

Brent Murphy
David French

Foreword by Jamie Butler
Tech Lead, Elastic Security

The Elastic
Guide to Threat

Hunting

The Elastic Guide to Threat Hunting
Published by:
CyberEdge Group, LLC
1997 Annapolis Exchange Parkway
Suite 300
Annapolis, MD 21401
(800) 327-8711
www.cyber-edge.com

Copyright © 2020, CyberEdge Group, LLC. All rights reserved. Definitive Guide™ and
the CyberEdge Press logo are trademarks of CyberEdge Group, LLC in the United
States and other countries. All other trademarks and registered trademarks are the
property of their respective owners.

Except as permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, without the prior written permission of the publisher. Requests to the
publisher for permission should be addressed to Permissions Department, CyberEdge
Group, 1997 Annapolis Exchange Parkway, Suite 300, Annapolis, MD, 21401 or
transmitted via email to info@cyber-edge.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR
MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY
OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICAL LY DISCLAIM
ALL WARRANTIES, INCLUDING WITHOUT L IMITATION WARRANTIES OF FITNESS
FOR A PARTICUL AR PURPOSE. THE ADV ICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR EVERY SITUATION. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/
OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES L ISTED IN THIS WORK MAY HAV E
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN
IT IS READ.

For general information on CyberEdge Group research and marketing consulting
services, or to create a custom Definitive Guide book for your organization, contact
our sales department at 800-327-8711 or info@cyber-edge.com.

ISBN: 978-1-948939-11-9 (paperback); ISBN: 978-1-948939-12-6 (eBook)

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Publisher’s Acknowledgements

CyberEdge Group thanks the following individuals for their respective contributions:

Editor: Susan Shuttleworth
Designer: Debbi Stocco
Publishing Coordinator: Jon Friedman

Foreword

The purpose of threat hunting is to reduce the time
between a breach and its discovery. Shortening that time

can make the difference between spending a few thousand
dollars on remediation and millions to deal with a full-on
compromise.

Yet many organizations still have not implemented hunt
teams. That is evident when we consider that more than
20% of reported breaches are detected by a third party or
external entity rather than the victim organization. To bring
down that number, and lower the overall cost of security, we
must assume that breaches have occurred and hunt for their
evidence before damage occurs.

I talk to organizations every day about threat hunting. Some
think that threat hunting is taking known indicators of com-
promise (IoCs) from threat intelligence feeds and searching
for them. But while it is good to know if you are susceptible
to previously discovered attacks, that is like driving down the
road while looking only in the rearview mirror.

Threat hunting involves hypothesizing about attackers’ behav-
ior and verifying the hypotheses in your environment. For
example, you might form the hypothesis that an attacker has
established persistence on one or more endpoints in your envi-
ronment to survive system reboots. Collecting and analyzing
data on likely persistence locations on endpoints across your
enterprise and investigating anomalies is threat hunting. Using
IoCs to search for an attacker’s persistence is not.

Since I started in InfoSec, I have seen the pendulum swing
between “We trust our security software to stop everything”
and “I believe my security software will usually fail.” Neither
opinion is wise. Threat hunting is the best way companies
have to stop the damage and loss that occurs when we have to
rely upon third parties to notify us that we have a problem.

Happy hunting,

Jamie Butler, Tech Lead, Elastic Security

Table of Contents
Foreword ..iii

Introduction .. v
Chapters at a Glance ... v

Chapter 1: Be the Hunter ... 1
What Is Hunting? ...1
The Hunt Team ... 3
What Hunt Teams Look For ...4
Categorizing Unknowns ..8
Building Environmental Awareness ... 10

Chapter 2: Structuring Hunts ... 11
Selecting a Framework ...11
Structuring a Hunt Process ..13
Transitioning to Incident Response ..16
Measuring Your Hunt ..17

Chapter 3: Hunting for Fileless Attacks.. 21
Two Forms of Fileless Attack ...21
The Race to Detection ...23
Anatomy of an In-Memory Attack ..24
Approaches to Hunting for Fileless Attacks ... 25
Technique-Based Detection ..26

Chapter 4: Hunting for Persistence - Basics .. 29
Why Adversaries Need Persistence ..29
The Windows Registry ...31
Technique-Based Detection ..32

Chapter 5: Hunting for Persistence at Scale .. 35
Taking It to the Enterprise .. 35
Visualization ..39
Example: WMI ..40

Chapter 6: Hunting for Lateral Movement .. 43
Why Adversaries Need Mobility ...44
An Example: Hunting for Suspicious Use of PsExec 45
Examine Event Logs ...46
Analyze Metadata .. 47
Analyze Process Events ...48
Analyze Command Line Arguments ...49

Chapter 7: Credential Theft ... 51
Survival by Any Means Necessary ...51
Example: KERBEROASTING ... 52
Two Techniques for Hunting Credential Theft .. 54

Appendix A; Getting Started .. 56

Appendix B: A Hunt Cheat Sheet ... 61

Introduction

Threat hunting has become one of the more important
functions of mature security organizations – a rare

capability that enables them to address gaps in passive
security solutions. But at first, threat hunting can be a
daunting endeavor. How can you detect attacks that don't
deploy malware or leave behind known indicators of
compromise? How can you deduce the presence of "fileless"
attacks that minimize disk-based evidence?

The goal of this guide is to help security teams cultivate the
skills and procedures that enable threat hunting. The first
chapter provides an overview of threat hunting concepts
and shares ideas for integrating threat hunting into security
operations. Subsequent chapters explore techniques for hunts
based on different adversary techniques. Appendices offer
reference materials to remind you of key information.

When you pick up this guide you join a global community of
security professionals. Together we can reshape the security
landscape by sharing knowledge and best practices on how to
protect the world’s data from attack.

Chapters at a Glance
Chapter 1, “Be the Hunter,” reviews basic concepts of
threat hunting, the knowledge and experience hunt teams
need, and the kinds of behaviors that teams search for.

Chapter 2, “Structuring Hunts,” discusses threat
modeling frameworks, steps to structure hunts, and metrics
for assessing hunt efficiency and efficacy.

Chapter 3, “Hunting for Fileless Attacks,” defines
two forms of fileless attacks and suggests techniques for
discovering them.

Chapter 4, “Hunting for Persistence - Basics,” explains
methods of persistence and basic techniques for analyzing
data to find evidence.

vi | The Elastic Guide to Threat Hunting

Chapter 5, “Hunting for Persistence at Scale,” reviews
techniques for working with enterprise quantities of data and
explains how visualization can reveal key information quickly.

Chapter 6, “Hunting for Lateral Movement,” describes
attackers’ need for mobility and some of their most common
methods, and presents an example hunt for movement using
the Sysinternal PSExec remote execution utility.

Chapter 7, “Credential Theft,” explores why attackers
need to capture credentials and how to detect the
KERBEROASTING technique of credential theft.

Appendix A, “Getting Started,” outlines technologies that
can be used to collect, visualize, and analyze hunt data.

Appendix B, “A Hunt Cheat Sheet,” provides a handy
summary of key steps in a hunt.

Helpful Icons
TIP

Tips provide practical advice that you can apply in your own
organization.

DON’T FORGET
When you see this icon, take note as the related content
contains key information that you won’t want to forget.

CAUTION
Proceed with caution because if you don’t it may prove costly
to you and your organization.

TECH TALK
Content associated with this icon is more technical in nature
and is intended for IT practitioners.

ON THE WEB
Want to learn more? Follow the corresponding URL to
discover additional content available on the web.

Chapter 1

Be the Hunter

In this chapter

 Learn basic concepts about threat hunting
 Review the knowledge and experience hunt teams need
 Understand the kinds of indicators and behaviors that hunters

search for

In this chapter we introduce the concept of threat hunting
and summarize some of the key ideas. By the end you’ll

be ready to learn how to conduct hunts – the subject of the
remaining six chapters of this guide.

What Is Hunting?
Most security technologies, tools, and processes are passive.
They’re triggered by events or conditions that generate some
prescribed response ─ not unlike how your immune system
works to detect and address foreign bodies. Enterprise
antivirus is a well-known class of technologies that illustrate
this process particularly well. But these passive controls and
workflows are rarely immediate. Adversaries may be able to
dwell undetected in your environment for hours, days, weeks,
months, or years. Even worse, adversaries have learned to
maximize their success with minimal dwell time, which leaves
you the narrowest margin of error to prevent data theft or
business disruption.

In contrast to passive approaches, threat hunting combines
the knowledge and experience of your team with technology
to create an active capability to seek out evidence of malicious
activity.

2 | The Elastic Guide to Threat Hunting

Organizations often start by searching for indicators of
compromise (IOCs). This is a useful function, one that should
immediately be automated so human analysts can devote their
time to better understanding the environment and conducting
essential analysis that can only be performed by people.

This guide assumes that technology and people, working sepa-
rately, are fallible. When together, though, they can find mali-
cious activity that doesn’t trigger alerts or involve malware.

The primary goal
The primary goal of threat hunting is to reduce the dwell time
of adversaries. Finding threats early gives you the best chance
to eradicate them from your systems and networks before
attackers can accomplish their objectives. By detecting adver-
saries early in the intrusion, your organization can also reduce
the level of effort needed to scope and remediate threats –
substantially lowering the cost of compromises.

Human processes aided
by technology
With all the security solutions available today, it’s under-
standable when security practitioners focus on technology.
However, threat hunting relies primarily on human under-
standing and thought processes.

In the context of threat hunting, human analysts might
propose a hypothesis such as: “Can we detect attacks by
discovering what descendants are spawning from Microsoft
Office applications?” Then they decide how to collect, analyze,
and document related data. This process exposes leads that
analysts can investigate, allowing them to reach a consensus
on the nature of anomalies they discover.

Organizations laying the foundation for threat hunting
shouldn’t underestimate the importance of analyst knowledge
and experience, which enable teams to understand how
attacks operate and how they can be thwarted.

Technology doesn’t drive hunting, but it’s a critical enabler.
Hunt-specific technology solutions allow hunters to capture,
identify, correlate, enrich, measure, and analyze thousands of
pieces of data needed to conduct effective and efficient hunts.

Chapter 1: Be the Hunter | 3

The Hunt Team
Responsibilities for threat hunting can be organized many
ways.

Smaller organizations typically make threat hunting a part-
time job. Hunters may take turns hunting on a designated
set of assets, and sometimes are responsible for scoping and
remediation after compromises are discovered.

Larger organizations often have dedicated hunters ─ poten-
tially dozens of people distributed globally. A hunt team is
usually comprised of a team lead and several analysts. The
team focuses on quickly identifying IOCs and prioritizing
their handling. It may then hand off responsibility for incident
response and remediation to other teams.

Expertise
The hunt team needs people with a wide range of expertise:

 ; Adversary tradecraft - methods used by adversaries
to achieve their objectives

 ; Incident response - incident analysis response tech-
niques and tools for analyzing and scoping attacks,
malware, and exploits

 ; Threat detection - techniques and frameworks for
identifying attacks, including evidence of offensive
security tools (OSTs) used by adversaries

 ; Threat intelligence - the collection, analysis, cura-
tion, and dissemination of intelligence to contextual-
ize adversaries and situations and help teams take
decisive actions

 ; IT operations - applications, networks, and enter-
prise architectures, and the inner workings of the
operating systems used by the organization’s assets.

 ; Communication – how to communicate effectively
with other stakeholders and security professionals,
system administrators, executives, the legal team,
and human resources staff

4 | The Elastic Guide to Threat Hunting

Roles
Hunt teams should include people who can fulfil a variety of
roles, including:

 ; Incident manager – a technical person who under-
stands how each threat exposes the business to risk,
and has the authority to direct the team to investi-
gate and address signs of malicious activity.

 ; Response analyst – a person who can analyze data
from one or more sources, then document and com-
municate findings.

 ; Malware analyst – a person familiar with automated
malware analysis tools who can understand and
reverse-engineer malware samples and can produce
decoders and other utilities for response analysts.

 ; Operations staff – people with knowledge of system
and network administration, application develop-
ment, and other IT functions.

TIP Membership on a hunt team can be a great way for employees
to learn new skills and explore new career directions. If you
are looking for members of a new hunt program, encourage
talented people already in the organization to participate!

