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Maria Chudnovsky

Princeton University

Induced subgraphs and logarithmic tree width

Tree decompositions are a powerful tool in structural graph theory; they are
traditionally used in the context of forbidden graph minors. Connecting tree
decompositions and forbidden induced subgraphs has until recently remained
out of reach.

Tree decompositions are closely related to the existence of "laminar collec-
tions of separations" in a graph, which roughly means that the separations in
the collection �cooperate� with each other, and the pieces that are obtained
when the graph is simultaneously decomposed by all the separations in the col-
lection �line up� to form a tree structure. Such collections of separations come
up naturally in the context of forbidden minors.

In the case of families where induced subgraphs are excluded, while there
are often natural separations, they are usually very far from forming a laminar
collection. However, under certain circumstances, these collections of natural
separations can be partitioned into a small number of laminar collections (in this
context "small" means either constant or logarithmic in the number of vertices
of the graph). This in turn allows us to obtain a wide variety of structural and
algorithmic results, which we will discuss in this talk.
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Sudhir Ghorpade

Indian Institute of Technology Bombay

Let n, k be positive integers with k ≤ n, and let C be a q-ary linear code of
length n and dimension k, i.e., let C be a k-dimensional subspace of Fnq . Basic
parameters of C include the minimum distance d(C) and, more generally, the
generalized Hamming weights (GHW) d1(C) < · · · < dk(C). There is a natural
notion of a dual C⊥ of C, and a beautiful relationship between the GHW of
C and the GHW of C⊥; this relationship was observed by Wei (1991) and is
known as Wei duality.

One can associate to a C a (vector) matroid and in turn, a simplicial complex
∆C . In 2012, Britz, Johnsen, Mayhew, and Shiromoto extended Wei duality to
arbitrary matroids and even more general structures called demi-matroids. In
another development, Johnsen and Verdure (2013) associated to C a �ne set of
invariants, called Betti numbers, which determine completely the GHW of C.
These are, in fact, the Betti numbers of the graded minimal free resolutions of
the Stanley-Reisner ring, say RC , of the simplicial complex ∆C . A basic fact
here is that the ring RC is Cohen-Macaulay, which follows from the classical
combinatorial result that matroid complexes such as ∆C are shellable.

In the recent past, there has been growing interest in rank metric codes.
The study of rank metric codes goes back to Delsarte (1979) and Gabidulin
(1985). We now understand the analogs of GHW for rank metric codes, and
these are known as generalized rank weights (GRW). Moreover, Wei-type duality
theorems are established for GRW of rank metric codes by Ducoat (2015) and
Ravagnani (2016).

We will review these developments and then outline some newer notions and
results. These include q-analogs of matroids that are relevant for the study of
rank metric codes, notions of q-complexes, and their shellability, and the notion
of Betti numbers of rank metric codes. An attempt will be made to keep the
prerequisites at a minimum.

Parts of this talk are based on a joint work with T. Johnsen (2020) and also
with R. Pratihar and T. H. Randrianarisoa (2021).
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Christian Krattenthaler

University of Vienna

The (so-called) "Borwein Conjecture" arose around 1990 and states that the
coe�cients in the polynomial

(1− q)(1− q2)(1− q4)(1− q5) · · · (1− q3n−2)(1− q3n−1)

have the sign pattern + − − + − − . . . . This innocent looking prediction has
withstood all proof attempts until two years ago when Chen Wang found a proof
that combines asymptotic estimates with a computer veri�cation for "small" n.

However, Borwein made actually in total three sign pattern conjectures of
similar character - with the previously mentioned conjecture being just the �rst
one -, and recently Wang discovered a further one. It seemed unlikely that
Wang's proof could be adapted to work for these other conjectures since it cru-
cially used identities that are only available for the "First Borwein Conjecture".

I shall start by presenting these conjectures and then review the history of
the conjectures and the various attempts that have been made to prove them
- as a matter of fact, these attempts concerned exclusively the "First Borwein
Conjecture", while nobody had any idea how to attack the other conjectures.

I shall then outline a proof plan that is (in principle) applicable to all these
conjectures. Indeed, this leads to a new proof of the "First Borwein Conjecture",
the �rst proof of the "Second Borwein Conjecture", and to a proof of "two
thirds" of Wang's conjecture. We are convinced that further work along these
lines will lead to - at least - a partial proof of the "Third Borwein Conjecture".

I shall close with further open problems in the same spirit.
This is joint work with Chen Wang.
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Kristina Ago

University of Novi Sad

On MP-ratio for multiary words: well-de�nedness and upper bounds

In combinatorics on words, a number of ways to measure the degree of �palin-
dromicity" of a given word have been proposed and researched in the literature.
One such measure is the so-called MP-ratio (where the abbrevation MP stands
for minimal-palindromic). An n-ary word is called minimal-palindromic if it

does not contain palindromic subwords of length greater than
⌈ |w|
n

⌉
. The MP-

ratio of a given n-ary word w is de�ned as the quotient |rws||w| , where r and s are

words such that the word rws is minimal-palindromic and the length |r|+ |s| is
minimal possible. The notion of MP-ratio was introduced by Holub and Saari
for binary words, who proved that the MP-ratio is well-de�ned in that case and
that it is bounded from above by 4, which is the best possible upper bound.
For larger arities it is obvious what is the natural generalization of the notion of
MP-ratio, but already the question whether such generalization is well-de�ned
is much harder in comparison to the binary case.

The main result presented in this talk shows that the MP-ratio is well-de�ned
for n-ary words for any n. The proof for n > 3 also provides an upper bound on
the MP-ratio that grows exponentially with respect to n. Additionally, in the
case n = 3, we show that the MP-ratio is bounded from above by 6. Since (as
will also be seen in the talk) such an upper bound in general cannot be smaller
than 2n, the bound obtained in the ternary case is the best possible.

This is a joint work with B. Ba�si�c.
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P�eter �Agoston

E�otv�os Lor�and University, Budapest

Orientation type of intersecting convex planar sets

Take a family of compact convex sets in the plane, whose members are pair-
wise intersecting (in the following, we simply call such a family an intersecting
family). Several theorems exist about such families, such as the Helly theorem
and its variants. For creating more such theorems, a better understanding of
the structure of intersecting families seems to be useful. We thus de�ned the
orientation of pairwise intersecting triples as roughly sketched in the following
drawing.

A C

B

ABC = +1

A B

C

ABC = −1

A B

C

ABC = 0

This notion of orientation can be de�ned more precisely thanks to Jobson et
al. [1]. If no triple intersections occur, we call such a family a holey family and
such a system of orientations a C-3OSET. If triple intersections are allowed, we
call such a system of orientations a C-3POSET.

