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Abstract

Biological motor control mechanisms (e.g., central pattern generators (CPGs),

sensory feedback, reflexes, and motor learning) play a crucial role in the adap-

tive locomotion of animals. However, the interaction and integration of these

mechanisms—necessary for generating the efficient, adaptive locomotion re-

sponses of legged robots to diverse terrains—has not yet been fully realized.

One issue is that of achieving adaptive motor control for fast postural adapta-

tion across various terrains. To address this issue, this study proposes a novel

distributed-force-feedback-based reflex with online learning (DFRL). It inte-

grates force-sensory feedback, reflexes, and learning to cooperate with CPGs in

producing adaptive motor commands. The DFRL is based on a simple neu-

ral network that uses plastic synapses modulated online by a fast dual inte-

gral learner. Experimental results on different quadruped robots show that the

DFRL can (1) automatically and rapidly adapt the CPG patterns (motor com-

mands) of the robots, enabling them to realize appropriate body postures during

locomotion and (2) enable the robots to effectively accommodate themselves to

various slope terrains, including steep ones. Consequently, the DFRL-controlled

robots can achieve efficient adaptive locomotion, to tackle complex terrains with

diverse slopes.
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1. Introduction

Animals show elegant locomotion with impressive adaptation, and this has

been the primary source of inspiration for developing advanced robot locomotion

control [1]. To date, certain quadruped robots (such as SpotMimi 1, Laikago2,

ANYmal [2], MIT cheetah [3], LittleDog [4], and HyQ2Max [5]) have demon-5

strated excellent locomotion behaviors. However, their controllers are based

on classical engineering control techniques (e.g., whole body control [6], inverse

dynamic model-based control [4], optimization-based control [7], and nonlinear

model predictive control (MPC) [8]), which rely heavily on precise/specific dy-

namic or kinematic robot models and their environments. Thus, their control10

performance depends highly on the quality of the model. These techniques also

require extensive knowledge and intensive computation for control parameter

optimization. Moreover, it is still difficult to relate the robot techniques to

their biological counterparts and understand the biological locomotion control

mechanisms involved.15

Therefore, the development of genuine bio-inspired control without reliance

on robot and environment models not only has potential for successfully mim-

icking dexterous animal-like locomotion with computational efficiency, but it

also provides a basis for validating a hypothesis in biological investigation [9].

Central pattern generators (CPGs) for generating rhythmic synchronized20

patterns and reflexes with sensory feedback to realize adaptation of the pat-

terns play a crucial role in the control of animal locomotion [10, 11, 12, 13, 14].

However, the interaction and integration among these mechanisms for generat-

ing efficient adaptive locomotion on complex terrains remain under investigation

1https://www.bostondynamics.com/spot
2https://www.unitree.cc
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in robot locomotion [10, 15, 16, 9]. Although certain existing CPG-based con-25

trols include CPG phase adaptation for generating adaptive gaits [17, 18] and

CPG frequency adaptation for generating efficient stepping frequency [19], CPG

offset adaptation for obtaining adaptive body posture corresponding to diverse

terrains (Fig. 1) has only been partially investigated, as described below.

Figure 1: A quadruped robot successfully trots on a complex terrain consisting of multiple

slopes. It is driven by the distributed-force-feedback-based reflex with online learning repre-

sented by a simplified neural diagram (see circle). The reflex circuit has two plastic synaptic

weights (dashed lines projecting from the two input neurons to the hidden neurons in the

diagram). The weights are adapted online by a fast learning mechanism. The reflex is stimu-

lated by the ground reaction force (GRF) distribution (green line projecting to the two input

neurons in the diagram). Its output neurons generate adaptive knee and hip joint commands

(red and blue lines in the diagram, respectively). The adaptive commands enable the robot to

trot stably on the terrain. The blue dashed lines above the robot and the green, red, and blue

lines below the robot describe the weight adaptations, the change in the GRF, the change in

the knee joint offset, and the change of the hip joint offset, respectively, during walking on

the terrain.

Fukuoka et al. conducted a groundbreaking study on bio-inspired control for30

adaptive quadruped walking on irregular terrains. The control is composed of

four connected Matsuoka CPGs [20] with sensory feedback to form basic rhyth-

mic patterns and multiple reflexes (i.e., vestibular reflex, flexor reflex, stepping

reflex, sideways and corrective stepping reflexes, and crossed flexor reflex). This
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results in body posture adaptation [16]. However, the reflexes are predefined35

using several hand-tuned parameters for specific platforms. Such a vestibular

reflex [16] (or postural reflex) has also been used, together with various CPG

models, for generating adaptive body posture, thus enabling the robot to walk

on different slope terrains [21, 22, 23, 24, 25, 26, 27]. Nonetheless, all these

cases are limited to low slopes (less than 20◦, see Table 1). This is because the40

vestibular reflex utilizes only body posture information (i.e., body orientation)

to keep the body parallel to the ground (known as a telescoping strut strategy

in biomechanics [28]). To obtain the robot posture balance, its legs must almost

fully extend or flex. This leads to leg joint movements near their singular con-

figuration or joint limits [29], particularly on steep slopes (e.g., 30◦). Although45

the traditional vestibular reflex can provide the CPGs with adaptive offsets for

balancing body posture, these rely on elaborately predefined control parameters

and still have limited ability on high and complex slope terrains (Table 1) (see

also the Experiments and Results section).

Table 1: The maximum slope to which robots can adapt based on vestibular reflex modulation.

Works Year of publication Max. slope [degree]

Xiuli Zhang et. al. [23] 2008 Around 11.2

Mostafa Ajallooeian et. al. [25] 2013 11.85

Duc Trong Tran et. al. [21] 2014 Around 11

Chengju Liu et. al. [22] 2018 Around 12

Instead of the vestibular/postural reflex that requires elaborate design with50

manual control parameter tuning, machine learning, especially reinforcement

learning (RL), has been increasingly applied for automatic control parameter

tuning. This is because it not only is model free, but it also has a high poten-

tial to generate robot agility, complex motor skills, and adaptability to various

environments [30, 31, 32, 33, 34]. For instance, Hwangbo et al. proposed an RL-55

based method for training a neural network policy in simulation and transferred

it to the quadruped robot ANYmal, which can perform agile and dynamic motor

skills [31]. To avoid long training sessions (e.g., nine days for training a normal
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locomotion on a floor) resulting from the structural complexity of the neural

network [31], Thor et al. recently presented a novel control framework that60

transfers CPG signals into desired joint motor commands for robot locomotion

by using a radial basis function network with a simplified structure [33]. The

network was trained by black box optimization (BBO), which is a variant of the

RL-based policy improvement with path integrals (PI2), to generate the desired

commands. Although the framework has the ability to realize adaptive offsets of65

CPG signals implicitly, it still requires several training sessions (up to 100 min).

Such machine learning techniques, while impressive in their own right, typically

need 1) a number of training sessions from several minutes to days and 2) care-

ful objective function training scenario designs. Furthermore, they might fail to

deal with situations that have not been trained before (generalization issue).70

To overcome the limitations of the aforementioned control techniques (classi-

cal engineering, bio-inspired CPGs with reflexes, and machine learning), a novel

distributed-force-feedback-based (DFFB) reflex with online learning (DFRL) for

fast offset adaptation of a CPG is presented. The DFRL utilizes the distribution

of the ground reaction forces (GRFs) acting on robot feet as sensory feedback.75

It can stimulate a response modulation on the CPG offsets in real time for

posture adjustment and balance. This strategy is called “lever mechanics” in

biomechanics [28].