What Hunt Teams Look For
You won’t find what you don’t look for. What hunt teams look
for is very different from known malware samples and previ-
ously identified IOCs that occupy the time and attention of the
security operations center (SOC).

Hunt teams focus on uncovering behaviors and other evidence
of attacker techniques and activities. They often develop new
detection logic for security operations.

TIP We don’t mean to say that your hunt team should ignore
“known bad” indicators such as file hashes, IP addresses, and
DNS records. Instead, the team should create automated
searches and queries to find them. Automated matching frees
up your most precious asset: human talent. Treat the results
of this matching process as alerts, triage them, and use the
findings as input for your hunts.

Chapter 1: Be the Hunter | 5

TIP As a general practice, hunt team members should research the
offensive tactics, techniques, and procedures (TTPs) of attack-
ers in a threat-agnostic manner. Note that although tech-
niques and tactics are sometimes treated as synonyms, you
should think of techniques as aspects of a threat actor’s skill
set, and tactics as applications of those techniques. For exam-
ple, a threat actor may attempt to gain initial access (the tac-
tic) to their target via spear phishing (the technique).

DON’T FORGET Most organizations are targeted by more than one kind of
adversary. Financially-motivated actors, “hacktivists,” and
state-sponsored operators each have different goals, targets,
and TTPs. Study all who might focus on your enterprise. Keep
in mind that some threat groups operate in more than one
threat category and across several industries.

Artifacts and indicators of behaviors
As attackers interact with an environment, their decisions and
behaviors produce artifacts that you can use to identify the
intrusion. These artifacts come in several varieties, including:

 ; Filesystem data and metadata

 ; Network metadata (such as NetFlow and DNS que-
ries and responses)

 ; Application data and metadata (such as web server
logs)

 ; User and authentication records

 ; Process names and metadata

 ; Registry paths and metadata

For example, if a threat actor is using an Internet server appli-
cation programming interface (ISAPI) filter of Microsoft’s
Internet Information Services (IIS) to persist malware on a
web server, it might generate:

 ; One or more malicious executable files

 ; Modifications to the IIS configuration

 ; User session artifacts in the registry and filesystem

6 | The Elastic Guide to Threat Hunting

 ; Authentication from remote access attempts

 ; Network metadata associated with callbacks to
adversary-controlled remote infrastructure

Even if the threat actor minimized required actions, those
actions still leave behind a trail you can follow if you collect
the right data and examine it regularly. This is an example of
Locard’s exchange principle of forensic science.

Locard’s Exchange Principle
“Every contact leaves a trace”

Dr. Edmond Locard (1877 – 1966)

Restated by forensic scientist Paul L. Kirk as: “Wherever [the criminal]
steps, whatever he touches, whatever he leaves, even unconsciously,
will serve as a silent witness against him. Not only his fingerprints or his
footprints, but his hair, the fibers from his clothes, the glass he breaks,
the tool mark he leaves, the paint he scratches…All of these and more,
bear mute witness against him. This is evidence that does not forget.”

Traces of adversary tradecraft
Merriam-Webster.com defines tradecraft as “the techniques
and procedures of espionage.” Most adversaries, just like
spies, follow one of a few general procedures to achieve their
goals. If you know these procedures, you can look for traces or
tool-marks of those activities.

Defenders should be aware that most adversaries attempt to
take the following steps:

 ; Access a victim environment

 ; Create and maintain command and control (C2)
communication between the attackers on the outside
and software they control on an internal system

 ; Obtain and leverage additional privileges

 ; Conduct reconnaissance of networks and hosts

 ; Identify data, applications, and systems of interest

Chapter 1: Be the Hunter | 7

 ; Access one or more systems

 ; Collect or destroy sensitive data

 ; Exfiltrate the data or otherwise achieve their
objectives

It’s important to be familiar with a wide variety of methods for
achieving each step, especially those that can be used against
your enterprise. When you know that attackers are going to
follow these steps, you can hunt in parts of the environment
that show traces of these actions.

TECH TALK Let’s look at how you might hunt for evidence of attacker
tradecraft. Suppose you suspect that a threat actor is using an
ISAPI filter to persist malware on a web server. Because you
have done research on this persistence technique, you know
the malware loads a malicious DLL when an adversary-
defined file extension (like “.xcfGGj3kBks”) is requested from
the web server. You could monitor IIS configuration files to
detect modifications that would indicate the use of this tech-
nique (of course, after you imposed software revision controls
to ensure you could roll back to a known good state). You
could also check the IIS logs, which might show the requests
that triggered the malicious ISAPI filter execution or the pro-
cesses spawned by the web server. In fact, you can baseline
these log entries to streamline analysis.

Intrusion attributes
Hunters can use characteristics of successful intrusions to cre-
ate hypotheses for their hunts. Intrusions often:

 ; Combine multiple, discrete techniques

 ; Occur over relatively compressed time periods

 ; Include both benign and malicious executables

 ; Acquire and leverage some type of privileged access

 ; Involve one or more endpoints

 ; Change the contents of endpoint filesystems

8 | The Elastic Guide to Threat Hunting

Categorizing Unknowns
One of the biggest challenges of threat hunting is the need to
examine events and artifacts that are not inherently malicious
or benign but might be either. However, there are several
techniques you can use to point toward one side or the other.

Prevalence
You can make a good judgement about the likelihood that
events and artifacts are related to attacks by measuring
their prevalence, the frequency with which they occur in an
environment. Because many sophisticated attacks only affect
a relatively small number of systems, events and artifacts that
are scarce are more likely to be malicious than those that are
prevalent.

For example, suppose you find a previously unknown binary
file on 85% of your Windows systems. That is almost certainly
benign software. It is unlikely that an attacker could plant
malware on such a high percentage of your systems.

On the other hand, an unknown binary file on 2% of your
Windows systems could be the result of a successful phishing
campaign. As a guideline, low prevalence is more suspicious
than high prevalence.

However, some financially-motivated threat groups have
turned to mass deployment of ransomware, so prevalence as a
criterion has to be used selectively.

Recency
Generally speaking, the intrusions we care most about are
happening right now, when we are best able to influence the
outcomes. Stopping an intrusion early reduces the risk of data
theft or business disruption. Focusing on recency enables
analysts to group events and artifacts chronologically, working
backwards from the present.

For example, an unknown binary file that appeared on end-
points three days ago is more likely to represent a threat than
one that was first seen three years ago. Likewise, a registry
setting changed two days ago is more suspicious than one that
hasn’t changed in two years.

Chapter 1: Be the Hunter | 9

Patterns of behavior
There are many actions and behaviors that appear innocuous
when considered individually but can show patterns across an
enterprise that indicate malicious intent.

For example, endpoints on the network establish connec-
tions with servers on the web all the time. However, when an
endpoint establishes connections with an unknown server at
regularly scheduled intervals, it is a tip-off that malware might
be “phoning home” to a server controlled by attackers.

In the same way, logons succeed and fail every second of every
day, but logons from invalid or disabled user accounts are
suspicious. Multiple concurrent login attempts by the same
account are suspicious, as are multiple concurrent logins from
several places using one account.

Anomalies
Departures from standard behaviors can also help you catego-
rize unknown events and artifacts.

The types of deviations that merit investigation include:

 ; Unusual volumes and frequencies (e.g., uploading
10GB to an external website in under 24 hours)

 ; Deviations from a standard configuration (e.g.,
executable files that do not appear on the golden
image; differences in registry keys between newly
created systems and systems that have been present
in the environment for months)

 ; Departures from convention (e.g., host and file
names that do not follow the organization’s naming
conventions)

 ; Unusual parent-child process relationships (e.g.,
svchost.exe not spawning from services.exe)

Other places to hunt for anomalies include:

 ; Run and RunOnce keys

 ; Windows services

10 | The Elastic Guide to Threat Hunting

 ; Image file execution options

 ; Application debuggers

 ; Registered COM servers

 ; Loaded drivers

Building Environmental Awareness
You need to know what “normal” looks like in your environ-
ment before you can identify unusual patterns of behavior and
other anomalies. Yet few organizations pursue or achieve this
type of awareness.

Building environmental awareness can be very challenging,
but here is a list of questions you can ask to start developing a
baseline of your enterprise:

 ; How do our system administrators interact with
servers, and from where?

 ; Which accounts have membership in privileged
groups, and which ones?

 ; What remote execution tools are commonly used in
this environment?

 ; Which UserAgent strings are common here?

 ; Where are the most sensitive pieces of data stored,
and how do users normally access that data?

 ; What are typical levels of server-to-workstation,
server-to-browser, and workstation-to-server lateral
movement?

 ; What network connections exist between our organi-
zation and third parties such as suppliers?

Chapter 2

Structuring Hunts

In this chapter

 See suggestions for selecting an attack lifecycle framework
 Learn how to structure a hunt process in six steps
 Understand different types of metrics for assessing your hunts

Although you can take an unstructured approach here
and there, for most of your threat hunting activities you

should establish some structure. Defining a process for each
hunt helps make the steps repeatable. This makes it easier to
measure outcomes and assess the performance of your tools
and your team’s methods. It also enables you to present find-
ings to management in a consistent manner across hunts.

If you’re just starting this process, the scientific method pro-
vides some helpful procedural guidelines:

 ; State the problem to be solved and a hypothesis for
solving it

 ; Propose a procedure to gather and analyze evidence

 ; Define metrics to evaluate the success of the effort

 ; Execute the procedure and measure the outcome(s)

Selecting a Framework
Before defining individual hunts, it is useful to select an attack
lifecycle framework that breaks down the phases of a typical
cyberattack and the techniques it might use in each phase.

12 | The Elastic Guide to Threat Hunting

There are many frameworks available within the InfoSec com-
munity, including Lockheed Martin’s Cyber Kill Chain® and
Mandiant’s Attacker Lifecycle Model.

Our favorite is MITRE’s Adversarial Tactics, Techniques and
Common Knowledge (ATT&CK™) framework. It goes into
more depth than most of the others, and its details on post-
compromise attacker techniques provide useful guidance on
where, what, and how to hunt for evidence of them. ATT&CK
isn’t limited to one type of adversary, but instead provides
threat-agnostic techniques that are relevant to every threat.

ON THE WEB To learn how security teams can leverage the ATT&CK™
framework (https://attack.mitre.org/) to inform their
cybersecurity strategy and educate themselves about attacker
tradecraft, read How To Use MITRE ATT&CK by Mark
Dufresne, Protections Team Lead at Elastic (https://ela.st/
attack-model).

Custom frameworks
Although we strongly recommend starting with one of the
standard frameworks, you can build on it or combine elements
of several frameworks to create a custom framework of your
own. No one knows your environment like you do.

For instance, if your organization spans a wide geographic
area, you could add time zone-based hunts to your rubric.
If certain servers contain key intellectual property, you may
want to view their logs to hunt for logins during unusual time
periods, or from specific network ranges. By adding awareness
of your specific environment into your threat framework, you
can enrich other searches and reduce the time necessary to
identify malicious activity.

It is worth taking the time to select or build an attack lifecycle
framework to guide your hunt, because it will help your team
members think like attackers and focus on the attack tech-
niques that are most likely to be used against your organiza-
tion. Concentrating on techniques in the early portions of the
attack lifecycle can help hunt teams prioritize detection well
before the adversary succeeds.

Chapter 2: Structuring Hunts | 13

TIP Don’t fall into the trap of looking only for threats associated
with your industry. You don’t know what you don’t know, and
threat groups can dynamically change targeting for reasons
defenders won’t always anticipate. Techniques developed for
one type of victim can inspire threats that target broad
audiences. Frameworks like MITRE ATT&CK can help you
apply a threat-agnostic approach.

Structuring a Hunt Process
Every hunt is different, but as we mentioned earlier, structur-
ing each one based on the scientific method helps you make
the steps repeatable and the results measurable. This section
focuses on applying the scientific method to hunt methodol-
ogy development.

ON THE WEB Robert M. Lee and David Bianco have written a great white
paper on hypothesis-driven threat hunting: Generating
Hypotheses for Successful Threat Hunting. (https://www.
sans.org/reading-room/whitepapers/threats/paper/37172)

Step 1: Propose a hypothesis
State a reasonable assumption about one or more adversaries
and the techniques they might use to enter or persist in your
environment. An example might be: “Bad actors are using the
native mofcomp.exe utility to maliciously modify the WMI
CIMv2 database.”