These orientation systems have the following properties (among others):
1) For any A, B and C from an intersecting family, ABC = BCA = CAB =

−CBA = −BAC = −ACB.
2) For any A, B, C and O from an intersecting family, ABO = BCO =

CAO = 1 means ABC = 1 (similarly with −1 and with 0).
3) If ABC = ABD = 0, but ACD 6= 0 and BCD 6= 0, then ACD = BCD.
Furthermore, the following stronger property also holds.
3') A1A2B1B2 = A1A2C1C2 = B1B2C1C2 = 0, but A1B1C1 6= 0 and

A2B2C2 6= 0, then A1B1C1 = A2B2C2.
The following diagram shows the relationship between C-3OSETS, C-3POSETS

and other similar notions.
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3OSET (triple orientations)

C-3OSET (convex
triple orientations)

interior transitivity

CC systems
pseudoline ar-
rangements
rank 3 oriented
matroids

order types

C-3POSET (convex
triple partial orienta-
tions)

3POSET (triple partial orientations)

interior
triple sys-
tems

partial order
types

In our research, we tried to �nd further properties of these orientation sys-
tems and their relationship with the other orientation systems shown in the
above table.

Joint work with G�abor Dam�asdi, Bal�azs Keszegh and D�om�ot�or P�alv�olgyi.

References

[1] A. Jobson, A. K�ezdy, J. Lehel, T. Pervenecki, and G. T�oth: Petruska's
question on planar convex sets, https://arxiv.org/abs/1912.08080 (2019).
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Sara Ban

University of Rijeka, Faculty of Mathematics

Self-orthogonal Z2k-codes constructed from bent functions

A Boolean function on n variables is a mapping f : Fn2 → F2. A bent function
is a Boolean function f such that Wf (v) =

∑
x∈Fn

2
(−1)f(x)+〈v,x〉 = ±2

n
2 , for

every v ∈ F2
n.

The subject of this talk is a construction of self-orthogonal codes over Z2k from
bent functions.
First, we give a construction of a self-orthogonal Z4-code of length 2n+1 from a
pair of bent functions on n variables. We prove that for n ≥ 4 those codes can
be extended to Type IV-II Z4-codes. From that family of Type IV-II Z4-codes,
we construct a family of self-dual Type II binary codes by using the Gray map.
We consider the weight distributions of the obtained codes. Furthermore, we
construct a self-orthogonal Z2k -code of length 2n+1 with all Euclidean weights
divisible by 2k+2 from a pair of bent functions on n variables, for every k ≥ 3.
This is joint work with Sanja Rukavina.
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J�anos Bar�at

Alfr�ed R�enyi Institute of Mathematics

Saturated 1-plane and 2-plane drawings with few

A drawing of a graph is k-plane if every edge contains at most k crossings. A
k-plane drawing is saturated if we cannot add any edge so that the drawing
remains k-plane. It is well-known that saturated 0-plane drawings, that is,
maximal plane graphs, of n vertices have exactly 3n − 6 edges. For k > 0, the
number of edges of saturated n-vertex k-plane graphs can take many di�erent
values.

Brandenburg et al. showed there are maximal 1-planar graphs with only
45
17n+O(1) ≈ 2.647n edges and maximal 1-plane graphs with only 7

3n+O(1) ≈
2.33n edges. On the other hand, they showed that any maximal 1-planar graph
has at least 28

13n−O(1) ≈ 2.15n−O(1) edges, and a maximal 1-plane graph has
at least 2.1n−O(1) edges.

We improved both lower bounds to 20n
9 ≈ 2.22n.

For 2-plane graphs, a drawing is l-simple if any two edges have at most l
points in common. Let slk(n) be the minimum number of edges of a saturated
l-simple k-plane drawing. Klute and Parada showed that s12(n) ≥ n

2 ,
4n
5 ≥

s22(n) ≥ n
2 and 2n

3 ≥ s
3
2(n) ≥ n

2 .
We make the following improvements:
(i) For any n > 0, s2(n) ≥ n− 1.
(ii) s22(3) = 3, and for n 6= 3 b3n/4c ≥ s22(n) ≥ b2n/3c,
(iii) s32(3) = 3, and for n 6= 3 s32(n) = b2n/3c.
Some of these bounds are achieved by interesting constructions.
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Bojan Ba�si�c

Department of Mathematics and Informatics, University of Novi Sad

The Heesch number in Ed is asymptotically unbounded for d→∞

Given two �gures that do not tesselate the Euclidean plane E2, the Heesch

number (introduced by Heinrich Heesch in 1968) ranks them by their ability
to �advance" toward a tesselation; the Heesch number of a given �gure is a
nonnegative integer such that, the larger it is, the �gure can advance �further"
toward a tessellation (and if a �gure tessellates the plane, it is convenient to
de�ne the Heesch number of that �gure to be in�nite). Speaking somewhat
informally, we de�ne the Heesch number of a given �gure T to be the maximal
nonnegative integer n such that T can be completely surrounded by congruent
copies of itself n times in total. The main open question concerning the Heesch
number is whether there exists the largest possible �nite Heesch number (to
put it another way, whether the set of all nonnegative integers that appear as
values of the Heesch number of some �gure has an upper bound); this question
is called Heesch's problem.

In this talk we treat Heesch's problem in more-dimensional spaces. The main
result is as follows: no matter how large a given integer n is, there always exists
a dimension d (possibly dependent on n) and a hypersolid in Ed whose Heesch
number is greater than n and �nite. This answers the asymptotical version of
Heesch's problem: there does not exist an uniform upper bound on the set of
all possible �nite values of the Heesch number in Ed for d→∞.

At the end of the talk, another result from the near past will be presented.
Namely, for almost twenty years, the largest known �nite Heesch number in E2

had been 5, until this has recently been surpassed, when a �gure whose Heesch
number equals 6 has been constructed.

This is a joint work with A. Slivkov�a.
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Davi Castro-Silva

CWI - Netherlands

A recursive Lov�asz theta number for simplex-avoiding sets

The Lov�asz theta number is an important graph parameter in combinatorial op-
timization, which has found many applications in combinatorics and geometry.
By the sandwich theorem the theta number ϑ(G) of a �nite graph G satis�es
α(G) ≤ ϑ(G) ≤ χ(G), where α(G) is the independence number of G and χ(G)
is the chromatic number of the complement of G (i.e. the edges of G are the
non-edges of G and vice versa); even though it is sandwiched between two NP-
hard graph parameters, the theta number can be computed e�ciently using
semide�nite programming.

In this talk we will recursively extend the Lov�asz theta number to geometric
hypergraphs on the unit sphere and on Euclidean space, obtaining an upper
bound for the independence ratio of these hypergraphs. As an application we
reprove a result in Euclidean Ramsey theory in the measurable setting, namely
that every k-simplex is exponentially Ramsey, and we improve existing bounds
for the base of the exponential.

This is joint work with Fernando Oliveira, Lucas Slot and Frank Vallentin.
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Nancy Clarke

Acadia University (Canada)

Rainbow Dominating Sets

Given a k-colouring of (the vertices of) a graph G, a dominating set D of G is
said to be a rainbow (or achromatic) dominating set if every vertex of D has a
di�erent colour. Our parameter of interest is the rainbow dominating number
ρ(G), de�ned to be the minimum number of colours such that, for any ρ(G)-
colouring of G, there exists a rainbow dominating set. In this talk, we present
a variety of results including exact values of our parameter for several classes
of graphs, as well as more general bounds. In particular, we consider graphs
according to diameter, as well as lexicographic products.
This is joint work with Ruth Haas.
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Francesc Comellas

Universitat Politecnica de Catalunya

On the resilience of hierarchical graphs.

