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1. Dynamical movement primitives (DMPs)-based control with DFRL

Dynamical movement primitives (DMPs) are an effective approach towards constructing the desired
oscillators for rhythmic movement control [1, 2]. DMPs can imitate the outputs of any type of central
pattern generator (CPG) efficiently via an optimization technique (e.g., locally weighted regression (LWR))
[3]. In this supplementary material, we integrate the DMPs-based control with the DFRL. Here, the DMPs
serve as CPGs, generating periodic commands for driving the joint movements of a quadruped robot. The
DFRL is directly integrated with the DMPs-based control, to adapt the offsets of the DMP outputs. As
shown in Fig. S.1, under the DMPs-based control, the DMPs act as CPGs instead of the SO(2) oscillators.
The DMPs consist of four DMP units, each DMP unit (featuring two DMP oscillators) is responsible for
the two joint movement controls of a leg. The DMP oscillator model can be described as [2, 4]

τ ż = αz (βz (g − y)− z)
τ ẏ = z + f

, (S.1)

where αz and βz are time constants, and g is a set point of the trajectory, which acts as the baseline of the
oscillation. f is a nonlinear function approximator; it uses local linear models of basis functions, as

f =
∑N

k=1 Ψkw
T
k∑N

i=k Ψi
,

Ψk = e(hk(cos(x−ck)−1)),
τ ẋ = 1,

(S.2)

where wk is the parameter vector of the k-th local model; it is determined by LWR learning [3] from a
demonstrated trajectory generated by the SO(2)-based CPG. hk and ck determine the width and center of
the basis functions, respectively. N is the number of basis functions. The parameter values in the following
investigations can be seen in Table S.1

Table S.1: Parameter values of the DMPs.

Parameters τ αz βz g y0 dt N
Values 6 25 6.25 0 0 0.01 200

The data used for training the DMP unit are taken from the two outputs of the SO(2)-based CPG (see
Fig. S.2). Using the LWR, the DMP unit can output two signals (o1 and o2), similar to the two outputs of
the SO(2)-based CPG (Fig. S.4).
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Figure S.1: Schematic diagram of the DMPs-based control integrated with the DFRL. It features (i) four DMP units for
generating multi-dimensional rhythmic commands; (ii) the DFRL (including the DFFB reflex and DIL), using GRF information
for the DMP output offset adaptation; and (iii) the MNs for integrating and transferring adaptive commands from the DMPs
and DFFB reflex to control robot leg-joint movements.
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Figure S.2: DMP unit training using the SO(2)-based CPG outputs. (a) The SO(2)-based CPG outputs serve as desired
trajectories with which to train a DMP unit using LWR. (b) The SO(2)-based CPG and DMP unit outputs in a phase diagram.

2. Implementation of the DMPs-based DFRL control in a quadruped robot

To evaluate the performance of the integrated DMPs and DFRL, we implemented the DMPs-based
DFRL control in Lilibot, and we tested the robot for different initial joint offsets on level ground (see Fig. 9
in the main manuscript). This experiment is comparable to Experiment I for the CPG-based control, shown
in the main manuscript (see Fig. 10)

Fig. S.3 shows the real-time data for a trial in the extreme C7 condition as an example. Lilibot can
be seen to quickly form a regular trot gait and stably move forward after interacting with the ground (i.e.,
within 3 s). In addition, the robot body oscillation decreases significantly. The convergence progress in all
seven conditions can be seen in Fig. S.4. The plastic weights (w1,2) of the DFRL are adaptable, which affects
the changes of the joint offsets (β1,2). The joint offsets are online-adjusted by the DFFB reflex of the DFRL.
As a result, the joint offsets for one leg (e.g., right-front leg) quickly converge to particular values under all
conditions and from different initializations. With the joint offsets stabilized, the plastic weights converge
to certain values, producing DFFB reflex gains. In addition, the smoothed GRF distribution parameter (γ̄)
also converges to a constant value of approximately 1.1. After the offsets become stable, the roll and pitch
angles of the robot posture are reduced.

The experimental results demonstrate that the DFRL can also implement DMPs-based control to gen-
erate proper motor commands (with offset adaptation) and thereby obtain appropriate body postures and
stable locomotion. This suggests that the DFRL design is generic and independent of specific CPGs. The
DFRL can be directly integrated into different CPGs, such as DMP and SO(2).

