberg cone - matrix
and group coordinates

The coordinates of the matrix elements xi ,Xi , i = 1, 2, 3 of a

matrix X ∈ V are called matrix coordinates. Since G acts simply

transitively in V, the coordinates αi , i = 1, 2, 3, a12, a23, a13 of an

element A ∈ G de�ne coordinates in X = A · A∗, called the group

coordinates of the cone V. They are closed, but di�erent form de

Witt and Van Proeyen coordinates, used in modern physical

literature (when S.Cecotti left physics for politics).
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Fundamental invariants and description of the cone by
inequalities

Following Vinberg, consider the real-valued homogeneous

polynomials of degree 1,2, and 4, which value at X = A · A∗ ∈ V is

given by

p3(X ) = x3 = α2
3,

p2(X ) = x3x2 − |X23|2 = (α2α3)2,
p1(X ) = (x3x1 − |X13|2)(x3x22 − |X23|2)

− (X33X12 − X13X32)(x3X21 − X23X31)
= x3[x1x2x3 − x1|X1|2 − x2|X2|2 − x3|X3|2 + 2(X2 · X ∗1 ) · X ∗3 ]
= α2

1a
2
2α

4
3.

The cone V is de�ned by inequalities

p1(X ) > 0, p2(X ) > 0, p3(X ) > 0.

15 / 35



Vinberg determinant and the Vinberg-Koszul characteristic
function

The quotient

d(X ) := p1(X )
p3(X ) =

= x1x2x3 − x1|X1|2 − x2|X2|2 − x3|X3|2 + 2(X1 · X ∗2 ) · X3

= (α1α2α3)2 = (detA)2

is a G 0 = {A ∈ G , α1α2α3 = 1}-invariant cubic, which we call the

Vinberg determinant of the matrix X = AA∗ ∈ V.
The Vinberg-Koszul characteristic function χ is given by

χ−1(X ) = det ρ(A)2 = α2+n+N
1 α2+n+N

2 α2+2N
3

= d(X )1+
1
2
(n+N)p3(X )

1
2
(N−n).

where X = AA∗, n = dimV , N = dimS = 2 dim S0.
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The fundamental invariants of the dual cone V′ = Herm−3 (S)

The fundamental invariant of the dual cone V′ is obtained from the

fundamental invariants of the cone V by interchanging indexes

1⇔ 3. More precisely, the Vinberg determinants coincide

d ′(X ) = d(X ), X ∈ Herm3(S),

p′3(X ) = x1 = α2
1,

p′2(X ) = x1x2 − |X3|2 = (α1α2)2

p′1(X ) = x1d(X ) = α4
1α

2
2α

2
3.

(χ′)−1(X ) = d(X )1+1/2(n+N)p1(X )1/2(n+N).
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The dual cubic d∗ and the quadratic maps h, h∗

We denote by H∗ = Hom(H,R) the dual space to the space

H := Herm3(S) and by X [ =< X , · >∈H∗ the 1-form metrically

dual to X ∈H. The cubic d(X ) de�nes the dual cubic

d∗(X [) := d(X ), X ∈H. Considering d(X ), d∗(X [) as symmetric

tensors, we de�ne the associated quadratic maps

h : H→H∗, h∗ : H∗ →H

h(X ) := d(X ,X , ·), h∗(X ) := d∗(X [,X [, ·).

We set

H+ = {d > 0}, H− = {d < 0} ⊂H,

H∗+ = {d∗ > 0}, H∗− = {d∗ < 0} ⊂H∗.

Recall that G 0 is the unimodular subgroup (α1α2α3 = 1) of G .
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The formula for the inversion of the quadratic map
h : H+ → H∗+

Theorem

(A-Marrani-Spiro '21)

(i) The quadratic maps h : H→H∗, h∗ : H∗ →H are G 0-

equivariant and, say, the map h induces a di�eomorphism of

each G -orbit in H+ ∪H− onto a G -orbit in H∗+.

(ii) for any X ∈H
(h∗ ◦ h)(X ) = d(X )X

(iii) The inverse map h−1 of the di�eomorphism h : H+ →H∗+ is

given by

h−1(X [) =
1√

d∗(X [)
h∗(X [)
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Application to Supergravity. r-map and c-map

Special Vinberg cones V ⊂ Herm3(S) play an important role in

N=2 Supergravity (SUGRA). The determinant hypersurface

V1 ⊂ V describes the target space of the scalar multiplets in D = 5
SUGRA and it is called (homogeneous) very special real manifold.

More generally, a very special real manifold is de�ned as a part V1

of a cubic hypersurface d = 1 such that the −Hess(log d)|V1

de�nes a Riemannian metric in V1. Then V = R+V1 is a convex

cone.

20 / 35



The dimensional reduction to D = 4 and r-map

The dimensional reduction from D = 5 to D = 4 transforms the

scalar target space V1 of D = 5 theory into the scalar target space

S = r(V1) of D = 4 SUGRA (which is a special K�ahler manifold).

The assignment V1 → S = r(V1) is called the r-map (De Wit, Van

Proeyen).