Many graphs associated with complex real-life systems are small-world (with
both a large local clustering coe�cient and a small average distance) and scale-
free (the degrees are distributed according to a power law) and very often, when
the systems are modular, they are also hierarchical and include vertices with rel-
atively high degree (hubs). In doi:10.1088/1751-8113/49/22/225202 we introduced
a generic family of deterministic hierarchical small-world scale-free graphs and
determined some relevant topological properties.

In this talk we present a study on the resilience of this, and other classical
graphs families, under a standard vertex cascading failure model (doi:10.1016/j.ssci.2009.02.002).
Other graph families considered are: random Erd�os-R�enyi, small-world Watts-
Strogatz, scale-free Barabasi-Albert, cluster power law, random regular, con-
nected caveman, random geometric, geographical threshold, random partition
and random regular sequence. We show that our family of hierarchical graphs is
the most resilient under di�erent categories of initial failing vertices for this cas-
cading failure model. We contrast our results with those of doi.org/10.1007/s41109-021-00404-4
which show a lack of robustness of hierarchical graphs to random and targeted
removals of vertices.

This is joint work with Shima A�atounian.
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Radu-Cristian Curticapean

IT University of Copenhagen

The complexity of immanants

Immanants are matrix functionals that generalize determinants and permanents.
Given an irreducible character χλ of Sn for some partition λ of n, the immanant
associated with λ is a sum-product over permutations π in Sn, much like the
determinant, but with χλ(π) playing the role of sgn(n).

Hartmann showed in 1985 that immanants can be evaluated in polynomial
time for sign-ish characters. More precisely, for a partition λ of n with s parts,
let b(λ) := n − s count the boxes to the right of the �rst column in the Young
diagram of λ. The immanant associated with λ can be evaluated in nO(b(λ))
time.

Since this initial result, complementing hardness results have been obtained
for several families of immanants derived from partitions with unbounded b(λ).
This includes permanents, immanants associated with hook characters, and
other classes. In this talk, we complete the picture of hard immanant fam-
ilies: Under a standard assumption from parameterized complexity, we rule
out polynomial-time algorithms for (well-behaved) immanant families with un-
bounded b(λ). For immanant families in which b(λ) even grows polynomially,
we establish hardness for #P and VNP.
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Joel Danielsson

Department of statistics, Lund University School of Economics and

Management

Entropy counting of combinatorial 3-spheres

An informal de�nition of a combinatorial 2-sphere is that it is obtained by gluing
triangular pieces of paper together along their edges, so that the resulting surface
forms a 2-sphere. One dimension higher, a combinatorial 3-sphere consists of
tetrahedra glued together along their triangular faces to form a 3-sphere, and
so on. The formal de�nition is that a combinatorial d-sphere is a simplicial
complex homeomorphic to a d-sphere. We are interested in the asymptotics
of how many distinct vertex-labeled combinatorial d-spheres there are, as a
function of the number of vertices (n) and faces (m). This is known for d=2,
where the geometry is simpler. Even for d=3, the number of spheres has only
been determined as a function of either m or n. In both cases the count is
dominated by spheres with many more faces than vertices, i.e. n=o(m).

Our main result is an improved upper bound on the number of 3-spheres
with few faces compared to vertices. We study the entropy of a randomly
picked 3-sphere. This is fundamentally an application of Shannon's encoding
theorem, but more speci�cally we are using it in the form of a handy lemma
from a recent paper by Palmer and P�alv�olgyi. By applying this lemma, the
problem is transformed into a new one: upper bounding the expected number
of percolation clusters in a kind of site percolation on 2-spheres.
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Mrinmoy Datta

Indian Institute of Technology Hyderabad

Footprint bounds and their applications to Reed-Muller type codes

Footprint bounds have been studied extensively to determine the important pa-
rameters such as minimum weights, generalized Hamming weights, and relative
generalized Hamming weights of Reed-Muller type codes. In this talk, we will
explain the notion of the footprint bounds and demonstrate their applications
to determining parameters of a�ne Cartesian codes.
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Sebastian Debus

UiT The Arctic University of Norway

A bidominance order and Specht ideals for the signed symmetric

group

In this talk we consider Specht ideals and their varieties for the signed symmetric
group Bn. The Specht polynomials of Bn span the irreducible representations
which correspond to bipartitions. The ideals that are generated by all Specht
polynomials of a given shape are called Specht ideals. We introduce a bidomi-
nance order on the set of bipartitions and characterize the covering cases in this
poset. Furthermore, we prove an equivalence between bidominance of biparti-
tions, inclusion of the Specht ideals and their varieties. We present a notion
of Bn orbit types and prove a set partition of the Specht varieties using orbit
types and the bidominance order.

This is joint work together with Philippe Moustrou, Hugues Verdure and
Cordian Riener
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Danai Deligeorgaki

KTH

Unconditional Equivalence for DAG models

We study directed acyclic graph (DAG) models up to unconditional equiva-
lence. Two DAGs are unconditionally equivalent if they encode the same set
of unconditional d-separation statements. It turns out that each unconditional
equivalence class (UEC) of DAGs can be uniquely represented with an undi-
rected graph whose clique structure encodes the members of the class. Via this
structure, we can understand the v-structures of all maximal DAGs in the class,
which are shown to lie in the same Markov Equivalence Class, and provide
a transformational characterization of unconditional equivalence. Combining
these results, we introduce a hybrid algorithm for learning DAG models from
observational data, called Greedy Unconditional Equivalence Search (GUES),
which �rst estimates the UEC of the data using independence tests and then
greedily searches the UEC for the optimal DAG.
This is joint work with Alex Markham, Pratik Misra and Liam Solus.
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Blas Fern�andez

University of Primorska, Slovenia

On the trivial T -module of a graph

Let Γ denote a �nite, simple and connected graph. Fix a vertex x of Γ and
let T = T (x) denote the Terwilliger algebra of Γ with respect to x. That is, a
matrix subalgebra generated by the adjacency matrix of Γ together with certain
diagonal matrices containing local information about the structure of Γ with
respect to x.

It turns out that there exists a unique irreducible T -module with endpoint
0, the trivial T -module. Fiol and Garriga [2] introduced the concept of pseudo-
distance-regularity around vertex x, which is based on giving to the vertices
of the graph some weights which correspond to the entries of the (normalized)
positive eigenvector. They showed that the unique irreducible T -module with
endpoint 0 is thin if and only if Γ is pseudo-distance-regular around x (see also
[1, Theorem 3.1]).

We study the trivial T -module under the assumption that it is thin. The
main result of the talk is a purely combinatorial characterization of the property,
that the unique irreducible T -module with endpoint 0 is thin and so, that Γ is
pseudo distance-regular around x.