3. Stability analysis of quadruped robot trotting on slopes using a simplified model

3.1. Modeling

Intuitively ensuring stable trotting behavior in a quadrupedal robot on slope terrains is a complicated
task; it involves several factors (e.g., control, structure, material, power, friction, etc.) that must meet
certain specific conditions, as described in the discussion section. In this paper, we focus on body posture
stability for stable locomotion. Fig. S.5 illustrates a simplified model for analyzing the body-posture stability
conditions of a quadruped robot trotting upon a slope. In this analytical model, we assume the following:
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Figure S.3: Real-time data for a C7 condition trial, using the DMPs-based DFRL control. A stable trot gait with few body
oscillations emerged after ∼5 s. The black region in the gait diagram indicates the stance phase, whilst the white region
indicates the swing phase of each leg (RF: right-front leg, RH: right-hind, LF: left-front, LH: left-hind).
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Figure S.4: Real-time data for all conditions in Experiment I (walking on level ground) using the DMPs-based DFRL control.
w1 and w2 are the plastic weights of the DFFB reflex network (see Fig. 5 in the main manuscript); they are online-adjusted
by the DIL (see Eqs. (11) and (12)). β1 and β2 are the hip and knee joint command offsets for a leg (i.e., the right-front leg),
and they are automatically adjusted by the DFFB reflex (see Eq. (10)). The hip and knee joint commands for the leg are θ1
and θ2, respectively. Their offsets converge to constant values within ∼5 s. γ̄ converged to ∼1.1. The pitch angle of the robot
body, with respect to body stability, becomes notably smaller after offset convergence.5



(1) the leg mass is negligible and the center of mass is located in the center of the body, because most of
the robot’s mass is located in its base; (2) Coriolis and centrifugal forces are negligible (this is reasonable
here because the robot moves slowly); (3) the feet do not slip on the surface (feet are enacted with sufficient
frictional force) and cannot generate moments at the contact because the feet have an almost point-like
contact area [5]. Based on these assumptions, an equilibrium constraint of the stability conditions, which
satisfies both front and hind stance feet lifting criteria, can be described as follows:

Fh · x1 = Ff · x2. (S.3)

Body RF

Figure S.5: Simplified model of a quadruped robot trotting on a slope in the sagittal plane. The robot is modeled as a rigid
body connected to four identical legs, each of which consists of three connected massless links: l0, l1, and l2. The mass of the
body m is located at its base, and the dimensions of the body are referred to as L ·H. ma and mg represent the inertial force
and gravity acting upon the body, respectively. θa1,2 are the anterior extreme positions of the hip and knee joints, respectively.
Ff and Fh represent the front and hind GRFs, respectively. ε represents the slope inclination.

From the geometric relationship of the model in Fig. S.5, we obtain the following equations:

x1 = y1 − δy,
x2 = y2 + δy.

(S.4)

Using the leg’s forward kinematics, the variables in Eq. (S.4) can be expressed as

δy = (H/2 + l0 + hhip) ∗ tan(η),

y1 = L/2 + l1 ∗ sin(θa1)− l2 ∗ sin(θa2 − θa1),

y2 = L/2− l1 ∗ sin(θa1) + l2 ∗ sin(θa2 − θa1),

(S.5)

where L and H are the length and height of the robot body, l0,1,2 are the lengths of the leg links, and hhip
is the height from the hip to the surface. θa1,2 are the extreme anterior positions of the hip and knee joints,
respectively; these can be determined by the joint command offsets.
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From the geometric restrictions, we obtain the hhip and η of Eq. (S.5) as

hhip = l1 ∗ cos(θa1) + l2 ∗ cos(θa2 − θa1),

η = ε− ζ,
(S.6)

where ε denotes the slope inclination.
By combining Eqs. (S.3), (S.4), (S.5), and (S.6), we obtain the relationship between the joint anterior

extreme positions (θa1,2) and slope inclinations (ε) upon which the robot can steadily trot without considering
other conditions (e.g., joint torque limit, feet friction force, uneven surface, etc.); this relationship is expressed
as

ε = arctan(
l1 ∗ sin(θa1)− l2 ∗ sin(θa2 − θa1)

H/2 + l0 + l1 ∗ cos(θa1) + l2 ∗ cos(θa2 − θa1)
)

+ζ.

