
Welcome to the new OWASP.ORG. We're in fast-follow mode so if you encounter issues please log them in the appropriate repo.



PROJECTS CHAPTERS EVENTS ABOUT  Donate Join
Cheat Sheets

Threat Modeling Cheat Sheet
Transaction Authorization Cheat Sheet  Third Party Javascript Management Cheat Sheet

Introduction
Objective of the Threat Modelling Control Cheat Sheet – To provide guidance to
architects, designers and reviewers, on deriving threat models for applications.

Audience for this cheat sheet

1. Designers and Architects.
2. Threat Modeling SMEs or Security Assessors who are responsible for analyzing the

security of the entire applications’ components.

This cheat sheet provides guidance to assess existing apps as well as new apps. The
instructions in here will help designer and architects address applications risks in an early
stage of the development life cycle to help developers consider these risks while writing
the code. It will also help assessors to look at risks from a comprehensive perspective.

Following the guidance in this cheat sheet, the assessors will list all possible risks and

The OWASP Foundation works
to improve the security of
software through its community-
led open source software
projects, hundreds of chapters
worldwide, tens of thousands of
members, and by hosting local
and global conferences.

AJAX Security

Abuse Case

Access Control

Attack Surface Analysis

Authentication

Authorization Testing Automation

Bean Validation

C-Based Toolchain Hardening

C-Based Toolchain Hardening

Choosing and Using Security

Questions

Clickjacking Defense

Content Security Policy



Search OWASP.org
 Watch 396 Star 11,684

https://owasp.org/
https://owasp.org/
https://owasp.org/projects
https://owasp.org/chapters
https://owasp.org/events
https://owasp.org/about
https://owasp.org/donate?reponame=www-project-cheat-sheets&title=Threat+Modeling+Cheat+Sheet
https://owasp.org/membership
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Transaction_Authorization_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/AJAX_Security_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Abuse_Case_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Access_Control_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Attack_Surface_Analysis_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Authentication_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Authorization_Testing_Automation.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Bean_Validation_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/C-Based_Toolchain_Hardening.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/C-Based_Toolchain_Hardening_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Choosing_and_Using_Security_Questions_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://github.com/OWASP/CheatSheetSeries/subscription
https://github.com/OWASP/CheatSheetSeries/watchers
https://github.com/OWASP/CheatSheetSeries
https://github.com/OWASP/CheatSheetSeries/stargazers

then verifies whether there are enough security controls to protect against these risks.
The assessor will then give better recommendations on how to mitigate these risks. It will
help the assessor discover logical attacks. In general, the threat modeling will help
designers, architects and assessors discover logical attacks.

Preparation
Understand Risk Management Basics in the context of
Application Security
Understand the Relation between Risk, Threats, and Vulnerabilities.

Threat Modeling Terminologies
Information Asset, a body of knowledge that is organized and managed as a single entity.
Like any other corporate asset, an organization’s information assets have financial value.

Threat Agent, an individual or group that can manifest a threat. It is fundamental to
identify who would want to exploit the assets of a company, and how they might use them
against the company.

Attack Surface, the sum of the different points (the “attack vectors”) where an
unauthorized user (the “attacker”) can try to enter data to or extract data from an
environment.

Likelihood, the possibility of a a threat event occurring where a threat actor will exploit a
weakness. The likelihood of threat events resulting in adverse impacts estimates the
possibility that a threat event would result in an actual outcome. The combined analysis of
both threat assessment vectors impacts established an overall threat likelihood.

Impact, the potential damage (physical, logical, monetary loss, etc) of a threat event.

