Small bugs and big security problems

(Professional Master in Information Security)

PRO.M.IS

security built 1in

Dragos llie (dragos.ilie@bth.se)

agenda

- Bugs: the danger of buffer overflows

- PROMIS general information
- Courses
- How to apply

Annual cost of software bugs: trends

« 2002, US: 60 billion USD (NIST)
« 2013, global: 312 billion USD (Cambridge University)

« 2017, global: 1.7 trillion USD (Tricentis)
World population: 7.4 billion, affected: 3.7 billion (50%)

« Swedish government expense budget 2020: ~110 billion USD

« Many root causes for bugs:
« Complexity
 Ubiquitous connectivity
» Extensibility

Complexity: example

Approximate MLOC

60

50

40

30

Code complexity for major OSes

Server 2003 Vista

WinXP Win7

e=g==\\ind ows

=== inux kernel

e

Win 2000

Dormant bugs: a guessing game

 Very old statistic: approx. 0.5 errors per 1000 LOCs in released
code (Microsoft 1990)

« Assume 10-fold improvement over 25 years (not likely!):
0.05 bugs per 1000 LOCs
* Linux kernel 4.0 (2015): 750 dormant bugs
* Windows 7 (2015): 1950 dormant bugs

e Hard fact:
* 105 bug fixes in Linux stable kernel 5.6.13 (2020-05-14)

Input parsing bugs

* “There is a programming issue (input parsing) that is the single
cause of most exploits... (Fixing this) would do more to improve
security of our computers, cars, smartphones, and devices than
would any other change.”

- Rik Farrow, Editorial of USENIX ;login, Aug 2015, vol. 40, no. 4

Input parsing: albsent check of buffer size

B |
0, 0/0/]0j|0|0|0|0|0 |3

"excessive"— A
A B

e'l0

Iel IXI ICI lel ISI ISI Iil IVI

From: Wikimedia Commons

 Buffer overflows occur when one writes more data then a buffer can hold
« The overflow data spills over into the contents of neighbor variables and buffers

* C pseudo-code:
char B[2], A[8];
B = {0,3};
scanf(“%s”, A);

« User enters: “ " from the command-line when prompted.

Demo time!

Input parsing: lenient syntax control

I0OS sandbox escape (fixed in 1I0S 13.5)

https://siguza.github.io/psychicpaper/

<key>application-identifier</key>
<string>...</string>

<l >< o>

<key>platform-application</key>

<true/>
<key>com.apple.private.security.no-container</key>
<true/>

<key>task for pid-allow</key>

<true/>

<lee —=>

Correct XML comment syntax
this is a comment

iOS uses 4 different XML parsers
* OSUnserializeXML in the kernel
* |0OCFUnserialize in |10KitUser

* CFPropertyListCreateWithData in CoreFoundation
» xpc_create_from_plist in libxpc (closed-source)

* “Implementing 4 different parsers is just asking for trouble, and the ‘fix’ is of
the crappiest sort, bolting on more crap to check they’'re doing the right thing
In this single case. None of this Is encouraging.”

Rob Hiller, tweet on May 3, 2020

https://siguza.github.io/psychicpaper/
https://opensource.apple.com/source/IOKitUser/IOKitUser-1726.41.1/IOCFUnserialize.tab.c.auto.html
https://opensource.apple.com/source/CF/CF-1153.18/CFPropertyList.c.auto.html

Why is input parsing difficult”

“As a species we are pretty bad at writing code,

we are even worse at writing code that deals with data,
and we are astonshingly bad at writing code that deals with
arbitrary user provided data.”

— Matthew Garrett, “Beyond Anti Evil Maid”, 2015

Comple

v

CLOSED

Passive Open |

Set Up TCB

LISTEN

Receive SYN
Send SYN+ACK

Simultaneous Open

SYN-RECEIVED

Receive SYN

¢ Send ACK

Receive ACK

Active Open
Set Up TCB
Send SYN

4
SYN-SENT

Receive SYN+ACK
Ser:d ACK

vy

Open - R der S:
pen- Respondersequence | esTaBLISHED
Close - Initiator Seq
Close, Send FIN
FIN-WAIT-1 .
Simultaneous Close
I_Receive FIN
Receive ACK for FIN Send ACK
FIN-WAIT-2 CLOSING
Receive FIN
Send ACK Receive ACK for FIN
TIME-WAIT

| Receive FIN

Send ACK

—Timer Expiration—T

Open - Initiator Sequence

Close - Responder Sequence

CLOSE-WAIT

Wait for Application
Close, Send FIN

LAST-ACK

Receive ACK for FIN

Xity: state diagram

v

s = all e = all e = all i = ull i =

ic lea rax, sub_100000F60

I11E||loc_10000180E: loc_1000017FC: jmp loc_10000181E loc_1000017E1l: loc_1000017F3:
lea rax, sub_100001012 ||lea rax, sub_100000F12 lea rax, sub_100000D80 ||lea rax, sub_100000E3A
jmp short loc_10000181E(|jmp short loc_10000181E jmp short loc_10000181E||jmp short loc_10000181E