This is joint work with �Stefko Miklavi�c.
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Luis Ferroni

KTH Royal Institute of Technology

Ehrhart polynomials, �ag Eulerian numbers and algebras of

Veronese type

In this talk we will address the Ehrhart theory of a generalized version of hyper-
simplices. We will explain how to count the number of lattice points in dilations
of certain slices of rectangular prisms. These polytopes are polypositroids and
their Ehrhart polynomials have positive coe�cients. Two applications regard-
ing a generalization of the �ag Eulerian numbers and an interpretation for the
numerator of all algebras of Veronese type will be discussed.
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Ragnar Freij-Hollanti

Aalto University

Derived matroids in combinatorics and linear algebra

LetM be an arbitrary matroid. Gian-Carlo Rota and Henry Crapo asked, partly
independently and with various precise formulations, for a natural de�nition of
a matroid δM that has as its ground set the collection of circuits of M . For
represented matroids, this is straightforward, but the combinatorics of δM is in
general not uniquely de�ned by that of M , unless M is projectively unique, for
example binary. We propose a purely combinatorial construction of δM , de�ned
via the rank function onM , and via operation that resembles a closure operation
on the collection of dependent sets. We study some of the basic properties of δM ,
show that it equals the previous de�nition for binary matroids, and conjecture
that our δM is in a precise sense the most generic of all possible derived matroids
for a representable matroid M .
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Nima Ghanbari

University of Bergen

Some results on the super domination and co-even domination

number of a graph

Abstract

Let G = (V,E) be a simple graph. A dominating set of G is a subset D ⊆ V
such that every vertex not in D is adjacent to at least one vertex in D. The
cardinality of a smallest dominating set ofG, denoted by γ(G), is the domination
number of G. A dominating set S is called a super dominating set of G, if for
every vertex u ∈ S = V − S, there exists v ∈ S such that N(v) ∩ S = {u}.
The cardinality of a smallest super dominating set of G, denoted by γsp(G),
is the super domination number of G. A dominating set D is called co-even
dominating set if the degree of vertex v is even number for all v ∈ V −D. The
cardinality of a smallest co-even dominating set of G, denoted by γce(G), is the
co-even domination number of G. In this paper, we study the super domination
number and co-even domination number of some unary and binary operations
on graphs.
Keywords: domination number, super domination number, co-even dominat-
ing set, operations, counting

AMS Subj. Class.: 05C09, 05C12, 05C38, 05C69, 05C75 , 05C76, 05C92

Introduction

Let G = (V,E) be a simple graph with n vertices. Throughout this paper we
consider only simple graphs. A set D ⊆ V (G) is a dominating set if every vertex
in V (G) −D is adjacent to at least one vertex in D. The domination number
γ(G) is the minimum cardinality of a dominating set in G. There are various
domination numbers in the literature.

The concept of super domination number was introduced by Lema�nska et
al. in 2015 [7]. A dominating set S is called a super dominating set of G, if
for every vertex u ∈ S, there exists v ∈ S such that N(v) ∩ S = {u}. The
cardinality of a smallest super dominating set of G, denoted by γsp(G), is the
super domination number of G.

Recently, Shalaan et al. introduced the concept of co-even domination num-
ber [8]. By their de�nition, a dominating set D is called a co-even dominating
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set if the degree of vertex v is even number for all v ∈ V −D. The cardinality
of a smallest co-even dominating set of G, denoted by γce(G), is the co-even
domination number of G.

In this paper, we study the super domination number and co-even domina-
tion number of some unary and binary operations on graphs.
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Harald Gropp

Universitaet Heidelberg

On orbital matrices, also beyond the polar circle

Orbital matrices were introduced already 35 years ago, but have not been studied
very much since then. There are polar bears, there is a polar circle, maybe the
discussion of orbital matrices beyond the polar circle could be another input for
future research. An orbital matrix is a generalization of the incidence matrix
of a symmetric 2-design. It is a square matrix with non-negative integer entries
with constant row and column sum such that AAt = (k + x − λ)I + λJ . The
existence problem of orbital matrices is discussed, especially for λ ≤ 3. The
theorem of Bruck-Ryser-Chowla holds also for orbital matrices. However, there
remain a lot of cases where other techniques have to be used for deciding the
existence or non-existence of such a matrix.
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Michaela Hiller

RWTH Aachen University

Domination among Elimination Sequences

In 1991, it was shown by Favaron, Mah�eo and Sacl�e that the residue, i.e. the
number of zeros remaining when applying the Havel-Hakimi algorithm to a de-
gree sequence, yields a lower bound on the independence number of any graph
realising the sequence. In 1996, Triesch simpli�ed and generalised the result
by introducing elimination sequences. We now prove that for any given degree
sequence the elimination sequence derived from the Havel-Havel algorithm dom-
inates all other elimination sequences. Our result implies a conjecture posed by
Michael Barrus in 2010: When iteratively laying o� degrees from a graphic se-
quence until only a list of zeros remains, the number of zeros is at most the
residue of this sequence
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Perfect Matching Complexes of Honeycomb Graphs

The matching complex M(G) of a graph G is the simplicial complex with the
ground set given by edges of G and faces given by subsets of disjoint edges,
i.e., matchings of G. Matchings arise in various applications. In chemistry,
the Kekul�e structure of an aromatic compound is a perfect matching of its
carbon skeleton. Matchings are also used for transportation problems and other
combinatorial optimization problems to �nd optimal assignments.

There is a long history of the study of matching complexes. Research on the
topology of matching complexes focuses particularly on complete graphs and
complete bipartite graphs; see for example, [?, ?, ?]. The study of the matching
complexes for these graphs arose from algebraic group theory [?, ?] and proved
to be interesting in its own right. Also, these matching complexes and their
joins are suitable candidates for con�guration spaces in various combinatorial
geometric problems [?, ?]. While some aspects of the matching complexes of
complete graphs and complete bipartite graphs are known, such as connectivity
bounds and the existence of torsion in higher homology groups, our understand-
ing of the topology is still incomplete. Beyond complete graphs and complete
bipartite graphs, cycles, paths, forests, small grid graphs, tiling of polygons,
and caterpillar graphs have been studied and the matching complexes of these
families of graphs are not known to have torsion. Further, matching complexes
of cycles, paths, forests, and caterpillar graphs are known to be contractible
or homotopy equivalent to a wedge of spheres [?, ?]. The literature points to
a recurring question, which is a main motivation for this project: what graph
properties give rise to torsion in matching complexes?

Since we know that matching complexes of forests are contractible or wedges
of spheres, one may reason that cycles must contribute to the presence of torsion
in matching complexes. Further, since matching complexes of cycles themselves
are contractible or homotopy equivalent to a wedge of spheres, the relationship
between cycles must be a factor. The tilings of hexagons, called honeycomb
graphs, provide a su�ciently complicated family to be studied. Precisely, hon-
eycomb graph H = Hk×m×n is a hexagonal tiling whose congruent, opposite
sides are of length k,m and n hexagons respectively (see honeycomb graph
2× 2× 2 bellow).

