
Dragos Ilie (dragos.ilie@bth.se)

(Professional Master in Information Security)

Small bugs and big security problems

agenda

- Bugs: the danger of buffer overflows

- PROMIS general information
- Courses
- How to apply

Annual cost of software bugs: trends

• 2002, US: 60 billion USD (NIST)
• 2013, global: 312 billion USD (Cambridge University)
• 2017, global: 1.7 trillion USD (Tricentis)

World population: 7.4 billion, affected: 3.7 billion (50%)

• Swedish government expense budget 2020: ~110 billion USD
• Many root causes for bugs:

• Complexity
• Ubiquitous connectivity
• Extensibility
• …

Complexity: example

Win3.1

NT 3.5
NT 3.51

Win95 NT 4.0
Win98

Win 2000

WinXP

Server 2003 Vista

Win7

1.0 2.0 2.2.0 2.4
2.6.0 2.6.14

2.6.19 2.6.23
2.6.28

2.6.32
2.6.36 3.0 3.7 3.12

3.18 4.0

0

10

20

30

40

50

60

1992
1993

1994
1995

1996
1997

1998
1999

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
2011

2012
2013

2014
2015

Ap
pr

ox
im

at
e

M
LO

C

Year

Code complexity for major OSes

Windows

Linux kernel

Dormant bugs: a guessing game

• Very old statistic: approx. 0.5 errors per 1000 LOCs in released
code (Microsoft 1990)
• Assume 10-fold improvement over 25 years (not likely!):

0.05 bugs per 1000 LOCs
• Linux kernel 4.0 (2015): 750 dormant bugs
• Windows 7 (2015): 1950 dormant bugs

• Hard fact:
• 105 bug fixes in Linux stable kernel 5.6.13 (2020-05-14)

Input parsing bugs

• “There is a programming issue (input parsing) that is the single
cause of most exploits… (Fixing this) would do more to improve
security of our computers, cars, smartphones, and devices than
would any other change.”

- Rik Farrow, Editorial of USENIX ;login, Aug 2015, vol. 40, no. 4

Input parsing: absent check of buffer size

• Buffer overflows occur when one writes more data then a buffer can hold
• The overflow data spills over into the contents of neighbor variables and buffers
• C pseudo-code:

char B[2], A[8];
B = {0,3};
scanf(“%s”, A);

• User enters: “excessive” from the command-line when prompted.

From: Wikimedia Commons

Demo time!

Input parsing: lenient syntax control

iOS sandbox escape (fixed in iOS 13.5)
<key>application-identifier</key>

<string>...</string>

<!---><!-->

<key>platform-application</key>

<true/>

<key>com.apple.private.security.no-container</key>

<true/>

<key>task_for_pid-allow</key>

<true/>

<!-- -->

• “Implementing 4 different parsers is just asking for trouble, and the ‘fix’ is of
the crappiest sort, bolting on more crap to check they’re doing the right thing
in this single case. None of this is encouraging.”

Rob Hiller, tweet on May 3, 2020

https://siguza.github.io/psychicpaper/

Correct XML comment syntax
<!--this is a comment-->

iOS uses 4 different XML parsers
• OSUnserializeXML in the kernel
• IOCFUnserialize in IOKitUser
• CFPropertyListCreateWithData in CoreFoundation
• xpc_create_from_plist in libxpc (closed-source)

https://siguza.github.io/psychicpaper/
https://opensource.apple.com/source/IOKitUser/IOKitUser-1726.41.1/IOCFUnserialize.tab.c.auto.html
https://opensource.apple.com/source/CF/CF-1153.18/CFPropertyList.c.auto.html

Why is input parsing difficult?

“As a species we are pretty bad at writing code,
we are even worse at writing code that deals with data,
and we are astonshingly bad at writing code that deals with
arbitrary user provided data.”

– Matthew Garrett, “Beyond Anti Evil Maid”, 2015

Complexity: state diagram

Complexity: System model

• The programmer builds a mental representation of the state machine
• To understand the (mis)behavior of the program
• To identify error states and unwanted transitions
• To find best place to make modifications/add features
• To anticipate any side effects that changes may bring

• Most practical state machines too large to fit into our mind: è incomplete!
• Incomplete models or unexpected stimuli can cause the process to enter

undefined states
• The process can do things beyond the intention of the programmer

State transitions are controlled by data!
“The illusion that your program is manipulating its data is powerful.
But it is an illusion: The data is controlling your program.”

– Taylor Hornby, @DefuseSec 2014

Demo time!