(S.7)

Assume that ∆θ1,2 represents the joint movement ranges of the hip and knee joints, respectively; then,
we can obtain the joint command offsets as follows:

β1,2 = θa1,2 −∆θ1,2/2. (S.8)

Eqs. (S.7) and (S.8) express the relationship between the joint command offsets (β1,2) and conquerable
slopes (ε). Although this derivation neglects certain realistic restrictions, it explains how the proper joint-
command offsets stabilize the robots trot behavior on slopes; furthermore, it provides a quantitative guideline
for modulating the trot-stabilizing offsets. Thus, it predicts the maximum slope inclination upon which a
quadruped robot can trot, in terms of its leg and body dimensions and joint movement ranges (l0, l1, l2, H,
∆θ1,2).

3.2. Maximum slope inclinations upon which Lilibot and Laikago can trot

Based on the foregoing conclusion, we can calculate the maximum slope inclination that Lilibot can
traverse. The configuration of Lilibot is shown in Table S.2. Substituting these parameters into Eq. (S.7),
we obtain a visualization of the conquerable slopes, as shown in Fig. S.6. The graph reveals that the
maximum slope inclination (εmax) upon which Lilibot can trot is ∼35.6◦ when θa1 = 80◦ and θa2 = 50◦;
meanwhile, the minimum slope (εmin) is ∼−36.2◦ when θa1 = 0◦, θa2 = 110◦. For Laikago, εmax = 50◦ when
θa1 = 85◦ and θa2 = 50◦; meanwhile, εmin = −45.8◦ when θa1 = 0◦ and θa2 = 110◦. These results are based
on three assumptions: the feet can obtain sufficient frictional force, the joint motor can provide sufficient
power, and the inertial force (ma) can be neglected because the locomotion speed is relatively slow.

4. Postural modulation strategies for slope locomotion

A quadrupedal robot trotting on a slope requires additional body posture modulation to maintain sta-
bility. Two postural modulation strategies are possible: telescoping strut and lever mechanics (see Fig.
S.7).

Without a postural modulation strategy (see Fig. S.7 (a)), gravity places a large load on the hind
legs of the robot during uphill locomotion; thus, x1 is significantly smaller than x2, and γ is subsequently
below its standard value. Consequently, the hind legs are unable to lift. Conversely, implementing postural
modulation alongside either of these two strategies ensures an appropriate GRF distribution or γ for stably
lifting the feet; however, this modulation operates differently under the two strategies.

1θa1,2 are determined by the joint structure configuration. ζ can be approximately set to zero when the robot has a relatively
low walking speed.
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Table S.2: The main specifications of Lilibot and Laikago.

Parameters1 Values
Lilibot Laikago

m 2.5 Kg 25 Kg
H 0.07 m 0.15 m
L 0.32 m 0.55 m
l0 0.04 m 0.08 m
l1 0.07 m 0.41 m
l2 0.086 m 0.45 m
θa1 0◦ - 80◦ 0◦ - 85◦

θa2 50◦ - 110◦ 50◦ - 110◦

ζ 0◦ 0◦

Total DOFs 12 12
Force sensors 4 4
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Figure S.6: Visualization of the relationship between the joint anterior extreme positions and the conquerable slope inclinations
of Lilibot and Laikago.
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Figure S.7: Postural modulation strategies for quadruped robots trotting on slopes. (a), (b), and (c) denote the strategies of
no postural modulation, telescoping strut, and lever mechanics, respectively.

8



5. Vestibular reflex mechanism

The vestibular reflex mechanism is shown in Fig. S.8. The reflex inputs body posture angles (i.e., pitch
and roll) as sensory feedback to generate responses. The outputs of the reflex are transferred to the MNs
to adjust the CPG/joint offsets. As a result, the joint movements are adjusted to realize a certain body
posture.

Robot

Command/Sensory signals Inhibitory synapse

1.4

0.26

1.4

-0.26

1.0

1.0

1.0 1.0

CPGs

MNs

Low-pass filter

Low-pass filter

Pitch

Roll

Sensory preprocessing

Excitatory synapsePlastic synapse

Hip

Knee

Foot

Figure S.8: Diagram of CPG-based control using the vestibular reflex. The reflex adjusts the robots posture using the telescoping
strut strategy [6].