The DFFB reflex is implemented through a simple recurrent neural network

organized in three layers. The key synaptic weights in the network are plastic80

and adapted or changed over time by a fast online learning mechanism, called

“dual integral learner” (DIL) [19]. The DFFB reflex has fast adaptability owing

to the learning mechanism (i.e., DIL). This is because the DIL can appropriately

modulate the synaptic weights of the DFFB reflex network online with respect

to sensory feedback. It is important to note that the plastic weights here are not85

spike-timing-dependent plasticity (STDP) because their changes rely on an error

function of the DIL rather than relative spike timings. Therefore, the DFRL has

several advantages over the traditional vestibular reflex [22, 23, 24, 25, 16, 26],

including online learning for fast automatic control parameter tuning, posture
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self-stabilization on various slope terrains, and the ability to handle steep and90

complex slope terrains. Because implementation of the DIL does not require

manual control parameter tuning for a specific robot platform, the DFRL can

be simply applied to other robot platforms. To evaluate the performance of

the DFRL, it was integrated with a simple CPG-based control. This results in

adaptive quadruped motor control (AQMC) (Section 2). A comparison with95

the traditional vestibular reflex shows the superior performance of the DFRL

for adaptive quadruped locomotion (Section 3). The discussion and conclusion

are presented in Sections 4 and 5, respectively.

The main contributions of this work are as follows:

1. A novel bio-inspired reflex mechanism with fast online learning (i.e., DFRL),100

which provides CPG-based control with an offset adaptation function, for

adaptive body posture corresponding to diverse slopes. Compared with

the quadruped locomotion control based on classical techniques [4, 6, 8],

the DFRL with CPG-based control does not require any robot kinemat-

ics and environmental model. Thus, it is more practical. In principle,105

the proposed DFRL based on biological mechanisms is characterized by

the independence of specific robots and CPG-based control. It provides a

generic offset adaptation method which can be integrated with different

CPG models (e.g., special orthogonal group (SO(2)) CPG [35] and dy-

namical movement primitives (DMPs) [36]) for controlling different sized110

and weighted quadruped robots.

2. A demonstration involving quadruped robots with the proposed reflex for

adaptive body posture to navigate ascending and descending steep slopes

(i.e., ±35◦ for a small robot and 50◦ and −45◦ for a larger one), as well

as a complex terrain with multiple slopes using a trot gait (see Fig. 1).115

This in our knowledge is an advanced achievement in quadruped slope

locomotion based on reflex mechanisms.

3. A comparison of the performance between the traditional vestibular reflex

(using the telescoping strut strategy) and the proposed DFRL (using the
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lever mechanics strategy) for adaptive quadruped locomotion on various120

slopes.

4. A possible option for integration and interaction of CPGs, sensory feed-

back, reflexes, and motor learning. This contributes to better understand-

ing of biological locomotion mechanisms and development of the reflex-

based quadruped locomotion control with great adaptability.125

2. Adaptive quadruped motor control (AQMC)

In this section, we introduce the AQMC based on several biological mecha-

nisms (i.e., CPGs, sensory feedback, and reflexes) and online (motor) learning.

The control is bio-inspired, model-free, and straightforward, and it offers fast

control-parameter adaptation. It is derived from the integration of CPG-based130

control with DFRL (see Fig. 2). The CPG-based control is realized by four iden-

tical coupled neural oscillators; meanwhile, the DFRL is realized by a DFFB

reflex and DIL. More specifically, the DFFB reflex network projects the sensory

inputs to control the motor neurons. Simultaneously, the CPG-based control

(featuring four identical SO(2)-based CPGs) transmits periodic signals to the135

motor neurons. Finally, the outputs of the motor neurons control the robot’s

knee and hip joints. Thus, whilst the CPGs make the joints move periodically,

the DFRL control the joint offsets, to facilitate stable locomotion over different

slopes (see Fig. 1).

2.1. Central pattern generators (CPGs)-based control140

We employ a concise and straightforward neural CPG-based control. It

involves two basic modules: CPGs and motor neurons (MNs) (Fig. 2). The

details are shown in Fig. 3. The CPGs, realized by four neural SO(2) oscillators,

are fully coupled via parameters φij that represent the CPG phase relationship.

Each neural SO(2)-based CPG has two outputs, which are sent to the peripheral145

MNs (M1 and M2).

As shown in Fig. 3 (b), the neural SO(2)-based CPG is a recurrent neural

network. It consists of two fully connected neurons (N1 and N2). The neurons
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Figure 2: Schematic diagram of the AQMC, featuring (i) a CPG network for producing rhyth-

mic commands; (ii) the DFRL, which includes the DFFB reflex and DIL and uses the GRF

information for the CPG offset adaptation; and iii) the MNs for integrating and transfer-

ring the adaptive commands from the CPGs and DFFB reflex to drive the robot’s leg-joint

movements.
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Figure 3: CPG-based control. Four identical CPGs are fully connected via the coupling pa-

rameters φij , which represent CPG phase relationships. Their outputs are sent to four groups

of MNs (M1 and M2) through the synaptic weights α, to control the four legs’ movements. The

MNs integrate the DFFB network outputs, triggered by sensory feedback and CPG outputs.

(b) The CPG is based on the SO(2) neural oscillator, which is a recurrent neural network

with two neurons (N1 and N2); these neurons feature internal neural connections (i.e., wij)

and receive inputs from the corresponding neurons of the other CPGs (dashed lines). Each

CPG produces two outputs (o1 and o2) with a fixed phase shift π/2. (c) The outputs of the

CPG and MNs of a leg. The MN outputs (θ1(n) and θ2(n)) send the frequency, waveform,

phase, and offset of the CPG outputs (o1 and o2) to the robot joints. The amplitudes of

the MN outputs are scaled by α-projecting from the CPGs to MNs (e.g., 0.16 for Lilibot and

0.12 for Laikago) to determine a particular step length. (d) Foot trajectory formed under MN

outputs. Ideally, the trajectory has four states: lift moment, touch moment, swing phase, and

stance phase.
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are modeled in time-discrete dynamics using difference equations [35]. Their

activation function is a hyperbolic tangent (tanh) function, expressed as follows:150

a(n+ 1) = w · o(n) + b + g(n), (1)

o(n) = tanh(a(n)). (2)

Here, a(n), o(n), and b ∈ R2×4 represent the activations, outputs, and biases

of the CPG neurons, respectively. Note: each column of the matrices represents

the state variables of a CPG. The biases are constant, which generates the initial

activation of the CPG neurons in accordance with a periodic pattern (i.e., the

neural dynamics of the CPG are those of a quasi-periodic attractor); their values155

can be set within the small range of -0.085 – 0.085. Note: setting them to a

larger positive or negative value will drive the neural dynamics to, for example,

a fixed point attractor, resulting in constant CPG activities. w ∈ R2×2 denotes

the synaptic weights between the two neurons of the neural SO(2)-based CPG.