Control a safeguard or countermeasure to avoid, detect, counteract, or minimize security

Credential Stuffing Prevention

Cross-Site Request Forgery

Prevention

Cross Site Scripting Prevention

Cryptographic Storage

DOM based XSS Prevention

Denial of Service

Deserialization

Docker Security

DotNet Security

Error Handling

Forgot Password

HTML5 Security

HTTP Strict Transport Security

Injection Prevention

Injection Prevention in Java

Input Validation

Insecure Direct Object Reference

Prevention

JAAS

JSON Web Token for Java

Key Management

LDAP Injection Prevention

Logging

Mass Assignment

Microservices based Security Arch

Doc

Multifactor Authentication

Nodejs security cheat sheet

https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Credential_Stuffing_Prevention_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Denial_of_Service_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Deserialization_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Docker_Security_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/DotNet_Security_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Error_Handling_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Forgot_Password_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/HTML5_Security_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Injection_Prevention_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Injection_Prevention_Cheat_Sheet_in_Java.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Input_Validation_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/JAAS_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Key_Management_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/LDAP_Injection_Prevention_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Logging_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Mass_Assignment_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Microservices_based_Security_Arch_Doc_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Multifactor_Authentication_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Nodejs_security_cheat_sheet.html

risks to information, computer systems, or other assets.

Mitigation A systematic reduction of risk or likelihood’s impact to an asset.

Tractability Matrix, a grid that allows documentation and easy viewing of what is required
for a system’s security.

Define Objectives
Before starting the threat modeling process; it is important to identify business objectives
of the applications, and identify security & compliance requirements. This is very
important to be defined in advance to help to evaluate the impact of any vulnerability
during the risk analysis process.

Identify application design
Understanding application design is a key activity to perform application threat modeling.
It will enable the user of this cheat sheet to draw an accurate data flow diagram.
Therefore, it will be easier to identify all possible risks. Moreover, the more the user of this
cheat sheet understands application design, the better they will understand logical
application attacks. The objective of the design document is to enumerate application
components.

Review the application design document
If you are not performing threat modeling during the development (in the design phase) so
you have to review the application design documents to understand the application
structure and to help to generate the data flow diagram. If there are no available design
documents so you have to create one. Move to the next section

Create design documents
There are many ways to generate design documents; the 4+1 view model is one of the

OS Command Injection Defense

PHP Configuration

Password Storage

Pinning

Protect FileUpload Against Malicious

File

Query Parameterization

REST Assessment

REST Security

Ruby on Rails

SAML Security

SQL Injection Prevention

Securing Cascading Style Sheets

Server Side Request Forgery

Prevention

Session Management

TLS Cipher String

Third Party Javascript Management

Threat Modeling

Transaction Authorization

Transport Layer Protection

Unvalidated Redirects and Forwards

User Privacy Protection

Virtual Patching

Vulnerability Disclosure

Vulnerable Dependency Management

Web Service Security

XML External Entity Prevention

XML Security

https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/OS_Command_Injection_Defense_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/PHP_Configuration_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Password_Storage_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Pinning_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Protect_FileUpload_Against_Malicious_File.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Query_Parameterization_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/REST_Assessment_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/REST_Security_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Ruby_on_Rails_Cheatsheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/SAML_Security_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Securing_Cascading_Style_Sheets_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Session_Management_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/TLS_Cipher_String_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Transaction_Authorization_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/User_Privacy_Protection_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Virtual_Patching_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Vulnerable_Dependency_Management_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Web_Service_Security_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/XML_Security_Cheat_Sheet.html

matured approaches to building your design document.

Reference to 4+1 view model of architecture here.

Please note that the 4+1 is comprehensive, you may use any other design model during
this phase.

The following subsections show the details about 4+1 approach and how this could help
in the threat modeling process:

Logical View
Create a logical map of the Target of Evaluation.

Audience: Designers.

Area: Functional Requirements: describes the design’s object model.

Related Artifacts: Design model

Implementation View
Audience: Programmers.

Area: Software components: describes the layers and subsystems of the application.

Related Artifacts: Implementation model, components

Please refer to the image in the appendix section for sample design for the
implementation view.

Process View
Audience: Integrators.

Area: Non-functional requirements: describes the design’s concurrency and
synchronization aspects.

Related Artifacts: (no specific artifact).