It turns out that determining the homotopy type of the matching complex
of a honeycomb graph is a challenging question, so we investigate a natural
subcomplex of a matching complex. Precisely, we de�ne the following new graph
complex. First, a perfect matching on a graph G is a matching in which every
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vertex is incident to exactly one edge. The perfect matching complex of graph
G, denoted byMp(G), is the simplicial complex whose vertex set is the set of
edges E, and whose facets correspond to perfect matchings on graph G. We will
observe that for complete graphs, complete bipartite graphs, paths and cycles,
perfect matching complexes are either easily determined or they are familiar
complexes, and then we will focus on perfect matching complexes of honeycomb
graphs.

Figure 1: Example of a honeycomb graph 2 × 2 × 2 and corresponding plane
partition.

In order to determine these complexes, we will use the well known bijection
between perfect matchings of the honeycomb graph Hk×m×n and plane parti-
tions Pk×m×n, as in [?]. This very interesting bijection will be explained in
the talk. Also, we use discrete Morse theory. This theory, introduced by For-
man [?], is a combinatorial technique which determines the homotopy type of a
simplicial complex by pairing faces of the complex. These pairings correspond
with a sequence of collapses on the complex, resulting in a homotopy equiva-
lent cell complex. Our main results are the following homotopy types of the
perfect matching complexes: Mp(H1×1×n) ' ∗,Mp(H1×2×n) ' Sn−1, then for
m,n ≥ 3 we have Mp(H1×m×n) ' ∗, and Mp(H2×2×2) ' S3 ∨ S3. We will
conclude with further directions and open questions.
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On t-designs with three intersection numbers

The degree of a t-(v, k, λ) design is the number d of distinct block intersection
sizes. Designs of degree d = 1 are symmetric and of strength t ≤ 2. Designs
with d = 2 are known as quasi-symmetric and the strength is bounded by t ≤ 4.
Regarding designs of degree d = 3, it is known that t ≤ 5 holds and the only
examples with t = 5 are hypothesised to be the Witt 5-(24, 8, 1) design and its
complement [1].

We will report on designs with d = 3 and t = 4. In this case there are
in�nitely many feasible parameters. Designs with small parameters exist and
are related to the quadratic residue codes. We will also give some preliminary
results on designs with d = 3 and t = 3.
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Lexicographic Shellability Statistics

A theorem of Bjorner states that a pure simplicial complex ∆ is the indepen-
dence complex of a matroid if and only if, given any total order of the vertices,
the induced lexicographic order of the facets of ∆ is a shelling order. In this
talk I will present preliminary results of work with Joseph Doolittle and Ben-
net Goeckner in which we study the topological and combinatorial properties of
complexes with at least one such vertex order.
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New bounds for total dominating identifying codes

A set of vertices S in graphG is a dominating set if each vertex is in S or adjacent
to a vertex in S and it is a total dominating set if it is a dominating set and
each vertex in S is adjacent to another vertex in S. Set C is an identifying
code in graph G if C is a dominating set and each vertex has a unique closed
neighbourhood within C. Moreover, C is a total dominating identifying code
or a di�erentiating-total dominating set if C is an identifying code and a total
dominating set. The cardinality of a smallest total dominating identifying code
in the graph G is denoted by γIDt (G) or by γID(G) in the case of usual identifying
codes. Identifying codes were introduced in 1998 by Karpovsky et al. and total
dominating identifying codes by Haynes et al. in 2006. Since then especially
the original identifying codes have been studied widely although there are also
some recent advances on the total dominating variant. Two vertices are called
twins if they have the same open or closed neighbourhoods and a graph without
twins is called twin-free. In particular, when two vertices u and v are adjacent
to the same set of vertices, at least one of them is in any identifying code.
Hence, much of the study of these types of special dominating sets is aimed
at twin-free graphs. Graph G has girth g if the smallest cycle in G has g
vertices. Previously two di�erent upper bounds for total dominating identifying
codes in trees have been o�ered. Based on these two upper bounds we get a
new corollary for twin-free trees: Let T be a twin-free tree on n vertices, then
γIDt (T ) ≤ 3n/4. The bound is tight and we characterize every twin-free tree
attaining this value. After that we show, that this upper bound actually holds
for every twin-free graph G which has girth at least 5 and the bound is tight also
for other graphs than trees, such as, the 8-cycle C8. Besides (total dominating)
identifying codes, there exist related concepts such as locating-dominating sets.
We denote the cardinality of a smallest such set in graph G by γL(G). In
particular, it is known that γL(G) ≤ γID(G) ≤ 2γL(G). Inspired by these
types of results we show a tight bound γID(G) ≤ γIDt (G) ≤ 2γID(G) − 2 and
that γL(G) ≤ γIDt (G) ≤ 3γL(G) − log2(γL(G) + 1). Also the latter bound is
at least almost tight as we give graphs with γL(G) = 2k − 1 and γIDt (G) =
3 · 2k − 2k − 3 = 3γL(G) − 2log2(γL(G) + 1) for every integer k ≥ 2. Finally,
we show that if G is a connected graph of order at least n ≥ 4 and has an
identifying code, then γIDt (G) ≤ n − 1. Moreover, we give an exact and non-
trivial characterization for the extremal graphs attaining this upper bound.
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Clique dynamics of locally cyclic graphs with δ ≥ 6

We prove that the clique graph operator k is divergent on a locally cyclic graph
G (i. e. NG(v) is a circle) with minimum degree δ(G) = 6 if and only if G
is 6-regular. The clique graph kG of a graph G has the maximal complete
subgraphs of G as vertices, and the edges are given by non-empty intersections.
If all iterated clique graphs of G are pairwise non-isomorphic, the graph G is
k-divergent; otherwise, it is k-convergent. To prove our claim, we explicitly
construct the iterated clique graphs of those in�nite locally cyclic graphs with
δ ≥ 6 which induce simply connected simplicial surfaces. These graphs are
k-convergent if the size of triangular-shaped subgraphs of a speci�c type is
bounded from above. We apply this criterion by using the universal cover of the
triangular complex of an arbitrary �nite locally cyclic graph with δ = 6, which
shows our divergence characterisation.
This is joint work with Markus Baumeister.
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Symmetrically colored Gaussian graphical models with toric

vanishing ideal

Gaussian graphical models are semi-algebraic subsets of the cone of positive
de�nite covariance matrices. They are widely used throughout natural sciences,
computational biology and many other �elds. Computing the vanishing ideal
of the model gives us an implicit description of the model. Now, introducing
colors in a graph gives rise to new symmetries in the model. In this talk, I will
characterize those graphs and color patterns for which the vanishing ideal of the
model is generated in degree 1 and 2. These turn out to be colored Gaussian
graphical models whose ideals are toric and the resulting colored graphs are
RCOP block graphs.
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The maximal determinant problem over the third roots of unity

We survey the maximal determinant problem for +-1 matrices, and consider a
generalisation to roots of unity. In particular we will give an overview of our
results over the third roots of unity, including both upper and lower bounds for
the determinant.
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Power sum polynomials and the ghosts behind them

Given a point P in PG(n, q), its R�edei factor is the linear polynomial in n + 1
variables, whose coe�cients are the point coordinates. The power sum polyno-
mial GS associated to a multi-subset S of the projective plane PG(2, q) is the
sum of the (q − 1)-th powers of the R�edei factors of the points of S. The clas-
si�cation of multi-subsets having the same power sum polynomial bases on the
determination of those multi-subsets associated to the zero polynomial, called
ghosts. In fact, two multi-subsets S1 and S2 such that GS1 = GS2 �di�er� by
a ghost Z, namely, S2 = S1 ]p Z, where ]p is the multiset sum modulo p (the
�eld characteristic).