Each CPG model has four synaptic weights (w12, w21, w11, and w22) and two160

bias terms (b1 and b2, Fig. 3 (b)) The weights and bias terms are empirically set

such that the CPG generates two stable periodic signals (o1 and o2, Fig. 3 (b)).

The two outputs have a stable phase shift π/2 between them, thereby realizing

the intralimb coordination of a leg (i.e., the joints of the leg move coordinately)

[18].165

The input data of the CPG neurons is a discrete-time series which is provided

to them at each time step (n). Here, n denotes discrete time with an update

frequency of 60 Hz. Each neuron features a nonlinear activation function (i.e.,

a hyperbolic tangent (tanh) transfer function). At each time step, the neuron

inputs are multiplied by the input weights (w) and summed to obtain the neuron170

activations (a(n)). Next, the activations are transformed to produce the outputs

(o(n)) via the activation function (o(n) = tanh(a(n)) ∈ [−1, 1]). This process

is updated at each step.

The four neural SO(2)-based CPGs are fully connected via parameters φij ,
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which represent CPG phase relationships. To generate a trot gait, the inter-CPG

connections are also predefined based on a phase-locked function of distributed

oscillators [37]; such functions are widely employed for interactions (e.g., phase

locking) in oscillator network systems [37, 38, 39, 40, 41]. Here, the inputs de-

livered to one CPG neuron from other CPG neurons are modeled and described

via the term g(n) = (gil(n)) ∈ R2×4 in the CPG model (see Eqs. (1) and (3)).

gil(n) is given by

gil(n) = ξ

4∑
k=1

(sin (oil(n)− oik(n)− φlk)) , (3)

where oil(n) and oik(n) are the outputs of the i-th neuron in CPG l and CPG

k, respectively. ξ is a communication gain that is empirically set to 0.01. φlk

is the desired relative phase of CPG k with respect to CPG l. For instance, if

we set the right-front leg’s CPG (CPG 1) in anti-phase to the right-hind leg’s

CPG (CPG 2), then φ21 = π and φ12 = −π; if they are in phase, then φ12 = 0

and φ21 = 0. For a trot gait, the diagonal legs move in phase but in anti-phase

with the other legs. Thus, the relative phases between the CPGs under the trot

gait are set as

Φ =


φ11 φ12 φ13 φ14

φ21 φ22 φ23 φ24

φ31 φ32 φ33 φ34

φ41 φ42 φ43 φ44

 =


0.0 −π −π 0.0

π 0.0 0.0 π

π 0.0 0.0 π

0.0 −π −π 0.0

 . (4)

φlk determines the interlimb coordination or walking pattern. Optimizing

this parameter can allow the robot to realize different gaits, which can enhance175

its performance under certain conditions. However, in this study, the parameter

was predefined to produce a trot gait without further gait optimization.

The MNs are used to convert the CPG outputs into the desired joint move-

ment commands. Their transfer functions are also tanh functions; this allows

the MNs to capture the main features of the CPG outputs, such as the fre-180

quency, waveform (i.e., duration of the ascending and descending phases within

a cycle), phase relationships among the outputs, and offsets. The amplitudes of
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the MN outputs can be set via the synaptic weight projection from the CPGs

to the MNs (α, see Fig. 3 (a)). As a result, the CPG outputs are properly

mapped to the joint angles, and the robot feet will exhibit alternating stance185

and swing motion states when the robot is balanced at the lift/touch moment

(Fig. 3 (d)). The MNs are defined as

θ(n) = tanh(αo(n) + β(n)), (5)

where o(n), β(n), and θ(n) ∈ R2×4. θ(n) is the joint command, o(n) is the

CPG output, α represents the synaptic weight projection from the CPGs to the

MNs (e.g., 0.16 for Lilibot and 0.12 for Laikago, see Fig. 3 (c)). β(n) denotes190

the joint command offsets and determines the robot-joint offsets required to

set the robot body posture. In this work, we optimize this parameter using

the proposed DFRL (see Fig. 5). Optimizing the parameter β(n) provides the

robot with a proper body posture for stable locomotion over various slopes.

2.2. Distributed-force-feedback-based reflex with online learning (DFRL)195

The DFRL is realized by the DFFB reflex and DIL (Fig. 2). The DFFB

reflex is organized by a simple neural network with synaptic plasticity; this

network can be triggered by the GRF distribution, while the network’s plastic

synapse strengths can be adapted online by the DIL.

2.2.1. Distribution of ground reaction forces (GRFs)200

The distribution of GRFs acting upon the robot’s feet is an effective index

of robot motion stability and efficiency [42, 43, 44]. Here, it is formulated as

sensory feedback, which stimulates the DFFB reflex to maintain locomotion

stability by adjusting CPG/joint offsets. This realizes adaptable CPG offsets.

In the robot model illustrated in Fig. 4 (a), Ff and Fh represent the GRFs205

of the front and hind legs, respectively; meanwhile, ma is the resultant force

acting upon the body in the sagittal plane, which points the zero moment point

(ZMP) towards the ground when the robot locomotion is stable [45]. Note: each

leg’s mass is neglected because it is light in comparison with the robot’s body
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weight. The ZMP position can be described by x1 and x2 in the sagittal plane;210

from this, a stability index γ(n) can be derived as

γ(n) = x1/x2, (6)

where x1 and x2 denote the distances between the footholds and the ZMP (see

Fig. 4 (a)). Furthermore, we obtain the following equilibrium equation for the

robot:

x1 · Fh = x2 · Ff . (7)

Here, Ff and Fh are the GRFs of the front (f) and hind (h) legs, respectively.

By combining Eqs. (6) and (7), γ(n) can be conveniently calculated online from

the GRF signals measured by the foot force sensors, as follows:

γ(n) =

Ff/Fh Fh 6= 0

0 Fh = 0

. (8)

Therefore, the stability index can also be considered as a metric of the distri-215

bution of GRFs. This is the basis of the idea that the DFFB reflex can maintain

locomotion stability by using the distribution of GRFs as sensory feedback.

2.2.2. Distributed-force-feedback-based (DFFB) reflex

Intuitively, two fundamental and essential motion conditions are involved

in the stable trotting gaits of quadruped robots. First, the flight feet must be220

able to touch the ground in time to support the robot body, to ensure regular

alternation (touching condition). Second, the support feet must be able to lift

to swing in time when making a step (lifting condition). The first condition

can be realized by using either a high step frequency or a small step length.

In this work, we focus on the second condition, to handle more complex lifting225

conditions (e.g., lifting when walking on a slope).

This condition is fulfilled by the proposed DFFB reflex mechanism, which

can appropriately redistribute the GRFs on the stance feet by adjusting the

body posture with respect to the ground; this allows the support feet to lift

13



Time

S

S

D
is

p
.

S: Step length
T: Step period

(a) (b)

0 2 4 6 8 10 12 14

Time [s]

RF
0

1

RH
0

1

LF
0

1

LH
0

1

Lift/Touch moment

1.0

ZMP

(c)

Figure 4: GRF distribution. (a) Force balance of the quadrupedal robot at a moment when

its feet all touch the ground. (b) The ideal profile of the parameters x1, x2, γ(n), and γ̄(n)

during a step period whilst the robot stably trots forward; here, x1 increases while x2 decreases

in every half period. Thus, γ(n) increases significantly from 1.0 at the lift/touch moment.