To avoid scope creep, consider restricting the number of hours
that you will spend during your hunt to prove or disprove your
hypothesis and identify systems that are out of scope. These
decisions will help narrow the focus of your hunt.

Step 2: Identify evidence to
prove the hypothesis
Identify the forms of evidence that could prove or disprove the
hypothesis and determine how that evidence can be collected.

To continue the example started above, you might enable
process execution auditing (Windows EID 4688 or Sysmon
EID 1) and begin aggregating:

14 | The Elastic Guide to Threat Hunting

 ; Process names, paths, and hashes

 ; Command line arguments

 ; File based artifacts

 ; Any network destinations or domain names captured

Sysmon returns the same information as detailed process
auditing in Windows and more. It provides more information
about parent processes, can provide multiple types of file
hashes, and describes network connections.

TIP Usually two or more forms of evidence are needed to prove a
hypothesis with a high degree of confidence. A single source of
evidence or visibility can turn out (usually at the most incon-
venient time possible) to be misleading or insufficient.

DON’T FORGET It is important to document the sources of evidence you have
chosen, and to ensure that data collected from each source is
consistent. Otherwise you may end up with pieces of data that
can’t be compared or combined. For example, if you plan to
match encoded data against keywords, you should make sure
a decoding operation takes place before that matching occurs.

Step 3: Develop analytics
Describe how the evidence can be reduced, grouped, and ana-
lyzed to reach a conclusion. Typically, this involves identifying
anomalous activities or sequences of events associated with
attacks. The application of human intellect and experience is
important during this phase. Your understanding of adversary
tradecraft and what normal looks like in your environment is
key to separating suspicious behavior from benign.

Techniques such as prevalence and enrichment (pulling in
external metadata to help determine if a given artifact can be
characterized as benign or malicious) can dramatically reduce
the human effort required for analysis. As you develop analyt-
ics, consider the tactical and strategic advantages of these
techniques in eliminating false positives and reducing the
amount of data you need to analyze.

Chapter 2: Structuring Hunts | 15

Step 4: Automate
Usually you can automate and schedule the processes of
collecting events, performing data reduction, and matching
keywords against data. Automation replaces manual processes
and frees your hunters to apply their judgement to the results.
Ideally, you can allocate tasks that don’t require knowledge or
experience to machines, while reserving those that do require
judgement to human analysts.

Step 5: Document
In the heat of an ongoing hunt, it is very tempting to process
yet more data and put off documentation until later – or
never. However, this is a tactical miscalculation. Usually it is
impossible to recall the details of the hunt after the fact: the
evidence collected, the types of analysis performed, the logic
to eliminate false positives, and the justification for the con-
clusions. This information will be lost unless it is documented
during the course of the hunt.

TIP Have experienced analysts record their methods for identify-
ing suspicious events. The guidance can be extremely valuable
to less-experienced members of the hunt team by bringing
them up to speed on the tactics of attackers and successful
hunt techniques. Consider creating a “training dataset” based
on some commonly-performed hunts that you can use to eval-
uate and train new analysts.

TIP While your analysts are documenting the details of the hunt,
ask them to highlight opportunities to reduce the volume of
data you collect. Typically, this involves filtering out known or
otherwise trusted events. This practice pays substantial divi-
dends, because cutting the amount of data retained ultimately
improves your ability to answer questions quickly.

Step 6: Communicate and report
You should decide at the beginning of a hunt what to com-
municate with management and when. This decision includes
when to declare that an incident has been detected, and how
often to provide updates on the progress of the hunt.

At the conclusion of the hunt you should create a record that
includes:

16 | The Elastic Guide to Threat Hunting

 ; The metrics of the hunt (discussed below)

 ; The root cause of any compromise detected

 ; The scope of affected machines, accounts, and
applications

 ; A description of the techniques detected

 ; IOCs to be used for detecting similar attacks

 ; Lessons learned and areas for increasing visibility
and improving future hunts

 ; Recommendations for changes to the organization’s
security controls

 ; A description of new analytics for detection and
alerting

TIP As your hunt team matures, track when your recommenda-
tions are made and how long before they are implemented.
These measurements will give you important clues about the
influence of the team.

DON’T FORGET Your organization should have a formal process for sharing
the results of hunts with leadership. It is critical to have an
executive sponsor with sufficient authority and responsibility
to promote the goals of the hunt team. Generally speaking, the
greater your executive support, the more influence your team
will exercise. Hunt teams should share the results of hunts,
improvements to visibility, findings, and resource costs with
this sponsor at least quarterly for wider socialization. Hunt
teams that skip this step will have trouble obtaining resources
and making improvements.

Transitioning to Incident Response
Hunt teams do not operate in isolation. At some point they
must decide whether to declare an incident and escalate the
evidence of malicious behavior to the incident response team
for further investigation and remediation.

Every organization has its own criteria for making this
decision. But if you find yourself in a gray area and need a
tiebreaker, step back and consider very basic characteristics of
your potential incident:

Chapter 2: Structuring Hunts | 17

 ; Are your organization’s data or critical business
operations at risk?

 ; Is the evidence localized or widespread?

 ; Is the evidence recent or has it been present in the
environment for a long time?

 ; Do the activities map to adversary tradecraft?

DON’T FORGET Having made your call and declared an incident, spend some
time thinking through the incident’s priority. Consider the
likelihood that this attack would target your business, indus-
try, or region. Estimate the impact it could have on your
enterprise. You want the incident response team to address
the highest risks quickly, but not be overwhelmed by incidents
that are unlikely to have much impact.

Measuring Your Hunt
Unless you can measure the results of your hunts, you won’t
know which ones are successful, if your team is improving
over time, or if you are producing important results for your
enterprise. Measuring the outcome of each hunt exercise
should be discussed during the development phase and
refined each time the hunt is performed.

Different kinds of metrics can serve different purposes. You
can measure how long it took to obtain the necessary data,
how many human hours were required to complete the
analysis, the average number of findings, and the total time to
complete the process.

Every hunt gives the team an opportunity to improve on each
metric that you have adopted.

ON THE WEB Learn more about measuring your hunts by watching the
presentation Quantify Your Hunt: Not Your Parents’ Red
Team (https://ela.st/quantify), given at the SANS Threat
Hunting Summit by Devon Kerr of Elastic Security and
Roberto Rodriguez.

18 | The Elastic Guide to Threat Hunting

Was the hypothesis confirmed?
For some hunts, the evaluation is binary: our hypothesis is
confirmed, or it isn’t. For example, let’s say the hypothesis
for a hunt is: “We can identify malicious activity by finding
unsigned binaries launched from persistent registry run keys.”
The result will be “yes” if you find unsigned executables that
were loaded from persistent registry run keys and you associ-
ate them with incidents. It will be “no” if you are unable to
find any unsigned run keys, or if you find some but determine
that they are benign.

A hypothesis needs to be sufficiently detailed so that analysts
running the hunt can prove or disprove it. Sometimes a
hypothesis is too generic to be proven. One common example
is: “We can hunt for and find persistent malware.” That is
too vague to produce useful results. A more meaningful
hypothesis would be something like: “We can find common
registry-based malware persistence that leverages Run,
RunOnce, ActiveSetup Installed Components, AppInit_DLLs,
and Services registry keys.”

TIP If you’re just getting started, consider a hunt for each cell in
the ATT&CK matrix. You can combine related cells, such as
those related to persistent techniques, for group analysis.

How effective was the hunt?
One measure of the effectiveness of a hunt is the number and
severity of incidents and issues it uncovered. You can measure
and report the number of:

 ; Vulnerabilities discovered, and recommendations
provided

 ; Incidents discovered, grouped by threat category

 ; Compromised systems discovered, grouped by sever-
ity of the compromise

 ; Days of dwell time for each incident discovered

 ; New attacker tactics uncovered

Chapter 2: Structuring Hunts | 19

TIP Some hunts may not produce findings of any kind, but that
does not mean they were failures. Quite the contrary; some-
times the only way to detect a technique is by collecting rou-
tine data to use as a baseline of normal behavior. When the
result(s) of the hunt appear to be negative, it is all the more
important to document the process and outcomes.

How effective was the team?
You can also try to measure the effectiveness of the team and
its impact on the organization, and how those factors change
over time. Possible metrics include:

 ; New sources of evidence integrated into hunt
processes

 ; New methods of data reduction and improvements
in searching technology

 ; Reductions in false positives of incidents

 ; Hunts escalated to investigations

 ; Investigations resulting in ongoing attacks being
blocked and remediated

 ; Vulnerabilities and bad behaviors corrected as a
result of hunt reports

20 | The Elastic Guide to Threat Hunting

Elastic and the MITRE ATT&CK™ Matrix
To be effective against today’s
sophisticated attackers, security
programs must operate with a
comprehensive model that covers
the full scope of techniques used
by adversaries.

At Elastic Security, we leverage
an open source framework, the
MITRE ATT&CK™ matrix, to help
enterprise teams transform their
security programs.

1. C omprehens ive scope of
protection

Elastic covers the breadth and
depth of the MITRE ATT&CK™
matrix, with prevention, detection
and response, and automated
hunting. At Elastic, we recognize
that focusing on a few tools or
attack vectors is not enough, but
rather think about the techniques
and tactics of the attacker. The
MITRE ATT&CK™ matrix provides
a comprehensive landscape that
Elastic leverages in its preventions
and detections.

In addition to building capabilities
across the ATT&CK™ matrix, the
Elastic team has collaborated with
MITRE to detect new tactics such as
COM Object Hijacking. This tactic is
often used by attackers to execute

code by manipulating Microsoft’s
Component Object Model (COM),
specifically its software classes in
the current user registry hive, and
enabling their persistence on an
endpoint.

2. Validating the efficacy of our
platform

Elastic is the first endpoint security
vendor to collaborate with MITRE
to validate the efficacy of its
platform beyond malware-based
attacks. To measure Elast ic ’s
performance against sophisticated
attacks, MITRE simulated the
tactics used by APT3, a prolific
Chinese APT group responsible for
intellectual property theft costing
companies over £9.2 billion ($12.5
billion) a year. This attack used
more than a dozen techniques
to gain and maintain access,
including PowerShell misuse,
credential dumping, scripting, and
persistence.

You can learn more about Elastic’s
c o m m i t m e n t t o t h e M I T R E
ATT&CK™ matrix by reading How
To Use MITRE ATT&CK (https://
ela.st/attack-model) by Mark
Dufresne, Protections Team Lead
at Elastic.

Chapter 3

Hunting for Fileless
Attacks

In this chapter

 Understand the two forms of fileless attacks and how they work
 Learn how to detect in-memory attacks
 Discover techniques for determining if administrative tools are

being used by real administrators or by attackers

Recently hackers have dramatically increased their use
of fileless attacks, also known as non-malware or zero-

footprint attacks. Fileless attacks can seem particularly intimi-
dating to beginning hunters because there are no recognizable
malware files or malicious tools that can be located on a hard
drive. There are techniques for detecting them, though.

Two Forms of Fileless Attack
The term fileless attack is a blanket term to describe two
different adversary techniques: using tools and applications
already present on a host (“living off the land”), and malware
that is memory resident without a filesystem component. Let’s
examine the difference and demystify the terms.

Living off the land
As its name implies, living off the land describes techniques
used by attackers to conduct their operations with tools
already on a host. Often these are administrative tools or
operating system features which, unfortunately, are often
more powerful than any custom malware the attackers might
build themselves.

22 | The Elastic Guide to Threat Hunting

One very popular example is PowerShell. PowerShell is
both a language and an administrative framework built into
Windows. It exposes hundreds of commands, called cmdlets,
to attackers. Like WMI, it extends all the built-in functions
of Windows system programs to allow attackers to enumer-
ate, move laterally, persist, and execute. These activities
and others can be performed via a simple script or using the
PowerShell console.

Some PowerShell methods allow an adversary to grab the con-
tent of a script from a web location and execute it in memory
– without saving the content of the script to the victim system.
In this sense the technique is both living off the land with the
native PowerShell framework and executing malware (in the
form of a script) in memory.