Deployment View

Upcoming Global Events

OWASP Projects Summit, Feb
27-29th
Global AppSec Dublin June 15-
19th
Global AppSec SF October
19th-23rd

https://en.wikipedia.org/wiki/4%2B1_architectural_view_model
https://owasp.org/www-staff/projects/202002-Projects-Summit-Q1?utm_source=owasp-web&utm_medium=right-col&utm_campaign=www-project-cheat-sheets
https://dublin.globalappsec.org/?utm_source=owasp-web&utm_medium=right-col&utm_campaign=www-project-cheat-sheets
https://sf.globalappsec.org/?utm_source=owasp-web&utm_medium=right-col&utm_campaign=www-project-cheat-sheets

Create a physical map of the Target of Evaluation

Audience: Deployment managers.

Area: Topology: describes the mapping of the software onto the hardware and shows the
system’s distributed aspects.

Related Artifacts: Deployment model.

Use-Case View
Audience: All the stakeholders of the system, including the end-users.

Area: describes the set of scenarios and/or use cases that represent some significant,
central functionality of the system.

Related Artifacts: Use-Case Model, Use-Case documents

Decompose and Model the System
Gain an understanding of how the system works to perform a threat model, it is important
to understand how the system works and interacts with its ecosystem. To start with
creating a high-level information flow diagram, like the following:

1. Identify the trusted boundaries of your system/application/module/ecosystem that
you may want to start off with.

2. Add actors – internal and external
3. Define internal trusted boundaries. These can be the different security zones that

have been designed
4. Relook at the actors you have identified in #2 for consistency
5. Add information flows
6. Identify the information elements and their classification as per your information

classification policy

7. Where possible add assets to the identified information flows.

Define and Evaluate your Assets
Assets involved in the information flow should be defined and evaluated according to their
value of confidentiality, integrity and availability.

Consider Data in transit and Data at rest
Data protection in transit is the protection of this data while it’s traveling from network to
network or being transferred from a local storage device to a cloud storage device –
wherever data is moving, effective data protection measures for in-transit data are critical
as data is often considered less secure while in motion.

While data at rest is sometimes considered to be less vulnerable than data in transit,
attackers often find data at rest a more valuable target than data in motion.

The risk profile for data in transit or data at rest depends on the security measures that
are in place to secure data in either state. Protecting sensitive data both in transit and at
rest is imperative for modern enterprises as attackers find increasingly innovative ways to
compromise systems and steal data.

Create an information flow diagram
Whiteboard Your Architecture
It is important to whiteboard system architecture by showing the major constraints and
decisions in order to frame and start conversations. The value is actually twofold. If the
architecture cannot be white-boarded, then it suggests that it is not well understood. If a
clear and concise whiteboard diagram can be provided, others will understand it and it will
be easier to communicate details.

Manage to present your DFD in the context of MVC

In this step, Data Flow Diagram should be divided in the context of Model, View,

Controller (MVC).

Use tools to draw your diagram
If you don’t like to manually draw your DFD; there are several tools available that could be
used:

Poirot
The Poirot tool isolates and diagnoses defects through fault modeling and simulation.
Along with a carefully selected partitioning strategy, functional and sequential test pattern
applications show success with circuits having a high degree of observability.

MS Threat modeling

A tool that helps in finding threats in the design phase of software projects.

Define Data Flow over your DFD
Define Data Flows over the organization Data Flow Diagram.

Define Trust Boundaries
Define any distinct boundaries (External boundaries and Internal boundaries) within which
a system trusts all sub-systems (including data).

Define applications user roles and trust levels
Define access rights that the application will grant to external entities and internal entities.

Highlight Authorization per user role over the DFD
Highlight Authorization per user role, for example, defining app users’ role, admins’ role,
anonymous visitors’ role…etc.

Define Application Entry points
Define the interfaces through which potential attackers can interact with the application or

supply them with data.

Identify Threat Agents
Define all possible threats
Identify Possible Attackers threat agents that could exist within the Target of Evaluation.
Use Means, Motive, and Opportunities to understand Threats posed by Attackers. Then
associate threat agents with system components they can directly interact with.