γ̄(n) (see Eq. (9)), obtained by smoothing γ(n), is a constant value greater than 1.0. (c)

The filtered GRFs of four legs for a quadrupedal robot performing stable locomotion via a

trot gait. RF, RH, LF, and LH are the right-front, right-hind, left-front, and left-hind legs,

respectively.
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with the desired movement. The desired lifting movement arises from the GRFs230

between the front and hind legs; ideally, they are approximately equal at the

lift moment (n = n0) (see Fig. 4 (b)). This means that Ff (n0) = Fh(n0) or

γ(n0) = 1 (Eq. (8)), where n0 indicates the moment at which the stance and

swing phases switch. As shown in Fig. 4 (b), the profile of γ(n) is reset to 1.0

at each lift/touch moment (n0) during ideal trot locomotion. However, γ(n)235

increases significantly in each half-step period following the lift/touch moment

(n0). This indicates that the trot gait is not statistically stable. To prevent an

unstable situation in which the robot might fall down, the γ(n) value should be

reset promptly.

However, in reality, it is difficult to precisely determine the touch moment240

(n0) and obtain Ff,h(n0) and γ(n0) promptly. Therefore, in practice, a smoothed

GRF distribution variable (γ̄(n)) is used for locomotion state estimation and as

sensory feedback for the DFFB reflex. γ̄(n) denotes the average value of γ(n)

during a certain period (Eq. (9)). When a stable trot gait occurs in quadruped

robots, the γ(n) profile—determined by the specific step length (or joint move-245

ment range) and period—should be a constant pattern (Fig. 4 (b)). Thus, the

corresponding γ̄(n) should be constant. In the following robot experiments, the

desired γ̄(n) is ∼1.1 when the robot stably trots; that is, the joint movement

ranges (determined by α, Eq. (5)) of Lilibot and Laikago are 0.16 and 0.12 rad,

respectively, while their step periods are ∼1.5 s.250

2.2.3. Distributed-force-feedback-based reflex with online learning (DFRL) real-

ization

As shown in Fig. 5, the DFRL consists of three sub-modules: (i) a sensory

preprocessing stage, to properly compute the GRF distribution; (ii) a neural

control network, for implementing the DFFB reflex and transferring sensory255

stimulation to the motor outputs; and (iii) a DIL, to online-adapt the synaptic

strengths of the reflex neural network.

The sensory preprocessing unit calculates the real-time distribution (γ(n))

of the front and hind GRFs (Ff and Fh), which are smoothed by two digital low-
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Fast learner

xf(n)

Slow learner

xs(n)

System output
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ii) Neural network of DFFB reflex

Figure 5: Schematic diagram of the DFRL, featuring three main components: (i) sensory

preprocessing, (ii) DFFB reflex network, and (iii) DIL. Sensory preprocessing calculates the

actual GRF distribution (γ(n)) using the front and hind GRFs, which are filtered by two infi-

nite impulse response low-pass filters (L1 and L2 low-pass filters); then, it smooths γ(n) using

a moving average filter (L3 low-pass filter) to acquire the actual smoothed GRF distribution

γ̄a(n), which triggers the reflex network. The DFFB reflex network is organized into three

layers (Layers 1, 2, and 3) with five neurons (N1, N2, N3, N4, and N5). It can automatically

adapt the knee and hip-joint offsets at MNs. Two plastic synapses (w1,2(n)) of the network

are online-modulated by the DIL. The biases of the Layer 1 neurons (N1 and N2) represent the

desired GRF distribution (γ̄d). In the following experiments, they are set to 1.1, depending on

the particular step length and period. The synapse (w3 and w4) projections from the Layer 2

neuron (N3) to the Layer 3 neurons (N4 and N5) were set to 2.0 and 1.0, respectively. Note:

w3 is here set to twice that of w4 because the foot displacement controlled by the hip joint

will be approximately twice of that controlled by the knee joint if the two joints receive the

same command values. Therefore, we compensate for this by setting the w3 value controlling

the knee joint to twice the w4 value controlling the hip joint.
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pass single-pole infinite impulse response filters. The GRF distribution (γ(n)) is260

then further processed by a two-layer moving average filter to obtain a smoothed

RF distribution (γ̄(n)), as

γ(n)temp =
1

N

n∑
k=n−N

γ(k),

γ̄(n) =
1

0.5N

n∑
k=n−0.5N

γ(k)temp,

(9)

where n and N ∈ R. n indicates the current sample number. N represents the

sample size of the filter; it was empirically set to 50 in the robot experiments.

The DFFB reflex neural network employs the smoothed GRF distribution265

(γ̄(n)) as its sensory input, using it to trigger neural network activation. The

network consists of three layers: input (Layer 1), hidden (Layer 2), and out-

put (Layer 3). As shown in Fig. 5, the N1 neuron in Layer 1 calculates

the difference between the actual and desired GRF distributions (γ̄a(n) and

γ̄d(n), respectively). For our setup, the desired value is 1.1, as defined by the270

bias term (see Fig. 4 (b)). Accordingly, the difference equation is given by

∆γ̄(n) = γ̄a(n)−1.1. The N2 neuron calculates the second-order difference. Its

formula is ∆γ̄′(n) = ∆γ̄(n)−∆γ̄(n− 1). Thus, the synaptic weight projection

from N1 to N2 was set to -1. The use of the second-order difference can partially

compensate for the delay effect on γ̄(n) produced by the low-pass filters (see275

L1, L2, and L3 in Fig. 5). This is because the second-order difference—which

reflects the change tendencies of the difference—can adjust the DFFB outputs

in advance. In Layer 2, the N3 neuron adds two differences via the two plastic

synapses (w1,2(n)) and accumulates them via a recurrent connection (i.e., 1.0).

In Layer 3, the N4 and N5 neurons properly re-scale the offsets to the knee and280

hip joints of the leg. Thus, the outputs of N4 and N5 (odffb4 (n) and odffb5 (n),

respectively) are combined with the CPG outputs at the M2 and M1 neurons.

odffb4 (n) and odffb5 (n) are set to the joint command offsets (β(n); see Eq. (5)).
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This can be described as follows:

β1(n) = odffb5 (n),

β2(n) = odffb4 (n).
(10)

Therefore, the DFFB reflex can automatically adjust the MN output offsets,285

to maintain proper body posture in accordance with the GRF distribution.

As shown in Fig. 6 (a), the offsets (β1(n) and β2(n)) of the corresponding

MN outputs (θ1(n) and θ2(n)) are adjusted online. This leads to the GRF

distribution (γ̄(n)) converging to a desired value (i.e., 1.1, Fig. 5).