TECH TALK This behavior isn’t that unusual. There are plenty of built-in
tools that can interpret a script in this way. For example, the
Windows Script Host (WSH) executables wscript.exe and
cscript.exe interpret Jscript or VBScript; HTA scripts
(JavaScript) can be loaded by the mshta.exe binary.

ON THE WEB To learn more about how attackers misuse PowerShell, just
run a quick web search for “PowerShell + hacking.” You will
see numerous blogs, videos, presentations, and news head-
lines. The MITRE page for PowerShell is: https://attack.mitre.
org/techniques/T1086/.

PowerShell isn’t the only tool at risk of being exploited by
hackers. Any local application or piece of software that allows
arbitrary code execution is in danger of being found and
leveraged by hackers. Benign tools like Sysinternals BgInfo,
which are meant to print system information to the desktop
background as wallpaper, can be abused by threat actors to
execute malicious VBScript. When hunting these types of
techniques, remember that the native tools are likely to show
up as trusted, so to find evil you need to look at the things
they’re interpreting.

ON THE WEB To see a more encompassing list of binaries and scripts that
can be used to live off the land for both Windows and Unix
systems, the following GitHub projects are good references:
https://lolbas-project.github.io/ and https://gtfobins.
github.io/.

Chapter 3: Hunting for Fileless Attacks | 23

In-memory malware
Another type of fileless attack represents a more literal
definition of “fileless”: memory-resident malware. For this,
attackers inject a malicious payload into applications that are
already running.

This technique can be used to evade controls like some
application whitelisting and antivirus solutions, because
the attacker’s code executes in applications that have been
approved by the organization.

Part of the reason why the use of in-memory attacks is
growing so rapidly is that they are no longer the province of
sophisticated attackers alone. Off-the-shelf offensive frame-
works freely available on the web enable entire categories of
such attacks. These frameworks have dramatically reduced the
barrier to entry for threat actors of all experience levels.

The Race to Detection
Why do attackers employ fileless techniques? That’s simple:
because they evade detection by many existing cybersecurity
tools that attempt to identify attacks by finding malware.
Many anti-malware products, enterprise and open source
alike, struggle to stay at the forefront of this race because
adversaries can find circuitous ways to evade them. A product
that can inspect a downloaded PowerShell script, for example,
may not be able to inspect one that is heavily obfuscated, or
that is stored in a registry key and piped as input to a running
process.

Fortunately, even fileless attacks create artifacts that provide
evidence of techniques used by attackers.

Be a Blue Team Champion
Does your company have red
team-blue team exercises? Are you
a blue teamer?

If so, learn how to detect liv-
ing off the land techniques. Red
teamers are notorious for using
these methods. Many of them are

incredible administrators because
they know Windows systems so
well. By mastering hunt techniques
to detect these methods, you
can become a famous blue team
champion!

24 | The Elastic Guide to Threat Hunting

Anatomy of an In-Memory Attack

Initial infection
The initial stages of an in-memory fileless attack are not too
different from those of a conventional malicious campaign.
Fileless attacks often utilize spear phishing and drive-by
downloads to compromise their victims and gain a foothold on
the network.

Stagers and cradles and
droppers! Oh my!
When talking about malware, practitioners often refer to
malicious payloads using the terms “stagers,” “cradles,” and
“droppers.” While these aren’t interchangeable, we can discuss
them generically as a class of malicious files used to introduce
additional files or scripts – often hosted publicly on the web.

Some of these can be described as outright malware, where
the malicious payload is embedded within another file type
such as a DLL and extracted on a victim system before being
executed. Other droppers might be a script that simply
contains a request to download additional malware or scripts.
Still others download a stream of shellcode and execute it in
memory, either whole or in parts.

In-memory execution
Ultimately, a malicious payload will be executed. An in-
memory attack may take the form of process injection, process
hollowing, or side-loading.

In the case of process injection, the malware creates or allo-
cates some space in process memory, then creates a remote
thread to a section of memory within a legitimate process.
This process is illustrated in Figure 3-1.

Chapter 3: Hunting for Fileless Attacks | 25

Spam campaign or
browsing to a malicious
site

Download the
dropper

Creates malicious
payload

Executes in
memory

Figure 3-1: Fileless attacks often use a dropper to deliver a mali-
cious payload that executes in memory.

ON THE WEB For an in-depth look at process injection techniques, see the
Elastic blog post: Ten Process Injection Techniques: A
Technical Survey of Common and Trending Process Injection
Techniques (https://ela.st/injection-techniques).

Approaches to Hunting
for Fileless Attacks

Isolated memory forensics
One approach to finding in-memory attacks is to examine a
capture of system memory. There are plenty of tools available
to assist in the forensic analysis of memory. For example, you
can use tools like Volatility, which comes with a suite of built-
in plugins, to find injected code residing within legitimate
applications.

Investigators have successfully used tools like Volatility,
margaritashotgun, and PowerForensics to acquire process
memory and apply analytics at scale. For hunting purposes,
you should parse metadata from memory. Usually that only
requires collecting a few hundred megabytes of metadata per
system.

Aggressive approaches like collecting full memory captures
are impractical when you are working at enterprise scale,
because they might require collecting as much as 16GB from
each workstation and 128GB from every server.

26 | The Elastic Guide to Threat Hunting

Drowning in noise
What about living off the land techniques?

You can start by looking for “typical” usage of administrative
tools. You will probably generate mountains of data. You will
find lots of anomalies to investigate (oh boy!). Then you will
spend days discovering all the bizarre and unexpected ways that
users and admins operate while doing their legitimate jobs.

DON’T FORGET An anomaly is not automatically suspicious. Some anomalies
are just noise. If you find too many false positives, either
reclassify what you consider anomalies or find another
behavior to monitor. Hunt teams should establish
relationships with IT and network operations groups.
Working together saves time and helps analysts put anomalies
in context.

Technique-Based Detection
Threat hunting in memory
There are several open source tools to help you examine
memory to find evidence of malicious behavior. One is the
PowerShell library Get-InjectedThreads, developed by Joe
Desimone of Elastic Security and Jared Atkinson. In a rela-
tively low-noise approach, this tool scans active threads on
the system for suspicious start addresses that may indicate
process injection has occurred.

TECH TALK For example, an attacker might call VirtualAllocEx to allocate
space for malicious code to execute, and then utilize
CreateRemoteThread or another API call to execute the mali-
cious code within another application. Get-InjectedThreads
will retrieve the start address of each active thread, then
determine the associated section properties. If there is an
observed executable running within this section, it is deemed
to be injected. But keep in mind that some legitimate applica-
tions perform process injection (and you might also run across
an injected thread and alert).

ON THE WEB For a presentation describing threat hunting in memory in
detail and explaining how to use Get-InjectedThreads, watch
the Taking Hunting to the Next Level video from the SANS
Threat Hunting Summit.

Chapter 3: Hunting for Fileless Attacks | 27

Timing is everything
A theme throughout this guide is how you can use time to
assist you in your hunt, or more precisely, how determining a
sequence of events can point to malicious activities.

In a living off the land scenario, the attacker wants to launch a
native admin tool to execute malicious commands. But while
the tool may be nothing out of the ordinary, like PowerShell,
the way it is launched may indicate malicious intent. If you
examine the parent process lineage of PowerShell or other
admin tools, you might find some interesting artifacts.

For example, you might observe a local admin tool being
executed as a child process of your email application a few
minutes after an email is received. This is a good indicator
of initial compromise, perhaps the result of a spear phishing
attack.

Another example would be seeing many enumeration com-
mands (such as ipconfig, net *, whoami, systeminfo, sc, or
netstat) being run in a very short time. This behavior would be
consistent with an attacker’s attempt to quickly discover more
about a network by running these commands manually or
from a script. System administrators use the same commands,
but not all of them, and not within a few seconds.

Searching for intent
As we noted earlier, attackers may try to look like administra-
tors in your network, but they do different things. You can
look for running admin applications that are exhibiting non-
admin behaviors.

See if you can find unusual command line parameters. For
example, you might identify PowerShell being executed with
encoded parameters, hidden windows, or other unusual
execution parameters such as “* -e *”, “* -en *”, “* -ec *”, “*
-en* *”, and “* -ep *.”

You can also search for native Windows applications that
allow code execution like installUtil.exe, regsvr32.exe,
regasm.exe, or even rundll32.exe. Look for these signed and
trusted applications being executed, and closely examine the
command line parameters and contents of memory sections

28 | The Elastic Guide to Threat Hunting

allocated. If some of these tools appear without command line
arguments, it may be an indication that a thread had been
suspended for injection.

Finally, you can hunt for suspicious network activity associ-
ated with local tools. If you see a lot of outbound connections
from tools designed for internal system maintenance, it is
probably not the work of legitimate systems administrators.

Elastic Threat Hunting in Memory
Techniques

The increas ing popular i ty of
memory-resident malware reflects
its success evading detection by
security products and practitioners,
as well as the proliferation of code
and knowledge related to in-
memory techniques.

Elastic employs layered protection
to prevent fileless attacks. We
d o no t s i mpl y re l y on na ï ve
approaches like monitoring well-
known system call sequences for
process injection, but efficiently
analyze memory to find all known
evasion capabil it ies. Elastic’s
endpoint security platform has
built-in detections for techniques
including shellcode injection,
reflective DLL injection, memory
module, process and module
hollowing, Gargoyle (ROP/APC),
and many more, offering the best
available capabilities for locating
in-memory threats. Combining
pre-attack and ongoing attack
prevention at the kernel and
user leve ls of the operat ing
system, Elastic ensures complete
protection against fileless attacks,
regardless of when in the attack
lifecycle the agent is deployed to
endpoints.

Pre-attack prevention: Elastic
prevents fileless attack techniques
like shellcode injection and DLL
injection. Kernel-level analysis,
performed on every executing
thread, stops fileless attacks before
an adversary can gain a foothold in
memory. Once a fileless attack is
blocked, the analyst gets an alert
providing complete visibility of the
origin and the full extent of the
attack.

Ongoing attack prevention: To
find adversaries resident in mem-
ory, Elastic automates in-memory
analysis and identifies techniques
such as memory modification,
memory injection, hidden mod-
ules, and packed and encrypted
areas in memory. It provides cover-
age across unlimited endpoints in
minutes, with no end-user impact.
Unlike other solutions, Elastic Se-
curity allows analysts to proactively
root out advanced attackers before
any data theft and loss. With a few
clicks of a button, analysts can stop
fileless attacks at scale across the
enterprise.

Chapter 4

Hunting for
Persistence - Basics

In this chapter

 Learn why attackers need persistence, and why it can be their
Achilles’ heel

 Review basic techniques for hunting for evidence of
persistence

Why Adversaries Need Persistence

Some intruders can reach their targets during the first
rush of their attack. They gain temporary access, just

enough to complete their mission, and then withdraw, clean-
ing up as they go.

Much more often, however, adversaries have to play a long
game: establishing a beachhead on one host, maintaining
contact with an external server they control, obtaining new
credentials, moving laterally to other systems, locating targets,
obtaining data, and then exfiltrating data. To do this, they
must be able to maintain a presence in the victim’s environ-
ment that survives reboots and access interruptions.

For this reason, persistence is usually one of an attacker’s first
objectives. After all that work to access the victim’s system,
why risk losing control because of a power outage or a soft-
ware update that forces a restart?

In some complex intrusions, establishing persistence is a
cyclic process that ebbs and flows based on factors like shifting
adversary goals, changes to the environment, and interaction
with the security team. As attackers compromise additional

30 | The Elastic Guide to Threat Hunting

systems, they may install more tools and malware to afford
themselves more persistent footholds. Some organized threat
actors even install multiple types of malware, with different
forms of persistence and capabilities, so that even if one or
two are discovered they retain a presence on other hosts.

TIP It can be perilous to try to clean up infected systems. If a
threat group has deployed multiple forms of malware with
different persistence mechanisms, you may miss some. It is
safer to rebuild infected systems from a trusted image. If you
do decide to clean up, make certain the affected hosts are
restricted to minimal access from the local network and can
communicate only with trusted destinations.