I—‘l—ll—l

MEE
loc_10000181E:
oV cs:qword 1000062D8, rax
cmp cs:byte_1000062B0, 0
jz short loc_100001837
1
v
s =
loc_100001837:
cmp cs:dword_1000063E4, 0
jnz short loc_100001852
i I
FEE
cmp cs:dword_ 100006414, 0
jnz short loc_10000185B
v ! v
FEE ll s 5 MEE] ull i =
lea rax, sub_100002700 ||lea rax, sub_10000354C
jmp short loc_100001862||jmp short loc_100001862((loc_10000185B: loc_100001852:
lea rax, sub_100003484||lea rax, sub_1000028C9
jmp short loc_100001862
VVVY J
FEE
loc_100001862:
oV cs:qword_1000062E0, rax
icmp cs:dword_1000063D0, 0
jz short loc_10000189B
T
v
i =
lea rcx, [rbptvar_ 3C] ; void *
mov dword ptr [rcx], 1
lea rdi, aVfsNspacePreve ; "vfs.nspace.prevent materialization"
mov r8d, 4 ; size_t
xor esi, esi ; void *
xor edx, edx ; size_t *
call _sysctlbyname
test eax, eax
jns short loc_10000189B
v I L vy
all s = | (W=
call sub_1000041D8]|
loc_10000189B:
sub rl4d, rl3d
jnz short loc_1000018AE
v ! v
MEE MEE
lea rsi, off_ 100006290
mov edi, 1 loc_1000018AE:

Complexity: System model

* The programmer builds a mental representation of the state machine
 To understand the (mis)behavior of the program
 To identify error states and unwanted transitions
 To find best place to make modifications/add features
 Jo anticipate any side effects that changes may bring

« Most practical state machines too large to fit into our mind: =» incomplete!

* Incomplete models or unexpected stimuli can cause the process to enter

« The process can do things beyond the intention of the programmer

State transitions are controlled by datal

“The illusion that your program is manipulating its data is powerful.
But it is an illusion: The data is controlling your program.”

— Taylor Hornby, @DefuseSec 2014

Demo time!

DISCLAIMER

« OS and compiler defenses were turned off to keep demo simple
« Address Space Layout Randomization (ASLR)
« StackGuard
* Non-executable stack (NX)

* However, they can be circumvented with advanced techniques

Exploit capabilities

“Any sufficiently complex input format is indistinguishable from
bytecode; the code receliving it is indistinguishable from a virtual
machine.”

- Bratus, “The Bugs We Have to Kill”, ;login, Aug 2015

« Dangerous zero-day vulnerabilities are in high demand

/Zero-day exploit pricing

ZERODIUM Payouts for Desktops/Servers’ om N

Upto Win RCE

ZERODIUM Payouts for Mobiles’ wo N

$1,000,000 : Upto Android FCP
R Windows RCE: Remote Code Execution 2 $2,500,000 Zero Click
M macOS LPE: Local Privilege Escalation wn
N Linux/BSD SBX: Sandbox Escape or Bypass . i ; Androki
. Any OS R MachmgeEscagg 2001 FCP: Full Chain with Persistence - 0S
; RCE: Remote Code Execution N Android 1002 h]
Up to Chrome LPE: Local Privilege Escalation = Any OS !
e Upto SBX: Sandbox Escape or Bypass i0S F(l?Pk
$2,000,000 Zero Clic
5001 N 108
Up to MS Outlook 2,001 Nl 2002
RCE Upto WhatsApp iMessage
a‘:m RCE+LPE RCE+LPE
Zero Click Zero Click
6001 N 5002 N
Up to VMware ESXi [l Thunderbird
VME RCE
Upto SMS/MMS
$1,000,000 RCE+LPE RCE+LPE
3004 6003
108 /Androkd 10S/Androki
Up to Safari Edge Firefox Word/Excel
$100,000 RCE+LPE RCE+LPE RCE+LPE 3.001 2008 2007 N 2008 2008 N z010 N 400 4,002
Mac win win Upto P WeChat iMessage FB Messenger Signal Telegram Email App Chrome Safari
ey N - RCE+LPE RCE+LPE RCE+LPE RCE+LPE RCE+LPE RCE+LPE RCE+LPE RCE+LPE
0 6.00
Upto Adobe PDF WinRAR - 108 10S /Androki 10S/Androld 10S /Androki 10S /Androld 108 /Androld 108
$80,000 RCE+SBX LPE/SBX 5001 N 20m 2012 4003 Al 4,006 Al
Upto Baseband Media Files Documents SBX Safari RCE
2001 5007 $200,000 RCE+LPE Kernel /Root RCE+LPE RCE+LPE for Chrome for Safari w/o SBX
Up to Antivirus WinZip 10S/Androld 10S/Androld 10S/Androld 10S /Androkd 108 108
7001 2001 A 9002 N 5,003 “
Upto Code Signing RCE Information Passcode Touch ID
$100,000 via MitM Disclosure Bypass Bypass
‘U‘P:O 10S /Androld 10S /Androki 108 108

* All payouts are subject to change or cancellation without notice. All trademarks are the property of their respective owners.