In addition, the synaptic weights (w1,2(n)) in the DFFB network—which290

contribute to the adaptation of the joint offsets—are plastic and adjusted online

by the DIL. The sensory stimulation changes obtained by N1 serve as the input

to the DIL. More specifically, the DIL features two parallel learners with different

learning scales [19]. The fast (slow) learner has a higher (lower) learning rate

but a lower (higher) retention one. The DIL can be described as295

e(n) = ∆γ̄(n),

xf (n) = Af · x(n− 1) +Bf · e(n) + Cf ·
∫
e(n),

xs(n) = As · x(n− 1) +Bs · e(n) + Cs ·
∫
e(n),

x(n) = xf (n) + xs(n),

(11)

where xf (n) and xs(n) denote the states of the fast and slow learners, respec-

tively; Af,s are the retention rates; Bf,s and Cf,s are the learning rates; and

e(n) is the difference between the absolute values of the current and previous N1

outputs of the DFFB reflex network. The DIL does not require its parameters

to be precisely adjusted to fit specific situations. Its further advantages can be300

seen in [19]. The sum of the fast and slow learners’ states (x(n)) is set as the

modulation of the synaptic weights w1,2(n), as

∆wi(n) = x(n), i = 1, 2, (12)
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Figure 6: Outputs of the modules (o1,2 from a CPG, w1,2(n) adjusted by the DIL, β1,2(n)

from the DFFB reflex, θ1,2(n) from two MN neurons of a leg, and γ̄(n) from the sensory

preprocessing unit) in the AQMC. (a) The DFFB reflex without the DIL. (b) The DFFB

reflex with the DIL. Using only the DFFB reflex, the offsets of the MN outputs are shifted,

and the actual γ̄a(n) gradually converges to the desired value (i.e., γ̄d ≈ 1.1) after ∼4 s.

¯γa(n) is also overshot. In contrast, under the DFFB reflex with the DIL, the plastic weights

(w1,2(n)) are adjusted online to appropriately set the reflex gains. This results in the fast

convergence of γ̄a(n) (within 2 s) and no overshoot. Note: γa(n) represents the actual raw

GRF distribution. 19



where the initial values of the weights (w1,2(0), see Fig. 5) are empirically set to

0.003 and 0.0032, respectively. This equation shows that the synaptic weights

(w1,2(n)) are adjusted online by the DIL’s output (x(n)). The DFFB reflex305

network exhibits synaptic plasticity3 [46].

This synaptic plasticity provides the reflex network with fast online adap-

tation, because the DIL can adjust the reflex gains online (i.e., determined by

w1,2(n)) depending on the sensory stimulation changes (see Fig. 6 (b)). For

instance, when the input change is large (small), the gains increase (decrease)310

for realizing adaptive synaptic weights (w1,2(n)). This results in joint offset

adaptation.

3. Experiments and Results

In this study, we performed three main experiments on a small-sized quadrupedal

robot (Lilibot [26]) in simulation (Fig. 7), to evaluate the performance of the315

DFRL for the AQMC. The experiments consisted of (I) trotting on a level

ground, (II) trotting on various slopes, and (III) trotting on a complex terrain

with multiple slopes (see Fig. 8). The traditional vestibular reflex was also

evaluated by implementing it instead of the DFRL for comparison; this reflex

utilizes a level-body posture strategy through which the robot body is main-320

tained parallel to the horizontal surface (known as telescoping strut) [16, 47].

This differs from the lever mechanics strategy utilized by the DFFB reflex in

the DFRL. The two strategies are shown in Figs. S.7 (b) and (c) in the Sup-

plementary material. The vestibular reflex scheme is outlined in Fig. S.8 of the

Supplementary material. In addition to the comparative experiments on Lili-325

bot, the AQMC with the DFRL was also implemented in a larger quadrupedal

robot (Laikago, Fig. 7), to demonstrate the DFRL’s generalizability to different

platforms.

3Synaptic plasticity (neuroscientific term): The ability of synapses to strengthen or weaken

over time in response to increases or decreases in activity. We import this term to describe

the similar abilities of the artificial neural network (DFFB network).
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3.1. Experimental setup

Fig. 7 shows the experimental platforms: Lilibot and Laikago. These two330

quadruped robots have different sizes, and their specifications can be seen in Ta-

ble S.2 in the Supplementary material. The robot experiments were performed

on three types of terrains, as shown in Figs. 8 (a), (b), and (c). The robots

and terrains were simulated using CoppeliaSim4 with Vortex5. These served

as a robot operating system (ROS) node and communicated with the AQMC335

through certain ROS topics. The simulation platform featuring Lilibot and

Laikago can be seen in https://gitlab.com/neutron-nuaa/lilibot. The in-

struction of how to set the parameters of the AQMC can be seen in Section 7

in the Supplementary material.

To quantitatively evaluate locomotive performance, three global performance340

metrics (for a complete locomotion process) were employed to measure the sta-

bility, coordination, and displacement of the robot locomotion obtained using

the AQMC with the DFRL (DFRL-based AQMC) or vestibular reflex (vestibular-

reflex-based AQMC). The metric definitions can be found in Section 6 in the

Supplementary material.345

3.2. Experiment I: trotting on level ground

The CPG/joint offsets significantly influence the robot’s posture in terms

of trotting stability, coordination, and displacement. The traditional CPG-

based control for legged locomotion typically requires the offsets to be predefined

robustly. Here, we performed an experiment to verify whether the proposed350

DFRL allows CPG-based control (Fig. 3) to produce feasible commands with

self-adaptive offsets (β1,2(n)) for maintaining stable locomotion. In addition,

the vestibular reflex was tested for comparison.

More specifically, the AQMC (with the DFRL or vestibular reflex) was used

to control Lilibot’s level-ground trot with seven different initial offsets (see Fig.355

4https://www.coppeliarobotics.com/
5A highly realistic and precise physical engine: https://www.cm-labs.com/vortex-studio/

21

https://gitlab.com/neutron-nuaa/lilibot


Figure 7: Experimental platforms: Laikago and Lilibot.

Figure 8: Terrain types used in the three main experiments: (a) level terrain for Experiment

I, (b) uphill and downhill terrains for Experiment II, and (c) complex terrain with multiple

slopes for Experiment III.

22



C1 C2 C3

C5 C6 C7

Body
x

z yBody frame
Pitch

Roll

C4

Figure 9: Lilibot configuration and its posture initializations with corresponding joint offsets

(β1,2(n)) in seven conditions (C1, C2, C3, C4, C5, C6, and C7). The initial values of β1,2(0)

were set in the range -0.3 – 0.3, which covers all possible joint-movement ranges. If the

initial offsets (β1,2(0)) lie outside this range, the robot will fall down. For example, if the

value exceeds 0.3, the robot will lean too far forward; if it is smaller than -0.3, the robot will

lean too far backward. In both extreme cases, the robot’s center of mass will be outside the

supporting area of the robot legs, causing it to fall.

9). The corresponding initial offsets of Lilibot’s hip and knee joints in the seven

conditions C1, C2, C3, C4, C5, C6, and C7 were set to -0.3, -0.2, -0.1, 0.0, 0.1,

0.2, and 0.3, respectively. Tests were repeated five times for each condition. At

the beginning of every trial, the robot was suspended in the air, to initialize it

with identical control parameters. After placing the robot on the ground, the360

DFRL or vestibular reflex was activated. A video clip of the experiment can be

viewed at http://www.manoonpong.com/DFFB/video1.mp4.