In this talk we investigate the space of ghosts, compute its dimension and
characterize some classes of ghosts. Moreover, we explicitly enumerate ghosts
for planes of small order. The present talk is based on joint work with Marco
Della Vedova (Universit�a di Bergamo) and Silvia Pianta (Universit�a Cattolica
del Sacro Cuore).

Keywords: Ghost; multiset sum; power sum polynomial; projective plane
MSC classi�cation: 51E15, 51E22, 11T06, 05B25

References: M.L. Della Vedova, S.M.C. Pagani, S. Pianta. Power sum poly-
nomials and the ghosts behind them. Submitted.

S.M.C. Pagani, S. Pianta. Power Sum Polynomials in a Discrete Tomography
Perspective. Discrete Geometry and Mathematical Morphology, volume 12708
of Lecture Notes in Comput. Sci.: 325�337, 2021.

P. Sziklai. Polynomials in Finite Geometry. Manuscript. Available online at
http://web.cs.elte.hu/ sziklai/polynom/poly08feb.pdf.

35



P�eter P�al Pach
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The Alon-Jaeger-Tarsi conjecture via group ring identities

The Alon-Jaeger-Tarsi conjecture states that for any �nite �eld F of size at
least 4 and any nonsingular matrix M over F there exists a vector x such that
neither x norMx has a 0 component. In joint work with J�anos Nagy we proved
this conjecture when the size of the �eld is su�ciently large, namely, when
61 < |F | 6= 79. In this talk we will discuss this result.
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Four non-Hamiltonian simplicial complexes

We present four higher-dimensional counterexamples to �obvious� generaliza-
tions of graph-theoretical results:
(a) A maximal non-weakly-Hamiltonian d-complex that has no (tight, loose, or

weak) Hamiltonian paths.
(b) A self-complementary complex that has no (tight, loose, or weak) Hamilto-

nian paths.
(c) A Dirac-type complex that has no (tight, loose, or weak) Hamiltonian cycles.
(d) A strongly connected, 2-connected 2-complex whose square has no (tight,

loose, or weak) Hamiltonian cycles.

1 Introduction

In 1952 Dirac [1] gave a simple degree condition su�cient to guarantee the exis-
tence of Hamiltonian cycles in a graph: namely, he proved that any graph with
n ≥ 3 vertices is Hamiltonian if every vertex has at least n

2 neighbors. Later
P�osa [2] and Chv�atal [3] re�ned this result introducing the notion of degree se-

quence, a vector that lists all vertex degrees in weakly-increasing order. Chv�atal
characterized the degree sequences that force a graph to have Hamiltonian paths
or cycles. Thanks to his argument, we now know that all self-complementary
graphs are traceable (that is, they all admit a Hamiltonian path). Further
su�cient conditions for Hamiltonian cycles were found in the next decade: In
1974 Fleischner [4] proved that for every 2-connected graph G, the graph G2

has a Hamiltonian cycle. Later Chen, Chang and Chang [5] showed that every
2-connected unit-interval graph G has Hamiltonian cycles.

Considerable e�orts have been made to extend these results to hypergraphs
or simplicial complexes. Many have studied �tight-Hamiltonian� and �loose-
Hamiltonian� paths in d-dimensional simplicial complexes; for d = 1 all these
notions boil down to ordinary Hamiltonian paths. Katona�Kierstead [6] proved
a Dirac-type theorem assuming all the ridge degrees to be at least

(
n−3
d

)
+d. Oth-

ers [7, 8, 9] has extended Dirac's theorem for d-complexes with a very large num-
ber of vertices. Benedetti�Seccia�Varbaro [10] introduced �weak-Hamiltonian�
paths and extended Chen�Chang�Chang to all dimensions, proving that a unit-
interval d-complex that remains strongly connected after the removal of d or
less vertices, has tight Hamiltonian paths.

Here we present four higher-dimensional counterexamples to �obvious� gen-
eralizations of graph-theoretical results:
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(a) A maximal non-weakly-Hamiltonian d-complex that has no (tight, loose, or
weak) Hamiltonian paths.

(b) A self-complementary complex that has no (tight, loose, or weak) Hamilto-
nian paths.

(c) A Dirac-type complex that has no (tight, loose, or weak) Hamiltonian cycles.
(d) A strongly connected, 2-connected 2-complex whose square has no (tight,

loose, or weak) Hamiltonian cycles.

A maximal non-weakly-Hamiltonian d-complex that has no
Hamiltonian paths

Let d ≥ 1. Consider the d-complex W d obtained by joining the (d − 1)-
dimensional simplex with a disjoint union of 3 points. W d does not have (tight,
loose or weak) Hamiltonian path [BSV]. We claim that for any d ≥ 2, W d is
inclusion-maximal with respect to the property of not having a weak Hamilto-
nian path. In fact, let us label the vertices of the (d−1)-simplex by 1, . . . , d and
let us call �apices� the remaining three vertices, labeled by d + 1, d + 2, d + 3.
Let F be a subset of [d+ 3] size d+ 1 ≥ 3. There are three cases:

(i) If F contains exactly one apex, then F already belongs to W d.
(ii) If F contains exactly two apices, then up to permuting the labels of the

�rst d vertices and the labels of the last three we can assume that F =
[1, 2, . . . , d − 1, d + 2, d + 3]. Hence W d ∪ F admits a weak Hamiltonian
cycle formed by the three faces H1, Hd+3, F .

(iii) If F contains exactly three apices, then up to permuting the labels of
the �rst d vertices and the labels of the last three we can assume that
F = [1, 2, . . . , d − 2, d + 1, d + 2, d + 3]. (In case d = 2, F is simply
[d + 1, d + 2, d + 3].) Then W d ∪ F admits the weak Hamiltonian cycle
H1, Hd+3, F .

So the claim is proven. In contrast, in dimension one, any inclusion-maximal
non-Hamiltonian graph is traceable, a result which is used in the proof of
Chv�atal's theorem.

A self-complementary 2-complex without Hamiltonian paths

Consider the 2-dimensional complex

A = 135, 234, 124, 136, 125, 235, 145, 123, 126, 134.

This A is self-complementary: it is isomorphic to its complement

Ac = 146, 156, 236, 245, 246, 256, 345, 346, 356, 456

via the map 1 → 6, 2 → 5, 3 → 4, 4 → 2, 5 → 3, 6 → 1. Yet A is neither
traceable nor weakly-traceable by our software [11]. Note that A is weakly-
Hamiltonian but not weakly-traceable, and under-closed but not chordal. In
contrast, all under-closed 1-complexes (i.e. all interval graphs) are chordal, and
all weakly-Hamiltonian 1-complexes are weakly-traceable.