DISCLAIMER

• OS and compiler defenses were turned off to keep demo simple
• Address Space Layout Randomization (ASLR)
• StackGuard
• Non-executable stack (NX)

• However, they can be circumvented with advanced techniques

Exploit capabilities

“Any sufficiently complex input format is indistinguishable from
bytecode; the code receiving it is indistinguishable from a virtual
machine.”

- Bratus, “The Bugs We Have to Kill”, ;login, Aug 2015

• Dangerous zero-day vulnerabilities are in high demand

Zero-day exploit pricing

Does this sound interesting?

PROMIS (Professional Master in Information Security)
GENERAL FORMAT Active industrials studying and working at the same time

- University grade COURSES for professionals!
- Extend current competence in an area (“security”)
- Case-based pedagogy (bring your own problems!)
- On-line collaborative didactics
- Distance capability overall incl. lab and tools

Courses under development with input from companies
- Keep relevant and right level (companies advise us)
- DO YOU want to be part of the companies advising on courses?

- CONTACT: anna.eriksson@bth.se

more to come

http://bth.se

Courses (3 thus far)

PROMIS (Professional Master
in Information Security)

more to come

Software Security (DV2595)
https://www.bth.se/eng/courses/D5816/20202/

Course responsible: dragos.ilie@bth.se

https://promisedu.se/ - the ability to understand how attackers exploit risky programming
practices

- the ability to detect risky programming practices
- the ability to understand and reason about efficiency and limitations

in existing software security mechanisms
- the ability to to compare and weight the benefits and costs

associated with binary analysis and instrumentation techniques

https://www.bth.se/eng/courses/D5816/20202/
https://promisedu.se/

Courses (3 thus far)

PROMIS (Professional Master
in Information Security)

more to come

Web System Security (DV2596)
https://www.bth.se/eng/courses/D5816/20202/

Course anders.carlsson@bth.se

https://promisedu.se/ - be able to explain web protocols based on known vulnerabilities and weaknesses
- be able to describe the Common Vulnerability Scoring System (CVSS)
- be able to explain web protocols based on known vulnerabilities and weaknesses
- be able to explain the security aspects when using languages and framework, eg. PHP,

JavaScript, and SQL
- be able to explain authentication mechanisms and counter techniques to bypass

authentication
- understand Cross-site scripting (XSS) attacks and SQL injections
- be able to explain impacts of one or more combined vulnerabilities that limit or extend

the damage given
- be able to install and configure the web server for high security independently
- be able to use and search open vulnerability databases (Common Vulnerability databases

CV -DB)
to prevent and find security problems

- be able to use best practice of known design patterns for secure web applications
- be able to utilize OWASP where applicable
- be able to conduct internal and external penetration testing of web applications and

related infrastructure

https://www.bth.se/eng/courses/D5816/20202/
https://promisedu.se/

Courses (3 thus far)

PROMIS (Professional Master
in Information Security)

more to come

Security in Software-intensive products and service
development (PA2582)
https://www.bth.se/eng/courses/D5818/20202/
Course responsible: tony.gorschek@bth.se

https://promisedu.se/
- the ability to understand the technology, operational aspects, and

engineering aspects of security - albeit the focus on the course is on
"engineering security”

- the ability to plan for "pre-emptive" security in the planning and
development of products and services

- the ability to do a risk assessment and take ROI into account
- the ability to develop and use secure architectures that allows for

a more stable base for products and services
- the ability to compare and weigh the benefits and costs of

non-functional aspects in combination to security
- the ability to estimate how security aspects impact, and are

impacted on quality-/non-functional aspects such as usability,
performance and maintainability of a product

https://www.bth.se/eng/courses/D5818/20202/
https://promisedu.se/

PROMIS

HOW TO

more to come

https://promisedu.se/

Spread information about courses @ your company

Entry Requirements
PROMIS courses requires at least 120 credits, of which at least 90 credits are in a technical area, and a
minimum of 2 years professional experience within an area related to software-intensive product and/or
service development (shown by, for example, a work certificate from an employer).

Even if you don’t have the formal academic merits, you might be qualified for the
course through validation (reell kompetens)!

Apply for course:

1. Create a user account at antagning.se / universityadmission.se
2. Search for PROMIS courses by the name Fill in and send in your application
3. Upload your required documents (employer’s certificate)
4. Reply to any offers of admission

Questions about the course: contact course responsible
Questions about applying and validation (reell kompetens): :
anna.eriksson@bth.se
Visit promisedu.se for more info about courses, application and template for
employer’s certificate

https://promisedu.se/
https://promisedu.se/