In this setup, the joints’ initial offsets in the C7 condition show the largest

deviation from the normal condition (i.e., C4). Thus, we include the real-time

data for a C7 (extreme condition) trial as an example. The experimental results365

are shown in Figs. 10. In the experiments implementing the DFRL, Lilibot

rapidly developed a regular trot gait and stably moved forward after interacting

with the ground (i.e., within 5 s, Fig. 10 (a)). In addition, the robot body

attitude oscillation decreased significantly. On the other hand, a stable gait was

not formed in the experiment involving the vestibular reflex, and the robot’s370

hind legs always stalled on the ground (see Fig. 10 (b)). This resulted in a

higher body attitude oscillation and smaller forward displacement.
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Figure 10: Real-time data for a trial in the C7 condition, using the (a) DFRL and (b) vestibular

reflex. A stable trot gait (with very few body oscillations) emerged after ∼5 s only when using

the DFRL. The black region in the gait diagram indicates the stance phase, whilst the white

region indicates the swing phase of each leg (RF, right-front; RH, right-hind; LF, left-front;

LH, left-hind).

The convergence progress of tests in all DFRL-based conditions can be seen

in Fig. 11. The plastic weights (w1,2(n)) of the DFRL are adaptable, which

affects the changes in the joint offsets (β1,2(n)). The joint offsets were online-375

adjusted by the DFFB reflex of the DFRL (see Eq. (10)); as a result, those of

a specific leg (i.e., right-front leg) quickly converged to particular values in all

conditions and from different initializations. When the joint offsets were stable,

the plastic weights converged to certain values, leading to DFFB reflex gains.

In addition, the smoothed GRF distribution parameter (γ̄(n)) also converged380

to a constant value of ∼1.1. After the offsets became stable, the robot’s posture

was likewise stabilized (i.e., the roll and pitch angles decrease). However, the

results of experiments using the vestibular reflex (see Fig. 12) did not indicate

any convergence, and the joint offsets exhibited almost no adjustment. The

GRFs distribution values (γ̄(n)) were spread between 0.0 and 2.0. The robot’s385

posture shows large oscillations under all conditions.

The locomotion performances (stability, coordination, and displacement)

are shown in Figs. 13 (a), (b), and (c). They demonstrate that the DFRL-based
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0.3

0.3

Figure 11: Real-time data for all conditions in Experiment I, using the DFRL. Progress is

divided into three stages: initialization, transition, and stabilization. w1(n) and w2(n) denote

the plastic weights of the DFFB reflex network, respectively; these are adjusted online by the

DIL (see Eqs. (11) and (12)). β1(n) and β2(n) are the hip and knee joint command offsets for

a leg (i.e., the right-front leg). They are automatically adjusted by the DFFB reflex (see Eq.

(10)). The hip and knee joint commands for the leg are θ1(n) and θ2(n), respectively. Their

offsets converged to constant values within ∼5 s. γ̄(n) converged to ∼1.1. The pitch angle of

the robot body—with respect to body stability—became notably smaller following the offset

convergence. 25



Figure 12: Real-time data for all conditions in Experiment I, using the vestibular reflex. This

is for comparison with the DFRL (Fig. 11). In this experiment, no convergence was achieved

under any condition.
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Figure 13: (a) Stability, (b) coordination, and (c) displacement of the robot walking in Ex-

periment I. This demonstrates the comparative results of the DFRL and vestibular reflex.
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AQMC enabled Lilibot to realize greater stability and coordination and longer

displacement than the vestibular-reflex-based AQMC in almost every test for all390

conditions. More specifically, the vestibular-reflex-controlled Lilibot only shows

sufficient stability under the C2 condition (-0.2) (see Fig. 13 (a)). The plot in

Fig. 13 (b) shows the coordination performance. The DFRL outperformed the

vestibular reflex in all conditions. The plot in Fig. 13 (c) shows the displace-

ment. The DFRL-controlled Lilibot traversed an almost-identical displacement395

under all conditions. However, the most suitable joint offsets for the vestibular

reflex only occurred under the C2 condition. Because the joint offsets of the C2

condition represent the optimal setup for the vestibular reflex, we used these as

the initial offsets for the following slope experiments. To summarize, the results

of Experiment I demonstrate that the DFRL allows the robot to rapidly learn400

and adapt its joint offsets to any initial conditions, facilitating stable trotting

over the level ground.

3.3. Experiment II: trotting on various slopes

In this experiment, we comparatively assess the effectiveness of the DFRL

and vestibular reflex in stabilizing a quadruped robot (i.e., Lilibot) trotting405

on slopes. A series of slope terrains (−35◦, −30◦, −20◦, −10◦, 0◦, 10◦, 20◦,

30◦, and 35◦) were used for testing. Note: the negative and positive angles

denote declined and inclined slopes, respectively. Each test using the DFRL or

vestibular reflex on a specific terrain was repeated five times. At the beginning

of each trial, the robot was initialized in the same state by suspending it in the410

air; then, it was placed on the ground to trot forward. Next, it approached a

slope with its front legs. The change of the terrain (from the level ground to

the slope) presented a challenge for the robot because it needed to adapt its

posture to the transition and new terrain, by using its reflex mechanism.

The real-time data for the experiments involving the most challenging slopes415

(35◦ and −35◦) are depicted first, followed by the experimental statistics for

all slopes. A video clip of the experiment can be viewed at http://www.

manoonpong.com/DFFB/video2.mp4.
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3.3.1. Feasible maximum slope

When using the DFRL, Lilibot can trot on inclined and declined slope ter-420

rains of ±35◦. For comparison, real-time data for the vestibular-reflex-controlled

robot are also depicted. The adjustment effects of the DFRL and vestibular re-

flex are shown in Figs. 14 and 15.

The joint commands for a specific leg (i.e., the right-front (RF)), γ̄(n), body

posture angles (i.e., pitch and roll), displacement, and gait diagrams are plotted.425

Locomotion can be divided into three stages: locomotion on the level ground (S1

stage), transition from the level ground to the slope (S2 stage), and locomotion

on the slope (S3 stage).

The experimental results for the 35◦ slope are shown in Fig. 14. For the

S1 and S3 stages under the DFRL (Fig. 14 (a)), the joint commands and γ̄(n)430

quickly converged after the robot was placed on the ground or crossed the terrain

transition. γ̄(n) eventually converged to ∼1.1. In addition, the robot pitch angle

approximated the slope inclination (35◦) in the S3 stage. This means that the

robot successfully trotted on the 35◦ slope. The robot roll angle shows very little

oscillation during the convergence period (in the S1 and S3 stages). The gradient435

(velocity) of the displacement curve decreased during uphill locomotion in the S3

stage. This is because the amplitudes of the joint movement commands became

smaller and thereby generated a shorter step length. The final gait diagram plot

also shows greater regularity during the stabilized stages (S1 and S3), indicating

that the robot achieved a stable trot gait. The gait diagram also indicates that440

the hind legs (RH and LH) had larger duty factors than the front ones (RF and

LF) in S2. This indicates that the loads were primarily distributed on the hind

legs. Under the vestibular reflex (Fig. 14 (b)), although the joint command

offsets were also adjusted when the robot reached the inclined slope, the joint

command offsets and γ̄(n) had large variations in five trails (see the shadow area445

of the joint command and γ̄(n) lines in Fig. 14 (b)). The robot was trapped at

the bottom of the slope for the entire test period. This is because the vestibular

reflex was stimulated by the body posture feedback rather than γ̄(n), thereby
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Figure 14: Real-time data for Lilibot trotting from the level ground to the 35◦ inclined slope.