21 / 35



In fact, the image r(V1) of the r-map is a special case of the Siegel

domain of the �rst kind (Piatetski-Shapiro), which associates to a

convex cone V ⊂ Rn the complex tubular domain

S := Rn + iV ⊂ Cn with the K�ahler metric de�ned by the K�ahler

potential

K(z) = − log 8d(y), z = x + iy ∈ S.

The manifold S = r(V1) is (locally) completely characterized by the

holomorphic function(prepotential ) given in terms of the Vinberg

determinant d(ya) in homogeneous coordinates by

F (z I ) = F (z0, za) =

∑
dabcz

azbzc

z0

It de�nes an embedding of S as a complex Lagrangian section

dF ⊂ T ∗Cn+1 of the bundle T ∗Cn+1.
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Dimensional reduction from D=4 to D=3 and c-map

Similarly the dimensional reduction from D=4 to D=3 SUGRA

transforms special K�ahler manifold S, into the special quaternionic

K�ahler manifold Q = c(S) which is the scalar target space of D=3

SUGRA.Thge map c : S→ Q = c(S) = q(V1) is called the c-map.

De Wit and Van Proeyen de�ned r-map and c-map in the

framework of SUGRA (1994)

see E.Lauria, A.Van Proeyen, N=2 SUGRA in dimension D= 4,5,6,

2020, but they have also purely di�erential geometric description.
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r-map and c-map in homogeneous case

All homogeneous very special manifolds V1 had been classi�ed by

B. de Wit and A. Van Proeyen 1992) and, by other method, by V.

Cortes (1996).They 1-1 correspond to Cli�ord Cl(q + 1, 1)
modules. The associated special K�ahler manifolds S = r(V1) are

homogeneous and correspond to Cl(q + 2, 2) modules and the

associated homogeneous special quaternionic K�ahler manifold

Q = c(S) = q(V1) are correspond to Cl(q + 3, 3)-modules (see

Lauria, Van Proeyen, 2020).
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The correspondence between quaternionic K�ahler manifolds with

transitive solvable isometry group and Cli�ord modules was

establishes by D.A. (1975), where it was conjectured that they

exhausted all homogeneous quaternionic K�ahler manifolds with

negative scalar curvature sc < 0 and, more generally, all Einstein

homogeneous manifolds with sc < 0 are solvmanifolds. Both

conjectures had been proven by Christoph B�ohm and Ramiro

Lafuente (2021). This implies that all homogeneous quaternionic

K�ahler manifolds with sc < 0 are special with two exceptions.
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Black holes in N = 2,D = 4 Supergravity. Static and
spherically symmetric black holes and their electro-magnetic
charges

The static spherically symmetric black hole is the 4-dimensional

Lorentzian manifold (M = R(t)× R3(r , ϑ, ϕ), g), where (r , ϑ, ϕ)
are spherical ooordinates, with the Lorentz metric

g = −e2U(r)dt2 + e−2U(r)
(
dr2 + r2

(
dθ2 + sin2 θdϕ2

))
such that g tends to the �at metric for r →∞ :

e−2U(r) ∼=r→0+
C 2

r2
, for some constant C ∈ R. (3)

Then there is an event horizon at r = 0 with the area AH = 4πC 2.

The geometry in the near-horizon limit r → 0+ is AdS2 × S2. The

value r = 0 determines the boundary of an SO3-invariant and time

independent region H = S2
0 ( the colortred event horizon) of the

space-like hypersurface Mto = R3, from which no light ray might

escape.
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The physical �elds - electromagnetic �elds and scalar �elds

The physical �elds are t-invariant and SO(3) -invariant scalar �elds

za, a = 1, · · · , n and electromagnetic �elds FI , I = 0, 1, · · · , n.
More precisely, za(r) = xa(r) + iya(r) are depending only on the

radial coordinate r components of a map z : M → ST into a

projective special K�ahler manifold

ST = Rn + iV == Rn + R+T

which is the image of a very special real manifold

T ⊂ {d(y) = d(y1, · · · , yn) = 1} ⊂ Rn

under the r -map.

Roughly speaking, a very special real manifold is a part T of a cubic

hypersurface d(y) = 1 s.t. V := R+T is a convex cone equipped

with the Koszul- Vinberg metric g = −Hess ln d(y).
The electromagnetic �elds FI are components of the curvature

F = dA of a principal connection A : TPRn+1 → Rn+1 of the

(trivial) principal T n+1 -bundle P = T n+1 ×M → M over the

space-time.
27 / 35



Magnetic and electric charges

For any to and ro >> 0, the (independent from to , ro) magnetic

charge pI and the electric charge qI of the electromagnetic �elds

are de�ned by

pI := 1
4π

∫
S={t=to ,r=ro}

FIdvol

= 1
4π

∫∫
ϑ∈[0,π],ϕ∈[0,2π]

FI
ϑϕdϑ ∧ dϕ, with FI

ϑϕ := FI
∣∣
S

(
∂
∂ϑ ,

∂
∂ϕ

)
,

qI := 1
4π

∫∫
ϑ∈[0,π],ϕ∈[0,2π]

GI |ϑϕdϑ ∧ dϕ, with GI |ϑϕ :=
(
?FI
∣∣
S

) (
∂
∂ϑ ,

∂
∂ϕ

)
.