Their need is your opportunity
But persistence is the Achilles’ heel of many attackers. You
can find persistence mechanisms and use them to begin
unravelling the chain of techniques used in the attack. While
a multitude of persistence techniques exist, the majority of
threats leverage just a handful, so in your hunts you can start
out by prioritizing the most common ones.

If you want to understand the tremendous number of persis-
tence options, look no further than the Beyond good ol’ Run
key series on the Hexacorn.com blog. Started in 2012, it cov-
ers dozens of the most common, uncommon, and rare meth-
ods of achieving persistence. You should take the time to
understand how each persistence method functions and how
it can be detected. Another technical blog with good material
on persistence is enigma0x3 at https://enigma0x3.net/.

You should also review the MITRE ATT&CK™ matrix section
on persistence at: https://attack.mitre.org/tactics/TA0003/.
Studying the tactics outlined there regularly will improve your
ability to identify and analyze persistence techniques at scale.

Even fileless attacks use persistence
Some security professionals are intimidated by fileless attacks.
But as we discussed in Chapter 3, you shouldn’t be. They are
simply a class of techniques that don’t depend on malware or
any other type of file stored on the host’s file system.

Techniques for fileless attacks include:

Chapter 4: Hunting for Persistence - Basics | 31

 ; Storing shellcode within a registry key value,
executed by a generally benign Windows application

 ; Storing a script within a data structure like the WMI
CIM or another database, executed by a script pro-
cessor such as the Windows Script Host (WSH)

 ; Using a PowerShell cmdlet to download malicious
scripts from a web location and passing them to one
of several utilities

 ; Using stored procedures to perform inline compila-
tion of C# or other code

But don’t confuse “fileless” with “undetectable.” Although
there are no tell-tale files pointing to an attack, there are many
types of evidence you can use to hunt for malicious execu-
tion. Many of the best involve finding evidence of persistence
mechanisms. You can examine the registry, audit running
processes, and audit process lineages of ancestors and their
descendants.

For example, if you decide to hunt for shellcode stored in a
registry key, it is a fairly trivial task to search all registry keys
for the shellcode representing a compiled binary. By perform-
ing a content search of registry keys for the executable file
header, you can identify suspicious keys in short order.

A compiled binary with an intact PE header will begin with the
hexadecimal string “0x5a4d” (for “MZ,” the initials of Mark
Zbikowski, one of the developers of the MS-DOS operating
system).

The Windows Registry
Many organizations begin hunting for persistence in the
Windows registry.

For those who haven’t been exposed to it much, the registry is
an improvement on host and application configuration man-
agement. Before the introduction of the registry to maintain
centralized configurations on a per-host basis, these settings
used to be stored in configuration files!

The popularity of the registry in threat hunting is due in part
to the array of free and low-cost methods for querying it.

32 | The Elastic Guide to Threat Hunting

These include PowerForensics and Sysinternals Autoruns,
powerful free tools that increase your visibility into a multi-
tude of persistence techniques.

You can start your search by investigating registry locations
that commonly contain evidence of persistence, such as Run
and RunOnce keys, and Windows Services keys. Although
these are only a handful of the keys in the registry, they are
used by a substantial percentage of malicious malware fami-
lies and samples.

If you subscribe to a threat feed that includes IOCs, you can
search for the registry keys mentioned in that feed. Set up an
automated process to collect the data, match it against IOCs,
and present the results to analysts as alerts. Manual IOC
matching is inefficient and unnecessary; those hours are bet-
ter spent advancing coverage of ATT&CK, implementing con-
trols, and performing meaningful analyses.

Technique-Based Detection
While it may be tempting to just match IOCs against your
available evidence and call it a success, that’s not really threat
hunting. This section focuses on techniques hunters can begin
with to detect persistence techniques. For most organizations,
this process begins by prioritizing sources of evidence, con-
ducting analyses, and using environmental awareness to help
reduce the volume of data.

TIP You can greatly reduce the volume of data you collect and
retain by profiling the base “gold” image of each system type
in your organization for default persistence locations.
Knowing the profile of workstations and servers when they are
deployed for the first time (including the known good meta-
data of executables, scripts, and other files) makes changes
from the baseline more obvious to analysts.

Data collection
Before you start collecting event data that can be used to
detect persistence techniques, it can be helpful to assess
which sources of evidence capture the metadata most
comprehensively.

Chapter 4: Hunting for Persistence - Basics | 33

Consider, for example, the challenges of monitoring changes
to the registry using Windows event logs. Many applications
use a registry key of some kind for persistence and overwrite
it every time the application starts and stops. Imagine this
occurring across a universe of 10,000 systems, around the
clock, for several years. The important changes can be cap-
tured with tools like Event Tracing for Windows (ETW) and
Sysmon.

When you consider the costs of using Windows and Sysmon
events for persistence hunting, be aware of the following EIDs
and events:

--Sysmon ID-- --Tag--

12 RegistryEvent Registry object added or deleted

13 RegistryEvent Registry value set

14 RegistryEvent Registry object renamed

--Windows events--

4663(S): An attempt was made to access an object.

4656(S, F): A handle to an object was requested.

4658(S): The handle to an object was closed.

4660(S) An object was deleted.

4657(S): A registry value was modified.

5039(-): A registry key was virtualized.

4670(S): Permissions on an object were changed.

TIP Unfortunately, relying solely on these events for hunting per-
sistence presents considerable challenges. If you don’t have
Sysmon or an easy way to parse Windows events, then
Sysinternals Autoruns is a great place to start. This is a free
tool (with command line!) to pull artifacts from your environ-
ment. The tool is configured to run automatically. You can
task it to run on your endpoints and retrieve persistent arti-
facts. We recommend storing the results in Elasticsearch or
another central repository that enables you to query your data
quickly, efficiently, and at scale.

34 | The Elastic Guide to Threat Hunting

TIP Windows isn’t the only operating system with a notion of per-
sistence. In fact, every operating system has various forms of
persistence. However, gaining visibility into persistence mech-
anisms at enterprise scale outside of the Windows world can
be challenging. One useful tool is OSQuery. Discussed in
Appendix A, OSQuery was developed by Facebook and
released to the public for use inspecting Windows, Linux, and
MacOS systems. OSQuery supports the ability to query a vari-
ety of persistence mechanisms.

Simple hunts for persistence
Once you have some events and artifacts, you can begin con-
ducting hunts based on simple questions.

Ideally, each question should be focused on a single form of
persistence, for example:

 ; Across the enterprise, which persistent objects (exe-
cutables, scripts, etc.) are using Run or RunOnce
keys?

 ; Which daemons are running on Linux web serv-
ers? Are the hashes custom or part of the National
Software Reference Library (NSRL)?

 ; Which accounts are modifying persistence mecha-
nisms on MacOS systems?

 ; Which persistent objects are signed versus
unsigned?

 ; Do any persistent objects have a history of initiating
network connections (or even the ability to do so)?
Where to?

 ; Across the enterprise, which logon scripts are being
used when authentication succeeds?

 ; Which device drivers are persistent?

When you’re establishing your first hunts for persistence
mechanisms, tackle one cell of the Enterprise ATT&CK matrix
at a time. That enables you to measure discrete techniques.
After a while you will be able to move beyond these simple
questions and use more sophisticated strategies to search and
analyze the data, refine your processes, and make them more
efficient.

Chapter 5

Hunting for Persistence
at Scale

In this chapter

 Review techniques for collecting and analyzing data across the
enterprise to find evidence of persistence

 Understand how visualization can reveal key information
quickly and at scale

Taking It to the Enterprise

Many organizations begin with simple queries or
playbooks, then progress to more complex workflows.

In this section, we’ll look at a few types of analyses that
can be applied at enterprise scale. These include statistical
approaches like least-frequency analysis, and differential
analyses like baseline comparisons.

Questions to ask at scale
When you take an enterprise-wide perspective, you can start
asking questions like these:

 ; Of all scheduled tasks, named and unnamed, what
are the hashes of the JOB files themselves, and what
payloads have they executed? (Sort the results in
descending order by frequency)

 ; Which persistent binaries make network connec-
tions outside the environment, and are there any
seemingly unrelated persistent objects communicat-
ing with the same destinations?

36 | The Elastic Guide to Threat Hunting

 ; What is the distribution of certificate authorities
(CAs) associated with persistent objects across the
enterprise, and do any of those CAs have a weak or
poor reputation based on open source research?

 ; Which Windows persistence objects may be vulner-
able to search-order hijacking techniques? (Quick
hint: DLLs listed in the Known_DLLs key can be
eliminated first!)

The Elastic blog is a good source of information on advanced
techniques for persistence and how to find them. See, for
example: How To Hunt: Detecting Persistence & Evasion
With The COM (https://ela.st/com-persist).

Frequency and outlier analysis
Frequency-of-occurrence and outlier analyses are two com-
mon statistical approaches to finding evil, and they are good
ways to begin assessing your environment at enterprise scale.
It is a general principle that if the same persistent object is on
every system it is too common to be malicious.

Note that this principle is a guideline, not a rule. Self-
propagating malware like crypto-miner malware can spread
across an unguarded enterprise very quickly, creating persis-
tence mechanisms as it expands its foothold.

In addition to the statistically based analyses mentioned ear-
lier, you can consider answering questions like these:

 ; What payloads associated with any Windows-based
persistence mechanism occur least frequently? Most
frequently?

 ; What is the distribution of network connections
associated with previously unknown scripts and
executables on Linux systems?

 ; What rare and unique (based on hashes) volume
boot records (VBRs) exist across all endpoints?
What network locations and running processes are
unique to those endpoints?

Chapter 5: Hunting for Persistence at Scale | 37

TIP Don’t be discouraged if frequency and outlier analysis some-
times produce inconclusive results. Environments are hetero-
geneous, and you are probably dealing with (relatively) small
data sets. But don’t give up – sometimes these techniques
have a big payoff!

Comparative analysis
What better way to find suspicious persistence items than
comparing registry items to a baseline image (assuming you
have one)? Persistence is one area (among many) where
comparisons with baselines can be a very effective method for
data reduction.

If you compare persistence artifacts from your baseline (e.g.,
autoruns) against production systems, you can identify differ-
ences between those datasets. This isn’t a foolproof hunt, and
you may want to dig a little deeper before sounding the alarm,
but it narrows data for further inspection.

Some second-order analyses you can perform include examin-
ing signing certificates and SSL certificates used in network
communication, stacking DNS queries by time-t0-live (a
shorter TTL value means the DNS record is configured to
change IPs quickly), and looking at when associated fully
qualified domain names (FQDNs) were registered.

For a detailed discussion on how to create a Windows baseline
and use it for comparative analysis, see the SANS Institute
white paper: Quick and Effective Windows System Baselining
and Comparative Analysis for Troubleshooting and Incident
Response.

Temporal proximity
You can tell a tremendous amount from looking at the
sequence and timing of events: what we might call “temporal
proximity” or “contemporariness.” It is helpful to know
whether other interesting events occurred when persistence
mechanisms were created or changed.

For example, if a key was created or modified, what was the
order of the operations? Were there corresponding process
events preceding the creation or modification of the key in the
registry? If so, the process event is suspicious, and you should
investigate that key. You might want to ask:

38 | The Elastic Guide to Threat Hunting

 ; Was a file created and then executed before the key
change?

 ; Did the executable change the DNS servers config-
ured on the endpoint before resolving an FQDN to
an IP address?

 ; Did the executable immediately download and
execute scripts that communicated directly with IP
addresses we’ve never seen?

If these events aren’t consistent with patterns you recognize,
you should treat the process event as suspicious, and you
should investigate that system.

Data enrichment
It can be incredibly difficult to deal with the staggering vol-
umes of data found in modern enterprises. One way to gain a
little control is to improve your data quality through enrich-
ment. You can use popular methods such as:

 ; Setting up automatic searches of file hashes in
VirusTotal for sample behavior, NSRL membership,
and various types of vendor labels

 ; Checking signer information (untrusted files in the
registry could be malware)

 ; If you have a strict software install process, looking
for installed applications in the registry that don’t
appear on the approved list (the list should be small
if you examine a specific category such as run keys)

 ; Using a sandbox to determine the behaviors of
executables based on function imports and dynamic
execution

 ; Ingesting DNS history and searching for persistence
mechanisms that perform DNS lookups

During enrichment, try to capture and compare both local
and enterprise conditions. For example, if you observed that
HOSTA performed a DNS query for www.my-evil-domain.
org, make sure you capture what that FQDN resolved to at the
endpoint, and at a central location in your enterprise. Except
in a few exceptional situations, these should use the same
authoritative name server and resolve to the same address.