Work on minimizing the number of threat agents by:

Treating them as equivalent classes.
Considering the attacker’s motivation when evaluating likelihood.
Consider insider Threats

The user of this cheat can depend on the following list of risks and threat libraries sources
to define the possible threats an application might be facing:

1. Risks with OWASP Top 10.
2. Testing Procedure with OWASP ASVS.
3. Risks with SANS Top 25.
4. Microsoft STRIDE.

Map Threat agents to application Entry points
Map threat agents to the application entry point, whether it is a login process, a
registration process or whatever it might be and consider insider Threats.

Draw attack vectors and attacks tree

During this phase conduct the following activities:

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.sans.org/top25-software-errors
https://en.wikipedia.org/wiki/STRIDE_%28security%29

Draw attack vectors and attacks tree.
Identify Use Cases/Abuse Cases.
Re-Define attack vectors to consider multi-step attacks.

Mapping Abuse Cases to Use Cases
TODO

Re-Define attack vectors
In most cases after defining the attack vectors, the compromised user role could lead to
further attacks into the application. For example, assuming that an internet banking user
credentials could be compromised, the user of this cheat sheet has to then redefine the
attack vectors that could result from compromising the user’s credentials and so on.

Write your Threat traceability matrix
Define the Impact and Probability for each threat
Enumerate Attacks posed by the most dangerous attacker in designated areas of the
logical and physical maps of the target of evaluation.

Assume the attacker has a zero-day because he does. In this methodology, we assume
compromise; because a zero-day will exist or already does exist (even if we don’t know
about it). This is about what can be done by skilled attackers, with much more time,
money, motive and opportunity that we have.

Use risk management methodology to determine the risk behind the threat

Create risks in risk log for every identified threat or attack to any assets. A risk
assessment methodology is followed in order to identify the risk level for each

vulnerability and hence for each server.

Here we will highlight two risk methodology that could be used:

DREAD
DREAD, is about evaluating each existing vulnerability using a mathematical formula to
retrieve the vulnerability’s corresponding risk. The DREAD formula is divided into 5 main
categories:

Damage - how bad would an attack be?
Reproducibility - how easy it is to reproduce the attack?
Exploitability - how much work is it to launch the attack?
Affected users - how many people will be impacted?
Discoverability - how easy it is to discover the threat?

DREAD formula is:

Risk Value = (Damage + Affected users) x (Reproducibility + Exploitability +
Discoverability).

Then the risk level is determined using defined thresholds below.

PASTA
PASTA, Attack Simulation & Threat Analysis (PASTA) is a complete methodology to
perform application threat modeling. PASTA introduces a risk-centric methodology aimed
at applying security countermeasures that are commensurate to the possible impact that
could be sustained from defined threat models, vulnerabilities, weaknesses, and attack
patterns.

PASTA introduces a complete risk analysis and evaluation procedures that you can follow
to evaluate the risk for each of the identified threat. The main difference in using PASTA

Approach is that you should evaluate the impact early on in the analysis phase instead of

https://en.wikipedia.org/wiki/DREAD_%28risk_assessment_model%29
https://versprite.com/tag/pasta-threat-modeling/

addressing the impact at the step of evaluating the risk.

The idea behind addressing the impact earlier in PASTA approach is that the audience
that knows impact knows the consequences on a product or use case failures more than
participants in the threat analysis phase.

Application security risk assessments are not enough because they are very binary and
leverage a control framework basis for denoting risks. It is recommended to contextually
look at threats impacts, probability and effectiveness of countermeasures that may be
present.

R = (T * V * P * I) / Countermeasures

For more details about PASTA.

Rank Risks
Using risk matrix rank risks from most severe to least severe based on Means, Motive &
Opportunity. Below is a sample risk matrix table, depending on your risk approach you
can define different risk ranking matrix:

Risk Value: 01 to 12 → Risk Level: Notice
Risk Value: 13 to 18 → Risk Level: Low
Risk Value: 19 to 36 → Risk Level: Medium
Risk Value: 37 to 54 → Risk Level: High

Determine countermeasures and
mitigation.
Identify risk owners and agree on risk mitigation with risk owners and stakeholders.

https://www.owasp.org/images/a/aa/AppSecEU2012_PASTA.pdf

Provide the needed controls in forms of code upgrades and configuration updates to
reduce risks to acceptable levels.