(a) Robot controlled by the DFRL. (b) Robot controlled by the vestibular reflex. The black

and white regions in the gait diagram indicate the stance and swing phases, respectively. RF,

RH, LF, and LH represent the right-front, right-hind, left-front, and left-hind legs, respectively.

Figure 15: Real-time data for Lilibot trotting from the level ground to the 35◦ declined slope.

(a) Robot controlled by the DFRL. (b) Robot controlled by the vestibular reflex. The black

and white regions in the gait diagram indicate the stance and swing phases, respectively. RF,

RH, LF, and LH represent the right-front, right-hind, left-front, and left-hind legs, respectively.
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without suitable adjustment of joint command offsets.

The experimental results for the −35◦ slope are shown in Fig. 15. Under450

the DFRL (Fig. 15 (a)), the joint commands and γ̄(n) also quickly converged

during the S1 and S3 stages. γ̄(n) was also ∼1.1. The pitch angle and displace-

ment curves indicate that the robot successfully trotted forward on the −35◦

slope. The gait diagram also exhibits regularity during the S1 and S3 stages.

Conversely, under the vestibular reflex, the robot failed to walk on the −35◦455

slope (Fig. 15 (b)). This is because the joint commands reached their limits

(i.e., ±1.0 rad) under the vestibular reflex, causing the robot to stop.

Consequently, the DFRL-based AQMC enables Lilibot to trot stably on steep

slopes (35◦ and −35◦), whereas the vestibular-reflex-based AQMC is unable to

achieve this.460

3.3.2. Statistical analysis

Lilibot was controlled by the AQMC (employing either the DFRL or vestibu-

lar reflex) and made to trot on every slope terrain five times. The number of

times the control was successfully implemented on different slope terrains is

shown in Fig. 16 (a). It shows that the DFRL-controlled Lilibot could trot on465

all listed slope terrains, whereas the vestibular-reflex-controlled Lilibot could

only trot on the −10◦, 0◦, 10◦, and 20◦ slopes. The statistical locomotion

performance of the two reflexes is shown in Figs. 16 (b), (c), and (d).

As shown in Fig. 16 (b), the DFRL realized greater stability than the

vestibular reflex. Moreover, the steeper the slope, the greater the stability of the470

DFRL. This is because the step length became shorter on slopes with greater

inclination (see joint commands in Fig. 14 (a)). Under the vestibular reflex,

robot locomotion exhibited the greatest stability over the flat terrain (0◦). This

is because the initial offsets (i.e., -0.2) of the joint commands were most suitable

for the level ground (see Fig. 13).475

As shown in Fig. 16 (c), the DFRL had greater coordination than the

vestibular reflex. Furthermore, the DFRL and vestibular reflex both exhibited

optimal coordination on the level ground. This is because the initial command
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Figure 16: (a) Success count, (b) stability, (c) coordination, and (d) displacement of the

robot walking in Experiment II. This demonstrates the comparative results of the DFRL and

vestibular reflex.
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offsets were most suited to level-ground locomotion, for which the GRF distri-

bution (γ̄(n)) was already in the desired condition. Moreover, the coordination480

of the DFRL shows a slight upwards trend over the inclined planes. This is

because the robot had a shorter step length on higher inclinations (see joint

commands in Fig. 14 (a)), which benefits the coordination to some extent. In

addition, the coordination of the vestibular reflex at 20◦ was zero. This is be-

cause the hind legs remained on the ground, even when the robot trotted on485

the inclined plane. In other words, the hind legs had no swing phase.

Fig. 16 (d) shows that the closer the slope is to the level ground, the longer

the displacement under both the DFRL and vestibular reflex. This is because

the robot had the greatest coordination and stability and longest step length

over the level ground. The displacement on downhill terrains is longer than on490

uphill ones; this success can be attributed to gravity pushing the robot forward

on the downhill whilst pulling the robot on the uphill. Note: the robot using

the vestibular reflex on 10◦ and 20◦ slopes exhibited a longer displacement than

under the DFRL. This is because, on the one hand, the DFRL shortened the step

length during uphill locomotion and the stable trot gait on the uphill generated495

higher foot touch impulse force through its short deceleration process, and on

the other hand, the robot under the vestibular reflex generated an irregular trot

gait or walking gait, which maintained the robot’s constant forward movement.

3.4. Experiment III: trotting on a complex terrain with multiple slopes

In this experiment, the Lilibot controlled by the DFRL-based AQMC was500

commanded to trot on a complex terrain featuring multiple connected slopes

(Fig. 8). This scenario simulates the irregularity of natural ground. From this

test, the smoothness of diverse slope transitions can be assessed. Moreover, the

locomotion characteristics over different slopes could be consistently compared.

A video clip of this experiment can be viewed at http://www.manoonpong.com/505

DFFB/video3.mp4.

The experimental results are shown in Fig. 17. The joint commands of a leg

(e.g., the right-front leg) adapted to changes in slope inclinations. The curve
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of γ̄(n) indicates the GRF distribution; it shows a significant change during

the terrain transition, while quickly reaching a convergence of ∼ 1.1 in non-510

transition stages. The pitch angle directly reflects the slopes on which the robot

is trotting. According to the displacement plot, the locomotion over the declined

slopes was faster than that exhibited on inclined ones. The gait diagram clearly

shows that the robot exhibited a more regular trot gait when walking on inclined

slopes. This means that the robot achieved a better GRF distribution than that515

exhibited on the declined slope. To summarize, the DFRL-based AQMC can

allow the quadrupedal robot to trot on complex slope terrains.

3.5. Generalization test on Laikago

The DFRL-based AQMC was also implemented on Laikago in the simula-

tion. The control developed for Lilibot (without any modifications) was directly520

transferred to Laikago. The experimental results show that the proposed control

allows Laikago to self-stabilize its body posture (regardless of its initial posture

on the level ground) and also trot on different slopes with inclinations of up to

50◦ (see Fig. 18) and as low as −45◦. A video clip of the experiment can be

viewed at http://www.manoonpong.com/DFFB/video4.mp4.525

4. Discussion

In this paper, we propose the AQMC based on the integration of CPGs,

sensory feedback, reflex, and online (motor) learning. The control is realized

using neural CPG-based control and the DFRL (Fig. 2). The DFRL consists

of a DFFB reflex and DIL. The DFFB reflex is organized as a neural network530

with synaptic plasticity, and it can adjust the CPG/joint offsets according to

the GRF distribution (Fig. 5). The associated DIL is used to online-modulate

the plastic synapses (w1,2(n), Eq. (12)) of the DFFB reflex network. This

improves the DFFB reflex’s adaptation speed (Fig. 6). The experimental re-

sults show that the DFRL can efficiently generate adaptive CPG/joint offsets535

and allow quadruped robots to rapidly adapt their postures in response to dif-

ferent initial offsets on the level ground (Experiment I), stably trot on steep
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Figure 17: Real-time data of Lilibot trotting on a complex slope terrain. The upper graph

refers to the motion scene of the robot and also indicates the complex slope terrain (composed

of two flat floors and several declined and inclined slopes). The plots represent the joint

commands of a leg (e.g., RF), γ̄(n), pitch angle of the robot body, displacement of robot