Chapter 5: Hunting for Persistence at Scale | 39

You are likely to find that applications using distributed DNS
will pop up here and there, but as you identify those excep-
tions, simply document them.

Visualization
Visualization tools can greatly strengthen your ability to
understand and interpret hunt data. They are especially
important when dealing with large datasets (and autorun data
sets quickly become very large).

There are many free tools for visualizing data. Here we discuss
some approaches to visualization using D3.js, a JavaScript
library that can be used to visualize data.

Here are examples of how you can use visualization to support
outlier analysis and category chaining to parse large amounts
of autorun data.

Visualization to find outliers
 Figure 5-1 is a D3.js radial plot of a type that we jokingly call
“the Persistence Flower.” The image in this guide is small, but
a larger version makes it easy to see which data points appear
as outliers.

Figure 5-1: A radial plot makes it easy to see which data points
appear to be outliers.

You can also use bar graphs and histograms to show data;
choose the visualization that makes it easiest for you to iden-
tify anomalies.

40 | The Elastic Guide to Threat Hunting

Category chaining
You can also present data in a hierarchical view. Sysinternals
autoruns provide a lot of useful artifacts, and with a visualiza-
tion tool we can assign levels to all data objects.

In Figure 5-2, D3.js creates a collapsible tree based on a hier-
archy we defined as having three levels: category, value, and
arguments. This visualization highlights a rogue PowerShell
script, and provides insight into scheduled tasks.

Figure 5-2: A collapsible tree provides a hierarchical view of data.

Information about D3.js is available on the Data Driven
Documents website.

Example: WMI
Windows Management Instrumentation (WMI) is Microsoft’s
implementation of web-based enterprise management
(WBEM). WBEM can be described as a way to manage your
enterprise using common interfaces. For practitioners who
have used WMI, this framework exposes a SQL-like command
line utility that is incredibly powerful for both administrators
and adversaries.

You can find more information about WMI and how it can be
maliciously used in two whitepapers: Abusing WMI to Build a
Persistent, Asynchronous, and Fileless Backdoor and WMI
for Detection and Response. You can also watch Devon Kerr,
team lead for Intelligence and Analytics at Elastic Security
giving a presentation: There’s Something About WMI.

Chapter 5: Hunting for Persistence at Scale | 41

Without leaving the WMI console, a person can query just
about any aspect of a Windows environment. You can use it to
gather data for hunting, and attackers can use it just as easily
to perform enterprise reconnaissance. WMI can also be used
to give malware persistence.

There are a few ways to accomplish this, the most popular
being the use of _EventConsumers and _EventFilters. There’s
an easy way to differentiate between them:

 ; An _EventFilter is a condition you test for, or a
trigger

 ; An _EventConsumer is the result of meeting that
condition

If you used an _EventFilter that tested for a specific user to
login, you could then configure an action like executing an
application.

This may sound obscure, but it’s really not that daunting.
There are many ways to query changes to WMI, such as WMI
itself, Sysinternals Autoruns, PowerShell cmdlets, and several
open source tools. If you want to query your environment
for _EventFilters and _EventConsumers, you could use the
following commands on each system:

Get-wmiobject -namespace root\subscription -query
“select * from _EventFilter”

Get-wmiobject -namespace root\subscription -query
“select * from _EventConsumer”

If this is your first time looking at common WMI persistence
mechanisms, you may need to put in a little work understand-
ing exactly what should be present. Most important, every
Windows system should have at least the BVTFilter and the
BVTConsumer, which are designed for use with Windows
servers. At least one of these should be present on systems
with Windows 7 and above, and they should launch a VBScript
called “kerncap.vbs.”

You should always confirm the presence of this VBScript and
verify that it has not been modified from a known trusted
hash. Here’s why: threat actors have learned that you can
overwrite this VBScript with malicious code on workstations
very easily, and with no consequences.

42 | The Elastic Guide to Threat Hunting

How Elastic Hunts for Malicious
Persistence

W i t h o u t a f r a m e w o r k a n d
intelligent automation, hunts can
be t ime-consuming, resource
i n t e n s i v e , u n f o c u s e d , a n d
unfruitful.

MITRE’s ATT&CK™ framework
provides an array of techniques
that can guide hunts in a structured
way.

Elastic Security provides tradecraft
analytics to hunt for malicious
persistence across all objects
within registries across an entire
enterprise environment. These
enable hunters to perform their
operations quickly and efficiently.
The platform automates processes
f o r e n u m e r a t i n g a l l k n o w n

persistence locations across a
network, enriching the data, and
performing a variety of analytics
that highlight potentially malicious
artifacts.

Elastic’s persistence hunts provide
analysts with a list of applications
configured to launch when a
system reboots. Our tradecraft
analytics for persistence provides
unique views that show uncommon
and anomalous data for tactics,
including COM Hijacking, Search
Order Hijacking, Phantom DLL
Hijacking, Multiple Hits, Filename
Masquerading, and many other
tactics that are covered across the
MITRE ATT&CK™ matrix.

Chapter 6

Hunting for Lateral
Movement

In this chapter

 Understand why attackers need mobility
 Review some of the ways attackers move laterally
 Learn how to determine when PsExec, a tool used by system

administrators, is being employed by an attacker for lateral
movement and remote execution

Detecting lateral movement is a great way to find evidence
of threats. You have to be careful, however, because the

same tools and protocols leveraged by threat actors during an
intrusion are sometimes used by system administrators for
benign purposes.

There are a few ways to classify lateral movement techniques.
Here we’ll refer to:

 ; Protocols that enable remote authentication, such as
SSH, SMB, and RDP

 ; Frameworks designed for remote execution, such as
WinRM, WMI, and RPC

 ; Techniques that don’t rely on a protocol or frame-
work to support remote access or execution, such as
the “Sticky Keys” feature abuse

44 | The Elastic Guide to Threat Hunting

Why Adversaries Need Mobility
Sometimes threat actors know in advance what users or
systems to target to complete their mission. Far more often,
though, an attacker who gains a foothold in your enterprise
has to undertake a discovery process to gain information
about hosts, users, and data of interest. Once a target is identi-
fied, the attacker must move across the network to obtain
what they need before the environment becomes hostile.

To move laterally, threat actors often employ tools built into
operating systems, such as SSH, Windows Management
Instrumentation (WMI), and Windows Remote Management
(WinRM). Other times the attacker introduces a tool like
Windows Sysinternals PsExec. Several of these tools have the
option of specifying a target username and password, while
others are capable of using the current user context and trans-
parently authenticating to a remote system.

Attackers can even use multi-purpose features of operating
systems. An example is the notorious Sticky Keys Attack. This
attack has been employed to escalate privileges, enable lateral
movement, and provide a makeshift backdoor to hosts. It
works because a hidden but well-known accessibility feature
allows a user to press the SHIFT key several times to trigger
access to an on-screen keyboard. A very minor change to
either the registry or filesystem is all it takes to trigger access
to the Windows console “cmd.exe.” This attack is classified as
technique T1015 by MITRE in ATT&CK™ and applies to sev-
eral other applications.

Some adversaries are capable of exceptionally accurate target-
ing, precluding the need for lateral movement. This reinforces
how important it is for organizations to pursue maximum
coverage of their chosen attack framework – such as the
MITRE ATT&CK matrix – and the benefits of implementing
security controls that inhibit features your organization
doesn’t use for day-to-day operations.

Chapter 6: Hunting for Lateral Movement | 45

An Example: Hunting for
Suspicious Use of PsExec

At first, hunting for lateral movement can seem like an uphill
battle. That’s because attackers and system administrators
often use the same tools and techniques to move laterally. But
the process need not be terribly daunting if you “eat the whale
one bite at a time.”

In this section we discuss how to detect evidence that some-
one is using the Sysinternals PsExec tool to interact with a
remote system in an unauthorized manner.

About PsExec
PsExec, a utility included in the Sysinternals PsTools suite of
software, is one of the more common lateral movement tools
associated with remote execution. It is described in product
literature as a “telnet replacement” that can be executed using
the Windows console or via third-party software.

PsExec has been widely adopted by administrators at organi-
zations of all kinds and is regularly encountered on Windows
systems. However, attackers were quick to adopt it for the very
same reasons as administrators. In an environment where
both admins and adversaries have the same tools, discovering
malicious actions can be extremely challenging.

If your organization doesn’t employ PsExec, you should imple-
ment controls that prevent it from being used and treat any
detected use of PsExec as a security incident.

Technique-based detection
PsExec is a unique tool for lateral movement and remote
execution (a) because it isn’t native to the operating system,
and (b) because of the way it works.

PsExec starts the remote logon process using supplied cre-
dentials and performs a quick check to see if it can copy a file
and execute it using the hidden $ADMIN share on the target
system.

If no errors are received, it unpacks a binary from within
itself, “PSEXESVC.EXE,” which is executed on the remote

46 | The Elastic Guide to Threat Hunting

host as a temporary service (PSEXESVC) and then deleted. If
$ADMIN isn’t available, PsExec will try using another hidden
share, $IPC.

TIP There are several hidden shares exposed on every Windows
endpoint by default, but they are relatively easy to disable
through an update to Group Policy (GPO). If you don’t require
these hidden shares for a legitimate business purpose, you
should disable them so they can’t be used by adversaries during
the reconnaissance and lateral movement phases of an attack.

Examine Event Logs
You can capture evidence of the use of PsExec on target sys-
tems by examining several sources of forensic data, which vary
according to the target operating system.

Sources of evidence found in Windows events logs include:

 ; EID 5145, which contains metadata about requests
for access to the hidden $ADMIN and $IPC shares;
these logs indicate the responsible process (look for
PsExec)

 ; EID 5140, which indicates a share was successfully
accessed, may confirm that an attempt succeeded,
as well as the account used and other supporting
evidence

 ; EIDs 4697 and 7045, which record service creation,
may capture the installation of the temporary
PSEXESVC service

 ; Detailed process execution information, captured in
EID 4688 events that can identify the use of PsExec
on both source and target systems, including full
command line arguments

 ; Sysmon, a free logging utility that captures detailed
process execution in EID 1 and includes parent
process, network, and user metadata

Teams with access to these sources of evidence should begin
by assessing how commonly PsExec appears in the environ-
ment, and whether it is known to be used legitimately. From
there, they can identify which systems are common sources
of PsExec for remote execution, and which accounts are most
commonly used for authentication.

Chapter 6: Hunting for Lateral Movement | 47

TIP Coordinate with IT and network operations to better deter-
mine if common tools, accounts, and systems are legitimate.
Most security teams don’t have the environmental awareness
necessary to understand how these resources are used.
Relationships with operations groups can also be leveraged
during an incident to mobilize a response, support data collec-
tion, and implement preventative controls and enhanced
logging.

For a primer on investigating the use of PsExec, watch the
video of this presentation by Matt Bromiley and Brian Marks:
Skynet Will Use PsExec When SysInternals Go Bad (https://
www.youtube.com/watch?v=_4c5RdqwHgI).

How much data do you need?
Organizations building out a hunt capability may feel com-
pelled to enable excessive logging to cover techniques like lat-
eral movement with PsExec. Retaining the events associated
with NTLM and KERBEROS authentication is an excellent
decision, but for every minute of system activity many dozens
of individual records may be created.

In contrast, the logs associated with share access change
much less frequently, so you don’t have to search through so
much data. For that reason, you can get started by focusing on
EID 5145 events and hold off for a while on other sources of
evidence. In the next section we’ll discuss analysis options for
this event type.

Analyze Metadata
We know, based on our understanding of PsExec internals,
that it will check the attributes of shares on the target system.
We also know, based on our understanding of the Windows
operating system, that checking those attributes is something
that generates an EID 5145 event.