38



A Dirac-type 2-complex without Hamiltonian cycles

Consider the complex

B = 126, 136, 146, 156, 236, 246, 356, 456, 256, 346.

Vertices 1, 2, 3, 4, 5 are in exactly four facets; vertex 6 is present in all ten
facets. So if by �degree� of a vertex we mean the number of facets containing
it, then every vertex of B has degree larger than half the number of vertices.
However, B does not have (tight, loose, or weak) Hamiltonian cycles. Moreover,
B is inclusion-maximal with respect to the last property: Adding any triangle
would turn B into a weakly-Hamiltonian complex. Furthermore, B also does
not have (tight, loose, or weak) Hamiltonian paths.

A strongly connected (2-connected) 2-complex whose square
has no Hamiltonian cycles

Given a d-dimensional simplicial complex C, we denote by C2 the d-dimensional
simplicial complex obtained from C by performing all the bistellar �ips (or
Pachner moves) that do not add vertices. This notion boils down for d = 1 to
a square of a graph. Consider now the 2-dimensional complex

C = 123, 124, 125, 156, 148, 137.

Then C2 is obtained by adding the following triangles to C:

145, 245, 134, 234, 135, 235, 126, 256, 127, 237, 128, 248.

C2 does not have (tight, loose, or weak) Hamiltonian cycles. In contrast, in
dimension one, square of any 2-connected graph has a Hamiltonian cycle.
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Location in Pseudotrees

Location problems consist of determining a reference set of vertices S in a graph
such that at least every vertex not in S is univocally associated to a set of
�coordinates� that localize it. Since the vertex set of a graph is, not always but
very often, a reference set, the question is not to prove its existence but to �nd
the minimum one.

There are mainly two types of locations: metric location and neighbor loca-
tion. By metric location we refer to those locations in which the usual distance
between vertices in graphs plays a crucial role, meanwhile in the neighbor loca-
tion the role of the graph distance is substituted by the relation of adjacency
between vertices.

Let G be a nontrivial connected graph and S a proper subset of its vertices.
The S is called metric-locating (resp. neighbor-locating) if for every pair of
distinct vertices x, y ∈ V (G) − S, dG(x, v) 6= dG(y, v), for some vertex v ∈ S
(resp. N(x) ∩ S 6= N(y) ∩ S).

During the last two decades a wide variety of both, metric and neighbor, lo-
cation paramaters, has been introduced and studied, such as: metric dimension,
strong metric dimension, identifying code number, location-domination number,
etc.

In this talk, we present a number of both known and new results related
to these parameters, for the class of pseudotrees, i,e., the family of connected
graphs of order n and size m such that n− 1 ≤ m ≤ n.
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New lower bounds on crossing numbers of Km,n from permutation

modules and semide�nite programming

In this talk we explain how to use semide�nite programming and representation
theory to compute new lower bounds on the crossing number of the complete
bipartite graphKm,n, extending a method from de Klerk et al. [SIAM J. Discrete
Math. 20 (2006), 189�202] and extending the subsequent reduction by De Klerk,
Pasechnik and Schrijver [Math. Prog. Ser. A and B, 109 (2007) 613�624].

We exploit the full symmetry of the problem by developing a block-diagonalization
of the underlying matrix algebra and use it to improve bounds on several con-
crete instances. Our results imply that cr(K10,n) ≥ 4.87057n2−10n, cr(K11,n) ≥
5.99939n2 − 12.5n, cr(K12,n) ≥ 7.25579n2 − 15n, cr(K13,n) ≥ 8.65675n2 − 18n
for all n. The latter three bounds are computed using a relaxation of the origi-
nal semide�nite programming bound, by only requiring one small matrix block
to be positive semide�nite. Our lower bound on K13,n implies that for each
�xed m ≥ 13, limn→∞ cr(Km,n)/Z(m,n) ≥ 0.8878m/(m − 1). Here Z(m,n)
denotes the Zarankiewicz number: the conjectured crossing number of Km,n.

This talk is based on joint work with Daniel Brosch.

42



Sanja Rukavina

University of Rijeka

On some recent results on biplanes and triplanes

Fundamental problems of design theory are those of existence and classi�cation
of designs with certain parameter set. In this talk we are interested in biplanes
and triplanes, i.e., in 2-(v, k, 2) and 2-(v, k, 3) symmetric designs.

The existence of a biplane with parameters (121, 16, 2) is an open prob-
lem. Recently, it has been proved by Alavi, Daneshkhah and Praeger that the
order of an automorphism group of a possible biplane D of order 14 divide
27 · 32 · 5 · 7 · 11 · 13. We show that such a biplane do not have an automorphism
of order 11 or 13, and thereby establish that |Aut(D)| divides 27 · 32 · 5 · 7.
Further, we exclude a possible action of some small groups of order divisible by
�ve or seven, on a biplane with parameters (121, 16, 2).

Triplanes of order 12, i.e. symmetric (71, 15, 3) designs, have the greatest
number of points among all known triplanes and it is not known if a triplane
(v, k, 3) exists for v > 71. We give the �rst example of a triplane of order 12 that
does not admit an automorphism of order 3, obtained by using binary linear
codes.
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Inequalities on Projected Volumes

Given 2n − 1 real numbers xA indexed by the non-empty subsets A ⊂ {1, .., n},
is it possible to construct a body T ⊂ Rn such that xA = |TA| where |TA| is the
|A|-dimensional volume of the projection of T onto the subspace spanned by
the axes in A? As it is more convenient to take logarithms we denote by ψn the
set of all vectors x for which there is a body T such that xA = log |TA| for all
A. Bollob�as and Thomason showed that ψn is contained in the polyhedral cone
de�ned by the class of `uniform cover inequalities'. Tan and Zeng conjectured
that the convex hull conv(ψn) is equal to the cone given by the uniform cover
inequalities.

We prove that this conjecture is nearly right: the closed convex hull conv(ψn)
is equal to the cone given by the uniform cover inequalities.

Joint work with Imre Leader and Zarko Randelovic.
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Partitioning the projective plane and the dunce hat

The faces of a simplicial complex induce a partial order by inclusion in a natural
way. We say that the complex is partitionable if its poset can be partitioned
into Boolean intervals, with a maximal face at the top of each.

In this work we show that all the triangulations of the real projective plane,
the dunce hat, and the open M�obius strip are partitionable. To prove that, we
introduce simple yet useful gluing tools that allow us to reduce the discussion
about partitionability of a given complex in terms of smaller constituent rela-
tive subcomplexes. The gluing process generates partitioning schemes with a
distinctive shelling-like �avor.
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On Merino�Welsh conjecture for split matroids

Merino and Welsh conjectured that either the number of acyclic orientations or
the number of totally cyclic orientations of a graph G is larger than its number
of spanning trees. All three numbers are evaluations of the Tutte polynomial
of G. Thus it is natural to extend the conjecture to matroids which are a gen-
eralization of graphs which allows a notion of Tutte polynomials. Furthermore,
this conjecture was strengthened by Conde and Merino who posted an additive
and multiplicative version of this conjecture. In this talk we discuss the above
conjectures for the large case of split matroids.

