

Screening materials for removal of CH₄ from air and non-fossil diluted sources by cyclic adsorption process

Kian Karimi¹, Matteo Gazzani^{1,2}

¹Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands

² Eindhoven University of Technology, Eindhoven 5612 AP, Netherlands

Email: k.karimi@uu.nl

Overview

Motivation

• Methane is a strong short-living greenhouse gas, responsible for 0.5°C of the current global warming • 60% of methane emissions are from anthropogenic sources Methane removal could help to lower the peak temperature, and minimize the risk of natural feedback and tipping elements

Cyclic Adsorption process Design

• Vacuum Temperature Swing Adsorption (VTSA)

Aim

- Investigate the potential of adsorption process for CH₄ capture
- Find suitable sorbents for methane capture from non-fossil, diluted sources (<1% CH4) by screening large material database

Screening Methodology

Modelling method: Shortcut equilibrium model (0D)

- Fully mixed reactor, no spatial gradient
- Ternary mixture of N_2 , CH_4 and CO_2 , ulletwhere all components can adsorb
- Including multiple isotherm types in the model, i.e. Toth, Langmuir-Freundlich and s-shaped isotherm model

Energy and material balances:

Step 1: Sorbent data and isotherms

Database

- **NIST/ARPA-E** Database of Novel and Emerging Adsorbent Materials
- More than 8000 materials

Sorting and isotherm fitting

Step 2: 0D optimization

- Algorithm:
 - Thompson Sampling Efficient Multiobjective Optimization (TSEMO)
- Decision variables:
- Desorption and Adsorption Temperature, Vacuum Pressure
- Objectives: Min (-Purity, specific exergy)

Step 3: Rate-based model optimization (1D)

- Algorithm:
- Multi-Objective Multi-Coordinate Search (MO-MCS)
- Decision variables:
- Adsorption time, Adsorption T, Feed flowrate, Vacuum P, Preheat T, Preheat time, Heating T, Heating time Objectives:
- Min(-Prodcutivity, specific exergy)

Results

CH^₄ Capture Feed: **100 ppm** CH₄ -1800 ppm CO₂

CH^₄ Capture Feed: **500 ppm** CH₄ -1800 ppm CO₂

Conclusions

Acknowledgement

uu.nl/

The information has been compiled with the utmost care but no rights can be derived from its contents

This work was carried out as a part of the project "Removing non-CO2 greenhouse gas emissions to support ambitious climate transitions (REPAIR)" (Project number: 101069905) funded by the European Commission via the European Climate, Infrastructure and Environment Executive Agency (CINEA) within the Horizon Europe framework.