2019/01 © zerodium.com

* All payouts are subject to change or cancellation without notice. All trademarks are the property of their respective owners.

2019/09 © zerodium.com

Does this sound interesting?

PROMIS (Professional Master in Information Security)

‘ GENERAL FORMAT Active industrials studying and working at the same time
- University grade COURSES for professionals!
- Extend current competence in an area (“security”)
- Case-based pedagogy (bring your own problems!)
- On-line collaborative didactics
- Distance capability overall incl. lab and tools

Courses under development with input from companies

- Keep relevant and right level (companies advise us)
» citynetwork ¢ - DO YOU want to be part of the companies advising on courses?
D >

o - CONTACT: anna.eriksson@bth.se
BALLOU ERICSSON

CYBERCOM

Sl @) Outpost24

PROVES]T
q TRUESEC

telenor

= factor 10 |
advenica lht\vM/‘I HMH-EIA)T(‘!V(Onge[ens more to come

http://bth.se

Courses (3 thus far)

PROMIS (Professional Master
in Information Security)

https://promisedu.se/

BALLOU ERICSSON

i Outpost24
PROVESTA

@ TRUESEC

| factor 10
advenica 1”\\/ MaxKompetens

MH HELP AT WORK

telenor

Software Security (DV2595)
https://www.bth.se/eng/courses/D5816/20202/

Course responsible: dragos.ilie@bth.se

the ability to understand how attackers exploit risky programming
practices

the ability to detect risky programming practices

the ability to understand and reason about efficiency and limitations
in existing software security mechanisms

the ability to to compare and weight the benefits and costs
associated with binary analysis and instrumentation techniques

more to come

https://www.bth.se/eng/courses/D5816/20202/
https://promisedu.se/

Courses (3 thus far)

PROMIS (Professional Master
in Information Security)

https://promisedu.se/

BALLOU ERICSSON

i Outpost24
PROVESTA

@ TRUESEC

telenor

. factor 10
advenica 'Ml MaxKompetens

HELP AT WORK

Web System Security (DV2596)
https://www.bth.se/eng/courses/D5816/20202/
Course anders.carlsson@bth.se

be able to explain web protocols based on known vulnerabilities and weaknesses

be able to describe the Common Vulnerability Scoring System (CVSS)

be able to explain web protocols based on known vulnerabilities and weaknesses

be able to explain the security aspects when using languages and framework, eg. PHP,
JavaScript, and SQL

be able to explain authentication mechanisms and counter techniques to bypass
authentication

understand Cross-site scripting (XSS) attacks and SQL injections

be able to explain impacts of one or more combined vulnerabilities that limit or extend
the damage given

be able to install and configure the web server for high security independently

be able to use and search open vulnerability databases (Common Vulnerability databases
CV -DB)

to prevent and find security problems

be able to use best practice of known design patterns for secure web applications

be able to utilize OWASP where applicable

be able to conduct internal and external penetration testing of web applications and
related infrastructure

more to come

https://www.bth.se/eng/courses/D5816/20202/
https://promisedu.se/

Courses (3 thus far)

PROMIS (Professional Master
in Information Security)

https://promisedu.se/

BALLOU ERICSSON

i Outpost24
PROVESTA

@ TRUESEC telenor

. factor 10
advenica 'Ml MaxKompetens

HELP AT WORK

Security in Software-intensive products and service
development (PA2582)
https://www.bth.se/eng/courses/D5818/20202/
Course responsible: tony.gorschek@bth.se

- the ability to understand the technology, operational aspects, and
engineering aspects of security - albeit the focus on the course is on
"engineering security”

- the ability to plan for "pre-emptive" security in the planning and
development of products and services

- the ability to do a risk assessment and take ROl into account

- the ability to develop and use secure architectures that allows for
a more stable base for products and services

- the ability to compare and weigh the benefits and costs of
non-functional aspects in combination to security

- the ability to estimate how security aspects impact, and are
impacted on quality-/non-functional aspects such as usability,
performance and maintainability of a product

more to come

https://www.bth.se/eng/courses/D5818/20202/
https://promisedu.se/

PROMIS

HOW TO

https://promisedu.se/

o
BALLOU ERICSSON
i @) Outpost24
PROVEST

@ TRUESEC telenor

| factor 10 |
advenica ‘lMI MaxKompetens

HELP AT WORK

Spread information about courses @ your company

Entry Requirements

PROMIS courses requires at least 120 credits, of which at least 90 credits are in a technical area, and a
minimum of 2 years professional experience within an area related to software-intensive product and/or
service development (shown by, for example, a work certificate from an employer).

Even if you don’t have the formal academic merits, you might be qualified for the
course through validation (reell kompetens)!

Apply for course:

Create a user account at antagning.se / universityadmission.se

Search for PROMIS courses by the name Fill in and send in your application
Upload your required documents (employer’s certificate)

Reply to any offers of admission

PONR

Questions about the course: contact course responsible

Questions about applying and validation (reell kompetens): :
anna.eriksson@bth.se

Visit promisedu.se for more info about courses, application and template for
employer’s certificate

more to come

https://promisedu.se/
https://promisedu.se/