Begin by analyzing EID 5145 events. These include the follow-
ing types of metadata:

 ; The time the event was recorded (will vary)

 ; The source of the request (Service Control Manager)

48 | The Elastic Guide to Threat Hunting

 ; The name of the service (PSEXECSVC, but note that
this is configurable)

 ; The service executable (%systemroot%\psexecsvc.
exe, also configurable)

The service name and executable created on the target are
configurable by an adversary. That shouldn’t be a major stum-
bling block when it comes to accessing hidden shares, though.
Analysts need to understand all the valid services that query
share attributes and lead to the generation of these events.
In your environment, you should be documenting these valid
services. That way, when you see a service with an odd name
like “WjjNnsdsd12sdkj” trying to access the $IPC share, you
can be certain something is fishy.

Analyze Process Events
In addition to logs of share access and service creation events,
evidence of process execution (either native or via Sysmon)
can help to reveal the questionable use of PsExec and other
malicious executables.

For analysis of running processes, a generic approach can
be helpful for getting started. This might consist of asking a
few important questions about each process you observe, for
example:

 ; What was the application and the application meta-
data (filename, path, hash, size, PE version informa-
tion, command line arguments, etc.)?

 ; Was it recorded during a known operational
window?

 ; Was a valid account associated with the execution,
and was this account used during its normal opera-
tional window?

 ; Was the process associated with network activity?

TIP It is a good practice to capture detailed process execution data
for all systems. However, some enterprises may find capturing
share access events is sufficient for hunting. By forwarding only
specific events from endpoints to a central location, you might

Chapter 6: Hunting for Lateral Movement | 49

be able to have your cake and eat it too. Retain the most impor-
tant events in a central location for hunting, while keeping
several days’ worth on endpoints for investigative purposes.
New process creation auditing can be enabled on Windows,
which causes 4688 events to be recorded. These logs contain a
wealth of valuable information about processes but can gener-
ate a substantial amount of data. A 4688 event, generated on
the source and target, contains:

 ; The time the event was recorded

 ; The user context (account ID, name, domain, ses-
sion ID)

 ; Process metadata (ID, full path to executable, privi-
lege token, parent process ID, parent process full
path, full command line)

Think how much faster you could assess whether PsExec is
being used for legitimate purposes if you could see exactly
how it is used (a thought that applies to any process, not just
PsExec!).

Find out how your system administrators and other autho-
rized personnel use tools like PsExec. Taking this information
into account will dramatically reduce the number of false posi-
tives you need to sort through. If you’re using a specific ver-
sion, with a specific hash and other metadata you’ve docu-
mented, it is even easier to detect legitimate use of these tools.

Analyze Command Line Arguments
For analysis, helpful metadata includes details associated with
the process itself. Of these, command line arguments are the
most useful. Adversaries can change some of the attributes of
PsExec to hide their tracks, but they can’t alter the command
line arguments it accepts.

Let’s look at a quick example where the PsExec utility on the
source has been renamed “termsvr.exe”:

termsevr.exe \\HOSTA -u
HOSTA\administrator -p
probably.shared.admin.pw –accepteula -s -r
TerminalServiceManager

50 | The Elastic Guide to Threat Hunting

This command executes PsExec (termsevr.exe) to run on
a remote system (HOSTA) using the local administrator
credentials (local administrator) and the password (“probably.
shared.admin.pw”). The “—accepteula” flag automatically
accepts the EULA to prevent interrupted execution, while
modifying the registry on the target. The “-s” flag escalates
privileges to SYSTEM when possible. Finally, the “-r” flag
instructs PsExec to run as a different service on the target
(TerminalServiceManager).

If you were looking for the “PSEXESVC” service or the
“PSEXESVC.exe” service executable, you’d be sorely disap-
pointed. However, you could look for any executable that uses
the “—accepteula” flag and the “\\” network resource prefix.

You can combine this information with the event log metadata
we’ve already discussed to develop an understanding of both
normal and abnormal use of PsExec for lateral movement and
remote command execution.

Elastic Point of View
Elastic Security provides coverage
across the techniques of the MITRE
ATT&CK™ matrix. Elastic helps
organizations pinpoint evidence of
lateral movement, including:

• Remote scheduled task (at.exe,
schtasks.exe) on SOURCE

• Net share access on SOURCE

• PsExec on SOURCE (assumes
default executable names) and
TARGET

• R e m o t e s e r v i c e (s c . e xe ,
services.exe) on SOURCE

• WMI (wmic.exe) on SOURCE
and TARGET

• Po w e r S h e l l Re m o t i n g o n
TARGET

Chapter 7

Credential Theft

In this chapter

 Understand why attackers need to capture and exploit user
credentials

 Explore an example of a credential theft technique –
KERBEROASTING – and how it can be detected

Credentials are to attackers what bearer bonds are to bank
robbers: whoever holds them, owns them. The threat

actor who captures the right credentials can access systems,
data, networks, and applications almost at will.

In this chapter we discuss why capturing credentials is so
important for threat actors, the most common methods
they use, and typical targets. We also look at a common
KERBEROS-based attack as an example, and at techniques
you can use to detect credential theft.

Survival by Any Means Necessary
As reluctant as security professionals are to admit the fact,
attackers rarely face much of a challenge gaining a foothold in
victim environments.

Once inside, however, the threat actor faces a series of
hurdles. The first of these is understanding the configuration
of the environment. Like a burglar in a dark house at night,
the attacker needs to quickly discover the layout, including
the people and the targets (in this case the users, data, and
systems of interest).

Even with the discovery process complete, however, the job is
far from over. The attacker must find ways to escalate privi-

52 | The Elastic Guide to Threat Hunting

leges, acquire the ability to move around freely, and map the
interesting places.

You should not be surprised to find that there are many ways
to capture valid credentials. Among the multitude of options
are:

 ; Cracking NTLM hashes (which still works in many
environments)

 ; Dumping clear-text credentials from the Local
Security Authority Subsystem Service (LSASS)

 ; Using Silver and Golden Ticket attacks (both very
popular)

 ; Cracking KERBEROS service tickets
(KERBEROASTING) with weak passwords

To illustrate how attackers work, we examine
KERBEROASTING, a common way to obtain credentials.

Example: KERBEROASTING

The basics of KERBEROS
KERBEROS is used in Active Directory environments to
authenticate users. It is one of the most popular security sup-
port providers (SSPs) – otherwise known as authentication
protocols – available for Windows.

When users on HOSTA want to log onto HOSTB, they type in
a domain username and password, and immediately find out
if the authentication is successful. Behind the scenes, though,
Windows takes a number of steps (illustrated in Figure 7-1):

1. The password is hashed, and an authentication request
is sent to the domain controller, which validates the
user and hash material.

2. The domain controller sends back a ticket-granting
ticket, or TGT.

3. With the TGT, a request is sent to the domain control-
ler on behalf of the user for a ticket-granting service
(TGS) ticket.

Chapter 7: Credential Theft | 53

4. The domain controller validates the TGS request and
sends back a reply with the TGS ticket.

5. The TGS ticket is handed off to HOSTB from HOSTA.

6. The user is able to access HOSTB from HOSTA.

Figure 7-1: The KERBEROS authentication process (diagram courtesy of
Sean Metcalf and adsecurity.org)

How attackers KERBEROAST
What is the problem? It concerns service principal names
(SPNs). Some SPNs are assigned to privileged groups such as
domain administrators. But domain controllers don’t care if
you query some or all SPNs without actually requesting access
to a remote system. As a result, an attacker can look up SPNs
with any valid account and use that information for targeting.

Here is how KERBEROASTING works. The attacker:

1. Phishes into the environment and gains a foothold on
the workstation of a domain user who is also in the
local admins group

2. Locally escalates privileges using the domain account
and uses a tool to obtain credentials (Benjamin Delpy’s
Mimikatz does this very well)

3. Uses a native Windows tool that doesn’t trigger alerts
to query the domain password policy and to query the
SPNs of all service accounts (because in the victim

54 | The Elastic Guide to Threat Hunting

environment those don’t ever expire, and they have the
same rights as a domain administrator)

4. Requests a TGS for one of the SPNs, and the domain
controller responds with an encrypted TGS ticket

5. Uses the Mimikatz output obtained earlier or a
dictionary wordlist, and a tool like Hashcat, to begin
cracking and obtaining the plaintext password of the
target SPN

Two Techniques for Hunting
Credential Theft

Technique-based detection
So, how can we uncover credential theft? The first approach
is our old friend, technique-based detection. In the case of
KERBEROASTING, you can enable auditing of KERBEROS
service ticket operations. This will record an event (EID 4769)
for each TGS request. You can then monitor these events
and look for patterns that don’t make sense for legitimate
users. For example, it is highly unusual for a single account to
submit multiple requests in a short timeframe. Yet you might
observe an event as noisy as a dozen or more records per day
for one user. Bingo!

For each TGS request, the record will also list the account, the
domain, the hostname from which the request was made, and
the encryption metadata. That information allows you to fol-
low up, confirm that credential theft has taken place, and take
appropriate actions to disable captured credentials.

Detecting host:user anomalies
Another method of detecting KERBEROASTING involves
looking for encryption flags that didn’t match the domain
default. This technique is not always reliable against sophis-
ticated attackers who have more powerful tools to support
KERBEROASTING, but it can still be effective in older and
smaller-scale environments.

The Elastic Security platform pro-
tects enterprises from credential
theft attacks that access passwords
in memory. For example, attackers
often use free, open source tools
like Mimikatz to dump and extract

cleartext passwords from LSASS.
Elastic stops credential access pre-
and post-execution by stopping
credential dumping, credential
manipulation, and credential theft.

Chapter 7: Credential Theft | 55

How Elastic Prevents Credential Theft

Appendix A

Getting Started

Organizations that are building their hunt capability from
the ground up can find it challenging to get started. The

free and open source resources in this appendix can lower the
barriers to entry. Readers should be aware that commercial
solutions may provide additional features and capabilities,
many of which are built on Elastic technologies.

This section describes resources applied to endpoints and tools
that can be used to configure event forwarding, aggregation,
storage, and analysis.

Endpoint Assets
The definition of endpoint assets has expanded recently to
include mobile and embedded devices in addition to Windows,
Linux, and MacOS systems. Here we focus on traditional
operating systems, which represent the biggest challenge for
organizations just starting out. For each type of endpoint, we
look at native logging applications and share log configuration
resources. This information will help you streamline your data
collection process and begin hunting faster.

Usually the default logging facility and settings of an operating
system will need changes to become useful for hunting.

Windows
Microsoft Windows includes some of the most popular client
and server software in production today. At the time of this
writing, Windows versions 7 and 8 are slowly losing ground
on desktops to Windows 10 – which includes a number of
unique security features and enhancements such as Device
and Credential Guard. Windows Server 2016 is considered

Appendix A: Getting Started | 57

popular, though 2008 and 2012 Windows Server versions are
still around.

The default audit policy for Windows is not sufficient for orga-
nizations that need to proactively identify threats. Fortunately,
for those who don’t have the means to deploy other logging
tools, this policy can be easily and quickly updated.

The following resources should help you quickly deploy a
powerful advanced auditing policy on Windows:

 ; Jessica Payne’s blog post on Windows Event
Forwarding (https://blogs.technet.microsoft.com/
jepayne/2017/12/08/weffles/)

 ; Additional WEF resources (https://social.technet.
microsoft.com/wiki/contents/articles/33895.
windows-event-forwarding.aspx)

 ; Sean Metcalf’s article on Securing Active Directory
(https://adsecurity.org/?p=3377)

An alternative to the default logging capability is Sysinternals’
Sysmon utility. Sysmon provides visibility into DLL loads,
detailed command line arguments, parent process metadata,
network connections, changes to the registry, and WMI inter-
action. The “sysmon-dfir” GitHub repository contains compre-
hensive information about deploying Sysmon for hunting.

Linux
The Linux operating system achieved a large and very stable
base of support many years ago and represents one of the larg-
est classes of endpoint software for desktops, directory ser-
vices, web servers, proxies, and numerous other applications.