6. Performance metrics

6.1. Stability

Large-amplitude changes in body orientation (i.e., roll and pitch) are known to decrease locomotion
stability; that is, they negatively affect the conservation of momentum and increase the risk of the robot
falling [7, 8]. The pitch angle is influenced by the slopes upon which the robot is trotting. Therefore, only
the maximum standard deviation of the body roll angle is used to represent its stability during locomotion.
The detailed definition is

¯roll =
1

N

N∑
n=0

roll(n), (S.9)

rollstd =

√√√√ 1

N − 1

N∑
n=0

(roll(n)− ¯roll(n))2, (S.10)

where N is the total sample size of the body roll angle roll(n). Eqs. (S.9) and (S.10) produce the mean and
standard deviation of the roll angle during locomotion, respectively.
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The standard deviation of the roll angle indicates the amplitude of oscillations within a period. Its
inverse is defined as a stability metric, as shown in Eq. (S.11). Thus, the larger the stability value, the
more stable the locomotion.

stability =
1

rollstd
. (S.11)

6.2. Coordination

In addition to the body movement state, the robots foot motions also significantly determine locomotive
performance. Here, we implement a symmetrical robot control in which each identical leg derives its control
commands from only the phase shift under a trot gait. Ideally, all robot feet should then be able to perform
similar alternating movements from swing to stance. Thus, all legs should have the same duty factors during
stable trotting. The coordination metric is used to measure the consistency of duty factors; it is defined as

µi(m) =
T i
swing(m)

T i
swing(m) + T i

stance(m)
, (S.12)

µ̄(m) =
1

4

4∑
i=1

(µi(m)), (S.13)

µstd(m) =


√√√√√ 4∑

i=1

(µi(m)− µ̄(m))2

3 ∀m ≤M, i ≤ 4,∃µi(m)

0 otherwise

, (S.14)

coordination =


1

max
{m∈M}

(µstd(m))
∃µstd(m) 6= 0

0 otherwise

, (S.15)

where T i
swing(m) and T i

stance(m) in Eq. (S.12) denote the swing and stance periods of the i-th leg during the
m-th step, respectively. Thus, µi(m) defines the duty factor of the m-th step for the i-th leg, and the mean
( ¯µ(m)) and standard deviation (µstd(m)) of the duty factor for the four legs (at the m-th step) are output
to measure the irregularity/incongruity of the four leg movements. The inverse of the maximum standard
deviation over several steps (i.e., M) was used to characterize the coordinated movements of the four legs.
Therefore, the larger the coordination value, the greater the coordination of a regular trot gait.

6.3. Displacement

Displacement is a basic measure of legged robot locomotion. Thus, we invoke a displacement metric. It
is defined as the locomotive displacement of the robot during a given period, and it is expressed as

displacement =
√

(x(N)− x(0))2 + (y(N)− y(0))2 + (z(N)− z(0)2), (S.16)

where x, y, and z denote distances along three directions in world coordinate, and N indicates the total
sample size.

7. Parameter setup of the adaptive quadruped motor control

The instructions of how to setup the parameters of the DFFB reflex, CPGs, MNs, and DIL are described
as below (see also Table S.3):
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1. DFFB reflex: The DFFB reflex has four parameters: w1(n), w2(n), w3 and w4. They are configured
as:
i) The two adaptive synaptic weights w1(n) and w2(n) are positive. They determine the sensory gain
of the DFFB reflex. According to our experience and empirically study, their proper initial values
should be small, i.e, 0.003 and 0.0032, respectively. However, when the DIL is induced to adjust the
two parameter values online (i.e., adaptive sensory gain), their initial values can also be simply set to
zero without specific initialization. In conclusion, the initialization for the two values is only necessary
for employing the DFFB reflex when the DIL is not applied, i.e., fixed sensory gain. A further analysis
of the adaptive or fixed sensory feedback gain can also be seen in [9].
ii) The two constant parameters w3 and w4 are the output gains of the DFFB reflex to the knee and
hip joints, respectively. They are set to fixed values 2.0 and 1.0, respectively. This is because the foot
displacement controlled by the hip joint will be approximately twice of that controlled by the knee
joint if the two joints receive the same command values. Therefore, we compensate for this by setting
the w3 value controlling the knee joint to twice the w4 value controlling the hip joint.