The 2-form G is uniquely determined by the electromagnetic �eld F
by means of a generalised Hodge star operator de�ned by the scalar

�elds.

These charges determines the electromagnetic �elds FI .
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BPS black hole and the expression of its entropy in term of
the module of the central charge

Beside electric and magnetic charges, the black hole carries also

cental charge Z (r) introduced by E. Witten. It is depending only of

r complex-valued function Z : M → C. The absolute value |Z (r)| is
bounded from above by the mass m of the black hole

m ≥ |Z (r)|.

If m = |Z (0)| the black hole is called BPS (Bogomol'ny, Prasad

and Sommer�eld black hole.

For BPS black hole, the Bekenstein-Hawking entropy-area formula

S = AH
4 , where AH is the area the event horizon r = 0, take form

S = π|Z (0)|2 = π(t2o )

, where Z (0) = toe
iϑo .
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The lift of scalar �elds to the Lagrangian section de�ned by
the prepotential F

The scalar �leds z = z(r) : M → S with value in the projective

scalar manifold S = Rn + iV ⊂ Cn, is lifted to a map

X = X (r) : M →M ⊂ Cn+1 , X (r) = (1, z1(r), . . . , zn(r))

into the associated conical special K�ahler manifold M, which

locally is the section dF (X ) ⊂ T ∗Cn+1 = C2n2 of the holomorphic

function (prepotential)

F (X ) =
d(X 1,X 2, . . .X n)

X 0
=

dabcX
aX bX c

X 0
.

(The complex coordinates X 0,X 1, · · · ,X n are homogeneous

coordinates associated with a�ne complex coordinates

(z1, · · · , zn).) The function K(y) = K(z , z̄) = − log(8d(Im (z)) is

the potential of the K�ahler metric gS
T
.
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Inverse relations

We use subscript o to denote the value of the central charge Z (r),
the scalar �eld z(r) ∈ S and its lift X (r) ∈M at the point r = 0:

Zo := Z (0) ∈ C, zo = z(0) ∈ S, Xo = (1, z1(0), . . . , zn(0)) ∈M.

The following fundamental "inverse relations"express the magnetic

and electric charges pI , q
I in terms of the values Zo = toe

ϑo ,X0.

p0(t, θ, z , z) = ct cos θ,
p(t, θ, z , z) = −ctIm(e−iθz),
q0 = ctIm

(
e−iϑ (d(z))

)
,

q = −3ctIm
(
e−iϑh(z)

) (4)

where h : V → Rn∗ is the quadratic map de�ned by d(y).
The fundamental inverse relations were derived in the deep theory

of the attractor mechanism.
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BPS map and its inversion

The calculation of entropy is reduced to inverting the map

(BPS map)

f : C∗ × (Rn + iV) ⊂ Cn+1 −→ R2n+2 ,

f(Z , za,Z , za) = pK (Z , za,Z , za), qL(Z , za,Z , za)) , (5)

called the BPS map.

The formula for such inversion had been obtained by Shmakova.
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A version of Shmakova formula for inverse BPS map

The following formula expresses the entropy S = π|Z0|2 = πt2o of

an BPS black hole as a function of magnetic pI , p0 6= 0 and

electric qI charges. It is equivalent to the Shmakova formula, which

used the de Witt- Van Proleyen coordinates.

S =
√

2

√
sin q

p0

〈
h (p)− 1

3
p0q, h−1

(
h (p)− 1

3
p0q
)〉

33 / 35



Case when S is a homogeneous scalar manifolds S

associated to a special rank 3 Vinberg cone

Then the corresponding quadratic map h|V : V → V∗ ⊂ Rn∗ is
globally invertible with inverse given by

h−1(y) =
1√
d ′(y)

h′(y)

with d ′ = 1
k d
′
V the dual invariant cubic polynomial. Using the

formula for the inverse map h−1, we get S = π
√
I4,

I4 =
1

(p0)2
[4d ′

(
h(p)− 1

3
p0q

)
−
(

(q0p
0+〈q, p〉)p0−2d(p)

)2

]

(6)

A remarkable fact is that, this rational function is actually a quartic

polynomial

I4 = −(q0p
0+〈q, p〉)2+4q0d(p)− 4

27
p0d ′(q)+

4

3
〈h(p), h′(q)〉 (7)
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Theorem

This leads to the following �nal result:

In ungauged N = 2 D = 4 supergravity with homogeneous scalar

manifold S = Rn + iV associates to a special Vinberg cone V, the
entropy of the BPS black holes is expressed in terms of their

magnetic and electric charges (p0, p, q0, q) by

S = π
√

I4

= π

√
−(q0p0 + 〈q, p〉)2 + 4q0d(p)− 4

27
p0d ′(q) +

4

3
< h(p), h′(q) >

where d(p), d ′(q) are the Vinberg determinant and its dual and

h(p), h′(q) the associated quadratic maps.

35 / 35