However, few resources exist for gaining visibility into Linux
systems. By default, Linux logging includes authentication
data and cron events, but doesn’t provide much other vis-
ibility into historical process or network events. Modern Linux
systems may have one or more of the following installed:

 ; Syslog, an older and established logging service

 ; Rsyslog, which includes some improvements on
Syslog

58 | The Elastic Guide to Threat Hunting

 ; Systemd and journald, the logging facilities installed
on systems implementing Systemd for system
management

To achieve some of the same results that Sysmon delivers
for Windows, Linux systems can benefit from the Integrity
Measurement Architecture (IMA) system. IMA works with
other Linux auditing services to capture and provide process
execution metadata based on its configuration.

MacOS
While older version of the MacOS operating system included
large collections of logs in different formats, Sierra (as well as
the iOS10, WatchOS and tvOS versions) introduced unified
logging to replace syslog. The default logging, however, is more
useful for developers than for threat hunters and analysts.

Mobile
Many organizations permit their employees to supply their
own mobile devices, but these devices are rarely managed at
the enterprise level, even though they freely migrate between
corporate and non-corporate networks. This means an
adversary has a much easier time gaining a foothold through
a mobile device than through dealing with your layered corpo-
rate security stack, at least in environments where bring your
own device (BYOD) is allowed.

At the time of this writing, we have not found a default mecha-
nism for auditing authentication, process, or network events
on mobile devices. Further, we know of few open source
enterprise solutions – OSQuery does not provide support for
Android or iOS devices.

OSQuery and multiple
operating systems
Yet another option, which supports several operating systems,
is Facebook’s OSQuery. This agent-based application logs
almost 200 different types of events across Windows, Linux,
FreeBSD, and MacOS. The schema and query language use
a familiar, SQL-like format. OSQuery even offers options
for searching containers, file events, DNS requests, Amazon

Appendix A: Getting Started | 59

EC2 instances, hardware-based events, browser extensions,
software installs, and installed patches.

Aggregation, Storage, and Analysis
Generating the right events to the right level of detail is just
one part of an effective hunting capability. It is essential to
have a scalable capability to gather logs in a central place and
return relevant results to your queries.

The Elastic Stack
Many organizations are choosing to implement the Elastic
Stack, which is a collection of complementary tools:
Elasticsearch, Kibana, Beats, and Logstash.

The Elastic Stack can reliably and securely take data from any
source, in any format, and then search, analyze, and visualize
it in real time. The four tools handle different functions:

 ; Elasticsearch is a search and analytics engine

 ; Kibana lets users visualize data stored in
Elasticsearch, develop charts and graphs, and per-
form queries

 ; Beats is a family of lightweight, single-purpose data
shippers

 ; Logstash is a server-side data processing pipeline
that ingests data from multiple sources simultane-
ously, transforms it, and then sends it to a “stash”
like Elasticsearch via log ingestion

An excellent example of using the Elastic Stack to build
your own threat hunting solution is the “Hunting ELK”
(HELK) created by Roberto Rodriguez. (https://github.com/
Cyb3rWard0g/HELK)

Elastic SIEM
Many security operations teams need a solution that functions
out of the box for the majority of their use cases and utilizes a
Security Information and Event Management (SIEM) system
to query and analyze events that have been collected and
stored in a central location.

60 | The Elastic Guide to Threat Hunting

Elastic SIEM is a free app that enables security operations and
threat hunting teams to query, analyze, and visualize security
events quickly, efficiently, and at enterprise scale. It provides
network and host data integrations, shareable analytics based
on the Elastic Common Schema (ECS), and the ability to
explore security data with the SIEM app in Kibana.

Data Collection and Forwarding
After an organization has chosen endpoint software for
generating the right data and settled on a centralized place to
collect it, the task of getting the right data to the right place
takes center stage. There are many free and open source tools
to help with this, such as:

 ; Auditbeat, Syslog, Syslog-NG, and Rsyslog for
MacOS and Linux

 ; Windows Event Forwarding, NxLog, and
Winlogbeat for Windows

Considerations
Data quality is commonly overlooked by organizations devel-
oping a hunting capability. But data quality is important if
hunters are meant to efficiently and effectively identify threats
using it – especially if one objective is automation. To para-
phrase Roberto Rodriguez, author of the HELK distribution,
data must be:

 ; Complete – provided for every necessary field

 ; Consistent – reliably accurate and complete

 ; Timely – delivered in an up-to-date manner

For each type of endpoint, organizations should understand
what visibility is provided to them and should adopt a scoring
system for measuring those attributes.

Don’t fall into the seductive trap of scoring partial or unde-
fined coverage as complete coverage – this cannot be over-
stated. Instead, refer to the following blog post for a scoring
methodology: Ready to hunt? First, Show me your data!

Appendix B

A Hunt Cheat Sheet

This hunt cheat sheet is a resource you can use to look up
key information and ideas during your hunts.

Platform
We recommend using the Elastic Stack to store your hunting
data (DNS, Sysmon, ETW, etc.). Elastic provides a free SIEM
app that enables security operations and threat hunting teams
to query, analyze, and visualize their security events quickly,
efficiently, and at scale.

Additional resources:

 ; Getting started with the Elastic Stack
(https://ela.st/getting-started)

 ; Elastic SIEM for home and small business blog
series (https://ela.st/siem-for-home)

 ; @Cyb3rWard0g’s HELK - an open source hunt
platform with advanced analytics capabilities

IPV4 header format (network hunt)

62 | The Elastic Guide to Threat Hunting

DNS record (network hunt)
Domain Name: google.com

Updated Date: 2015-06-12…

Creation Date: 1997-09-15…

Ref: elastic.co, whois, docs.microsoft.com

Sysmon event (host hunt)
Event ID

1
Process creation - provides extended information about a newly
created process

2
A process changed a file creation time - file creation time is modi-
fied by process

3 Network connection - logs TCP/UDP connections on the machine

4
Sysmon service state changed - state of the Sysmon service
(started or stopped)

5 Process terminated -reports when a process terminates

6 Driver loaded - driver being loaded on the system

7 Image loaded - logs when a module is loaded in a specific process

8 CreateRemoteThread - a process creates a thread in another
process

9 RawAccessRead - detects reading operations from the drive using
the \\.\

10 ProcessAccess - reports when a process opens another process

11 FileCreate - file is created or overwritten

12 RegistryEvent (Object create and delete) - registry key/value
create and delete

13 RegistryEvent (Value Set) - registry value modifications

14 RegistryEvent (Key and Value Rename) - registry key/value
rename operations

15 FileCreateStreamHash - file stream is created

16 n/a - Sysmon configuration change (cannot be filtered)

17 PipeEvent - Named pipe created

18 PipeEvent - Named pipe connected

19 WmiEventFilter activity - logs when a WMI event filter is registered

20 WmiEventConsumer activity - logs the registration of WMI
consumers

21 WmiEventConsumerToFilter activity - logs when a WMI consumer
binds to a filter

22 DNSEvent - logs when a process executes a DNS query

255 Error

Appendix B: A Hunt Cheat Sheet | 63

Analysis Techniques

IOC matching
We are not recommending IOC matching, but are discuss-
ing it here for the sake of completeness. Matching involves
using IOCs to detect malicious activity. These can be file
attributes (hashes, filenames, import hashes), network
artifacts (domains, IP addresses), registry keys (key values,
key sources), and known compromised user accounts and
machines. This is a weak approach, because indicators have
short life spans and should be automated as soon as time and
resources permit.

Frequency and outlier analysis
Frequency and counts of artifacts help discover anomalies.
Anomalies do not necessarily represent suspicious activity,
but when used correctly they provide leads for investigation.
For example, DNS request counts show the occurrences of a
registry key, or the least occurring scheduled tasks and WMI
objects in the environment.

Comparative analysis
Comparative analysis uses a gold or baseline image to find
deltas. The gold image is the clean slate prior to any user
interaction. You can compare workstations to the baseline
image. This is especially important if your users are unable to
install new software or don’t commonly do so. Any deviation
from that baseline gold image might be an anomaly worth
investigating.

Temporal proximity
Using time can be very powerful because it relates to network
and event data. For instance, small packets being sent on a
routine time interval may indicate malware beaconing or show
Windows events in a sequential order. This can illuminate
malicious activity through executions like process create,
process execute, DNS request, network connection, process
terminate, and file delete.

64 | The Elastic Guide to Threat Hunting

Data enrichment
Public data sources and threat intel feeds are immensely
powerful for data enrichment. For instance, you can search
file attributes in VirusTotal and search network artifacts in
WHOIS databases and tools like Domain Tools or Central
Ops.

Quick Wins

How do you detect
persistence techniques?
Ref: sysinternals/downloads/autoruns

 ; Look for files set to run automatically

 ; Pay close attention to outliers

What forensics data
should you look for?
Ref: powerforensVics.readthedocs.io

 ; Check the Prefetch and Shimcache

 ; Get-ForensicPrefetch: file execution forensics

 ; Get-ForensicShimcache: AppCompatCache forensics

How do you look for
evasion techniques?
Malware files may be named to pose as native Windows files.
Compare filenames within %system% to files on disk. Be sus-
picious when a name matches but the file path does not.

How do you look for injected code?
Look for remote thread creation (e.g. Sysmon thread injection
detection), for example:

Appendix B: A Hunt Cheat Sheet | 65

<CreateRemoteThread onmatch=”include”>

<TargetImage condition=”image”>lsass.exe</TargetImage>

</CreateRemoteThread >

Are your files trusted?
Ref: sysinternals/downloads/sigcheck

Examine certificate information by looking for untrusted
processes. Enrich your findings by looking specifically for:

 ; Persistent untrusted files

 ; Running untrusted processes

 ; Running untrusted processes generating network
traffic (e.g., netstat)

How do I find credential
theft, like KERBEROAST?
Ref: adsecurity.org

 ; Frequency of Eventid 4769 - A Kerberos service
ticket was requested

 ; Alert for KerberosRequestorSecurityToken

 ; Search for use of invalid accounts

What file properties are interesting?
Ref: msdn.microsoft.com

 ; Examine signer/certificate information

 ; Don’t trust the file name on disk – compare it to
FileVersion Info.OriginalFilename

 ; Look for files running out of %temp% or
%downloads%

66 | The Elastic Guide to Threat Hunting

Is this an administrator?
Living off the land techniques use legitimate tools. Monitor
PowerShell, WMI, InstallUtil, MSBUILD, RegAsm, and other
tools that allow code execution.

What is the IDS rule syntax?
[Network searching help]
Ref: Snort Manual

alert tcp any any -> 192.168.1.0/24 111 (content: “|00 01 86
a6|”; msg: “mountd access”;)

WHAT IS THE YARA RULE SYNTAX [FILE SEARCHING
HELP]

What is the YARA rule syntax?
[File searching help]
Ref: yara.readthedocs.io

rule Example { strings: $string = { } condition: $string }

What is the EQL syntax?
EQL is a language that can match events, generate sequences,
stack data, build aggregations, and perform analysis

Ref: https://eql.readthedocs.io/

process where process_name == “svchost.exe” and com-
mand_line != “* -k *”

	The Elastic Guide to Threat Hunting
	Foreword
	Introduction
	Chapters at a Glance

	Chapter 1: Be the Hunter
	What Is Hunting?
	The Hunt Team
	What Hunt Teams Look For
	Categorizing Unknowns
	Building Environmental Awareness

	Chapter 2: Structuring Hunts
	Selecting a Framework
	Structuring a Hunt Process
	Transitioning to Incident Response
	Measuring Your Hunt

	Chapter 3: Hunting for Fileless Attacks
	Two Forms of Fileless Attack
	The Race to Detection
	Anatomy of an In-memory Attack
	Approaches to Hunting for Fileless Attacks
	Technique-Based Detection

	Chapter 4: Hunting for Persistence - Basics
	Why Adversaries Need Persistence
	The Windows Registry
	Technique-Based Detection

	Chapter 5: Hunting for Persistence at Scale
	Taking It to the Enterprise
	Visualization
	Example: WMI

	Chapter 6: Hunting for Lateral Movement
	Why Adversaries Need Mobility
	An Example: Hunting for Suspicious Use of PsExec
	Examine Event Logs
	Analyze Metadata
	Analyze Process Events
	Analyze Command Line Arguments

	Chapter 7: Credential Theft
	Survival by Any Means Necessary
	Example: KERBEROASTING
	Two Techniques for Hunting Credential Theft

	Getting Started
	A Hunt Cheat Sheet