Identify risk owners
For the assessors: After defining and analyzing the risks, the assessor should be working
on the mitigation plan by firstly identifying risk owners which is the personnel that is
responsible for mitigating the risk. i.e. one of the information security team or the
development team.

For the designers or the architects: they should assign the risk mitigation to the
development team to consider it while building the application.

Agree on risk mitigation with risk owners and
stakeholders
TODO

Build your risk treatment strategy

Reduce: building controls if the form of code upgrades, confirming a specific design
for the application or building a specific configuration during the deployment phase to
make sure that application risk is reduced.
Transfer: For a specific component in the application the risk can be transferred to
an outsourced third party to develop that component and making sure that the third
party is doing the right testing for the component; or during the deployment phase,
outsourcing a third party to do the deployment and transferring that risk to that third
party.
Avoid: an example of avoiding the risk is disabling a specific function in the
application that is the source for that risk.

Accept: if the risk is within acceptable criteria set earlier, in that case, the designer

risk owner can accept that risk.

For the assessor, this is considered as the last step in the assessment process. The
following steps should be conducted by the risk owner, however, the assessor shall
engage in 6.5 (Testing risk treatment) to verify the remediation.

Select appropriate controls to mitigate the risk
Selecting one of the controls to reduce the risk, either by upgrading the code, or building
a specific configuration during the deployment phase and so on.

Test risk treatment to verify remediation
Mitigation controls will not vanish the risk completely, rather, it would just reduce the risk.
In this case, the user of this cheat sheet should measure the value of the risk after
applying the mitigation controls. The value of the risk should be reduced to the acceptable
criteria set earlier.

Reduce risk in risk log for verified treated risk
After applying the mitigation and measuring the new risk value, the user of this cheat
sheet should update the risk log to verify that risk has been reduced.

Periodically retest risk
TODO

Appendix
TODO: Sample Design for Implementation View in 4+1 Model

TODO: Sample Design for Implementation View in 4+1 Model

Transaction Authorization Cheat Sheet  Third Party Javascript Management Cheat Sheet

https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Transaction_Authorization_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.html

a sact o ut o at o C eat S eet  d a ty Ja asc pt a age e t C eat S eet

Edit on Github

Spotlight: Software Improvement Group

SIG gives technology leaders the visibility they need to address current software problems and prevent future ones from ever
happening. Drawing on proprietary methods and decades of expertise, SIG helps organizations fundamentally improve the
security and performance of the enterprise applications that support every aspect of their businesses.

Corporate Supporters

Become a corporate supporter

https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Transaction_Authorization_Cheat_Sheet.html
https://www2.owasp.org/www-project-cheat-sheets/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.html
https://github.com/OWASP/www-project-cheat-sheets/blob/master/cheatsheets/Threat_Modeling_Cheat_Sheet.md
https://www.softwareimprovementgroup.com/
https://owasp.org/supporters

Become a corporate supporter

HOME PROJECTS CHAPTERS EVENTS ABOUT PRIVACY SITEMAP CONTACT

Open Web Application Security Project, OWASP, Global AppSec, AppSec Days, AppSec California, SnowFROC, LASCON, and
the OWASP logo are trademarks of the OWASP Foundation. Unless otherwise specified, all content on the site is Creative
Commons Attribution-ShareAlike v4.0 unless otherwise noted and provided without warranty of service or accuracy. For more
information, please refer to our General Disclaimer. Copyright 2020, OWASP Foundation, Inc.

https://owasp.org/supporters
https://owasp.org/
https://owasp.org/projects
https://owasp.org/chapters
https://owasp.org/events
https://owasp.org/about
https://owasp.org/www-policy/operational/privacy
https://owasp.org/sitemap
https://owasp.org/contact
https://owasp.org/www-policy/operational/general-disclaimer.html