This talks is based on joint work with Luis Ferroni
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Maximum likelihood degrees of diagonal linear covariance models

The linear covariance model associated to a linear space of symmetric matrices is
the collection of all Gaussian probability distributions whose covariance matrix
belongs to said linear space. If the space consists of diagonal matrices, we can
associate to it a representable matroid. We show that the maximum likelihood
degree of a diagonal linear covariance model is a matroid invariant, and express
it in terms of the characteristic polynomial.

This talk is based on joint work with Christopher Eur, Tara Fife, and Jose
Samper
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On the existence of m-morphic, σ-morphic and m-anisohedral tiles
for some variations of the notion of tiling

A tile (a simply connected, closed and bounded region) in the Euclidean plane
E2 is called m-morphic if it tiles the plane in exactly m noncongruent ways. It
is an open question (asked in 1977 by Gr�unbaum and Shephard) whether for
each positive integer m there exists an m-morphic tile (the largest possible m
for which such a tile has been found is m = 11, by Myers). It is also unknown
whether there exists a tile that tiles the plane in in�nitely many ways, but only
countably many (such a tile is called σ-morphic).

A somewhat related notion is the isohedral number. The isohedral number of
a given tiling is de�ned as the number of di�erent orbits into which the tiles are
partitioned under the action of the symmetry group of the tiling. The isohedral
number of a tile is the smallest possible isohedral number among all the possible
tilings admitted by the considered tile. It is an open question (asked by Berglund
in 1993) whether for each positive integer m there exists a tile whose isohedral
number is m, also called an m-anisohedral tile (the largest possible m for which
such a tile has been found is m = 10, also by Myers).

Although the mentioned problems are open in the stated formulations, some
of them are solved for some variations of the notion of tiling. Such variations
are: i) tilings in Ed for some d, d ≥ 3; ii) tilings where tiles do not have
to be connected; iii) tilings with sets of more tiles; iv) tilings where tiles have
colored edges (which imposes some restrictions on how two tiles can be matched
together). It is known that, in the case iii), m-morphic sets of tiles exist for
each m (Harborth, 1977) as well as that a σ-morphic set of tiles exists (Schmitt,
1986). It is also known that tiles with isohedral number m exist for all m in all
the cases i) (in Ed for any d, d ≥ 3), ii) and iv) (all by Socolar, 2007).

That makes 5 out of 12 possible combinations solved. In this talk we present
solutions for 6 out of the remaining 7 questions (where the questions posed in
Ed are solved for all d, d ≥ 3). All these questions are solved in the a�rmative.
The only problem left open is whether there exists a σ-morphic disconnected
tile.

This is a joint work with B. Ba�si�c and A. D�zuklevski.
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Discrete Geometry in Causal Structure Learning

Causal inference, the problem of inferring cause-e�ect systems and estimating
causal e�ects from data, is a fundamental problem in modern data science and
arti�cial intelligence. A key step in the causal inference pipeline is to �nd a good
solution to the problem of causal discovery, in which we want to learn a directed
acyclic graph (DAG) representing the cause-e�ect relations amongst the vari-
ables in the data-generating distribution. The most commonly used algorithms
for addressing this problem rely on combinatorial moves between DAGs that are
used to greedily search for an optimal scoring system. An alternative approach
treats causal discovery as a linear optimization problem. However, a lack of
a complete H-representation for the feasible region of this program makes this
approach di�cult in general. In this talk, we will consider the lower-dimensional
faces of this convex polytope and �nd that its edges encode all moves typically
used by the popular greedy search algorithms. We suggest a push for a com-
plete combinatorial characterization of the edges of this convex polytope as a
means to more reliable greedy causal discovery algorithms that can out-perform
the state-of-the-art. This talk is based on joint work with Svante Linusson and
Petter Restadh.
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Rigidity of rod con�gurations

A rod con�guration is a geometric realization of a hypergraph in terms of points
and line segments of Euclidean space, together with a notion of motion that
treats the line segments as rigid bodies (rods). We give combinatorial criteria
for when a rod con�guration is rigid in the plane, thereby extending previ-
ous results by Whiteley (applicable only for a certain family of "independent"
con�gurations), and by Jackson and Jord�an (applicable only for con�gurations
coming from 2-regular hypergraphs). This is joint work with Signe Lundqvist
and Lars-Daniel �Ohman.
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Normalized di�erence sets tiling - generalizations

A di�erence set tiling of an abelian group G is a collection of (v, k, λ) di�erence
sets Di, i ∈ I, which also make a partition of G \ {1}. It was conjectured by
�Custi�c, Kr�cadinac and Zhou that in such case

∏
g∈Di

g = 1 for all i ∈ I (normalized

di�erence set). This was named a 'normalized tiling conjecture' or NTC. Using
the character theory it has been recently proved that NTC is true if v is odd and
di�erence set has a multiplier. In this talk we shall present some generalizations
of results on NTC.
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Gorenstein algebras from simplicial complexes

Gorenstein algebras form an intriguing class of objects which often show up in
combinatorics and geometry. In this talk I will present a construction which as-
sociates to every pure simplicial complex a standard graded Gorenstein algebra.
We describe a combinatorial presentation of this algebra as a polynomial ring
modulo an ideal generated by monomials and pure binomials. When the simpli-
cial complex is �ag, i.e., it is the clique complex of its graph, our main results
establish equivalences between well studied properties of the complex (being S2,
Cohen-Macaulay, Shellable) with those of the algebra (being quadratic, Koszul,
having a quadratic GB). Finally, we study the h-vector of the Gorenstein alge-
bras in our construction and answer a question of Peeva and Stillman by showing
that it is very often not gamma-positive. This is joint work with Alessio D'Al��.
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The minimum number of spanning trees in regular multigraphs

In a recent article, Bogdanowicz determines the minimum number of spanning
trees a connected cubic multigraph on a �xed number of vertices can have and
identi�es the unique graph that attains this minimum value. He conjectures
that a generalized form of this construction, which we here call a padded paddle

graph, would be extremal for d-regular multigraphs where d ≥ 5 is odd.
We prove that, indeed, the padded paddle minimises the number of spanning

trees, but this is true only when the number of vertices, n, is greater than 9d+6
8 .

We show that a di�erent graph, which we call the padded cycle, is optimal
for n < 9d+6

8 . This fully determines the d-regular multi-graphs minimising the
number of spanning trees for odd values of d.

The main tools we use are mathematical induction, concavity of the deter-
minant, and a lifting operation similar to one used by Ok and Thomassen. We
employ this approach to also consider and completely solve the even-degree case.
Here, the parity of n plays a major role and we show that, apart from a handful
of irregular cases when both d and n are small, the unique extremal graphs are
padded cycles when n is even and a di�erent family, which we call �sh graphs,
when n is odd.
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