2. CPGs: Each CPG is based on the special orthogonal group (SO(2)) CPG proposed in [10]. Here,
four CPGs are used and coupled. They have four constant parameters: w, b, Φ, and ε which are
configured as follows:
i) w and b are synaptic weights and biases of the four CPGs. w determines the shape and frequency
of the CPG outputs. b is for activating the neurons of the CPGs. Its value can be initialized in a range
of (-0.085, 0.085). Based on the background of well understood the neurodynamics of the SO(2) CPG
[10], the weight parameters were manually selected (see Table S.3) in accordance with staying near
the Neimark-Sacker bifurcation set where quasi-periodic attractors occur. The attractors can drive
the joints to perform rhythmic movements. The detailed dynamical analysis and parameter setting of
the SO(2) CPGs can be see in [10].
ii) Φ and ε represent relative phases and coupling strength among the four CPGs. For instance, φ12

and φ13 represent the relative phases of the second CPG (controlling right hind leg) and the third CPG
(controlling the left front leg) with respect to the first CPG (controlling the right front leg). Here, we
used a trot gait for all robot experiments, where the diagonal legs move in-phase but anti-phase with
other legs. Therefore, the CPGs of the right hind and left front legs are in-phase but out-of-phase
with the CPG of the right front leg. Accordingly, φ23 = 0, φ12 and φ13 equal to −π. ε determines
the CPG coupling strength, i.e., the larger of this value, the stronger the CPG relative phase locking.
For this parameter setup, we empirically increased its value from zero to the value that the CPGs can
show proper phase relationship for the trot gait. This CPG phase locking technique was proposed by
Shinya ei. al. [11].

3. MNs: The MNs is for integrating the signals from the CPGs and the DFFB reflex and linearly scaling
the integrated signals to expected joint movement positions [12, 13]. The MNs have two parameters:
α and β(n) which are configured as follows:
i) α determines the amplitudes of the joint movement commands corresponding to the leg step height
and length. This parameter can properly match the commands to the robot joint movement work
space. In the experiments, we empirically set the parameter to 0.16 for Lilibot and 0.12 for Laikago
according to the robots’ configurations.
ii) β(n) determines the joint movement offsets. It influences the robot walking posture. This parameter
was initially set to zero and further modulated online by the DFFB reflex.

4. DIL: The DIL has six parameters: Af , Bf , and Cf for fast learner, as well as As, Bs, and Cs for slow
learner. Af and As are the retention factors, Bf and Bs are the learning rates, and Cf and Cs are the
integral rates. The parameter selection is under the constraint that Bf > Bs, Af < As, and Cf > Cs.
The DIL does not require its parameters to be precisely set to fit specific situations. Thus, here we
set these parameters (see Table S.3) based on previous studies [14, 15].
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Table S.3: Parameters of the adaptive quadruped motor control (AQMC).

Modules Symbols Initial values Description Adaptive
/constant

CPGs [10, 11]

w

(
1.4 2.6
−2.6 1.4

)
Synaptic weights of the SO(2) CPG
neurons (see Eq. (1) in the main
manuscript)

Constant

b

(
0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01

)
Biases of the SO(2) CPG neurons for
triggering CPG activation (see Eq. (1)
in the main manuscript)

Constant

Φ


0.0 −π −π 0.0
π 0.0 0.0 π
π 0.0 0.0 π

0.0 −π −π 0.0

 Desired relative phases among the four
CPGs (see Eqs. (3) and (4) in the main
manuscript)

Constant

ε 0.01 CPG communication gain (see Eq. (3)
in the main manuscript)

Constant

MNs [12, 13]
α 0.16 for Lilibot and 0.12

for Laikago
Synaptic weight projection from the
CPGs to MNs (see Eq. (5) in the main
manuscript)

Constant

β1,2(n) 0 Online modulated by the DFFB (see
Eqs. (5) and (10) in the main
manuscript)

Adaptive

DFFB reflex

w1(n) 0.003 Online modulated by the DIL (see Eq.
(12) in the main manuscript)

Adaptive

w2(n) 0.0032 Online modulated by the DIL (see Eq.
(12) in the main manuscript)

Adaptive

w3 2 DFFB output gain of the knee joint (see
Fig. 5 in the main manuscript)

Constant

w4 1 DFFB output gain of the hip joint (see
Fig. 5 in the main manuscript)

Constant

DIL [14, 15]

Af 0.01 Retention rate of the fast learner (see
Eq. (11) in the main manuscript)

Constant

Bf 0.05 Learning rate of the fast learner (see
Eq. (11) in the main manuscript)

Constant

Cf 0.001 Integral rate of the fast learner (see Eq.
(11) in the main manuscript)

Constant

As 0.1 Retention rate of the slow learner (see
Eq. (11) in the main manuscript)

Constant

Bs 0.01 Learning rate of the slow learner (see
Eq. (11) in the main manuscript)

Constant

Cs 0.0001 Integral rate of the slow learner (see Eq.
(11) in the main manuscript)

Constant
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