locomotion, and gait diagram, respectively. The bars running top to bottom in the gait

diagram denote the right-front, right-hind, left-front, and left-hind legs, respectively. The

black region represents the stance phase, whilst the white one represents the swing phase.
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Figure 18: Laikago trotting on a 50◦ inclined slope. The black regions in the gait diagram

represent the stance phase, whilst the white regions represent the swing phase. RF, RH, LF,

and LH represent the right-front, right-hind, left-front, and left-hind legs, respectively.
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slopes (Experiment II), and properly handle a complex terrain featuring mul-

tiple slopes (Experiment III). Moreover, the AQMC developed for Lilibot can

be directly implemented on Laikago (Fig. 18). This demonstrates the gener-540

alizability of the proposed control to quadruped robots of different sizes and

weights, without the need for specific robot models. To summarize, this work

concerns two subtopics: (1) realizing CPG/joint offset adaptation using biologi-

cal mechanisms, to ensure the stable trotting behavior of quadruped robots and

(2) applying this CPG/joint offset adaptation on diverse slope terrains. The545

remaining issues concerning the two subtopics are discussed in the following

paragraphs.

A genuine bio-inspired control is model-free, in contrast to engineering-

control-based techniques (e.g., whole-body control [6], inverse dynamic model-

based control [4], optimization-based control [7], and MPC [8]), and it converges550

faster than RL approaches [30, 31, 32, 33]. Although several quadruped robots

featuring bio-inspired control have achieved such high performances as those

reported in well-known works (e.g., BigDog [48], MIT Cheetah [3], and ANY-

mal [31]), bio-inspired controls have promising potential for generating versa-

tile animal-like movements and promoting biological investigation [1, 10, 49].555

Therefore, it is reasonable to expect that a generic, efficient, and adaptive con-

trol framework for quadruped robots can be realized through this biologically

inspired development route.

To achieve this goal, the DFRL has been developed. Its strategy is inspired

by biomechanical findings (i.e., lever mechanics [28]) and aims to maintain a560

stable body posture over various terrains (Fig. 8). It is constructed using a

neural network in which the key synapses (w1,2(n)) can be adjusted online via

the DIL (Fig. 5). The DIL features two parallel learners with different learning

rates (Eq. (11)). This DIL feature provides DFFB plastic synapses with two

different time-scale adaptations; moreover, it produces a DFRL with two differ-565

ent level adaptations: internal synapse adaptation (Eq. (12)) and external offset

adaptation (Eq. (10)). For instance, when robots traverse over different slopes,

their GRF distribution changes; on the one hand, this activates the DFFB re-
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flex, which adjusts the robot’s posture; on the other hand, the DIL increases

the network’s synaptic strength, thereby generating high reflex gains. After570

the changes in the GRF distribution have become small, the DIL decreases the

synaptic strength to generate smaller reflex gains for fine modulation (Fig. 11).

Synaptic plasticity is relatively useful for overcoming the long delays produced

by the sensory acquisition and preprocessing stages of the DFFB reflex. Oth-

erwise, the delay would cause the reflex modulation procedure to become very575

slow with low weights (i.e., w1,2(n)) or unstable with high ones (Fig. 6). The

functionality of the DIL is analogous to that of serotonin (5-HT) neurons in a bi-

ological system; these release 5-HT in the spinal cord, to modulate the synaptic

strengths of interneurons in a locomotive neural network [50, 51, 52, 53, 54].

Alongside the flexibility and adaptability realized by the DIL, the DFRL580

is also intrinsically modular and independent of the CPG-model format or the

size and weight of the robot. The DFRL can be incorporated with SO(2)-based

CPGs (see Fig. 5) or with dynamical movement primitives-based CPGs [55, 36]

(see Supplementary material), suggesting that the DFRL is generic and appli-

cable to different CPG models. Thus, it is readily integrable with diverse CPG-585

based controls and also facilitates generic adaptive quadruped motor control

with CPG or joint offset adaptation for different quadruped robots. Further-

more, the DFRL can be conveniently integrated with other CPG adaptation

techniques, such as phase [18] or frequency [19] adaptation; this can result in

CPG-based control with phase, frequency, and offset adaptations, which will590

substantially expand the applicability of bio-inspired CPG-based control. In

short, this study paves the way for the development of a more advanced bio-

inspired control mechanism with greater adaptability and generalizability, and

it also sheds some light on neurological locomotion control. Moreover, it demon-

strates the feasibility of efficiently manipulating sensory information through a595

neural network (with plasticity) to achieve adaptive motor control in robotic

systems.

However, the DFRL techniques discussed in this paper still feature several

limitations. First, they are limited by the use of the averaged/smoothed GRF
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distribution γ̄(n) as sensory feedback for the DFFB reflex (see Eq. (9)): Ideally,600

the GRF distribution should be measured whilst the stance/swing phase is be-

ing switched on, for which the GRF distribution (γ(n0)) of a stable trot gait is

determined as 1.0 (Fig. 4 (b)). Using the averaged GRF distributions results in

three limitations: (1) it induces an additional empirical parameter (i.e., sample

size N in Eq. (9)); (2) it produces a larger delay effect in the sensory preprocess-605

ing module, owing to the moving-average filter; and (3) it decreases robustness

because the desired γ̄d (i.e., 1.1) relates to a specific step length and period (see

Fig. 4 (b)). Therefore, an improved sensory preprocessing module—to obtain

an instant GRF distribution for a switching moment—should be developed in

future work.610

In addition, although the CPG offset adaptation converges rapidly (i.e.,

within 2 s, see Fig. 6), it cannot handle sudden emergency responses (e.g., to

prevent the robot from falling due to an unexpected step). Thus, the proposed

control must be combined with other instant reflexes to tackle such emergencies.

For instance, a flexion reflex can prevent the robot from falling down, sideways615

stepping reflexes can stabilize the rolling motion, and corrective stepping reflexes

can deal with stepping-down motions [56].

Over the past few decades, quadruped locomotion on slopes has become a

promising research topic in both animal and robot studies; furthermore, it rep-

resents a necessary function of quadrupeds designed to traverse natural environ-620

ments adaptively [25, 16, 57, 29, 58, 28, 59]. Generally, quadruped locomotion

on slopes is more complicated than that on the level ground because it involves

four extra constraints: (1) postural correction, for maintaining balance on slopes

[28]; (2) flexible joint motion generation, to accommodate transitions between

different terrains (e.g., from flat surfaces to slopes) [60]; (3) a sufficient mo-625

tor power supply, to overcome the effects of appended loads on inclined slopes

[59]; and (4) an adequate tangential foot force for avoiding slippages caused by

gravitational compensations on the slope [29]. The former two conditions (i.e.,

balance and transition) relate to body and joint movement can be managed via

enhanced locomotion control techniques; the latter two conditions (i.e., motor630
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power and frictional force) depend on robot mechanics and materials. To resolve

the two control issues of slope locomotion, a variety of approaches have been

proposed and implemented on quadruped robots.

Vestibular reflexes have been proposed in several works; these facilitate adap-

tive dynamic running over unperceived slopes, where the slopes are regarded as635

disturbances [22, 23, 24, 25, 16, 26]. More specifically, the vestibular reflex is

used to shift the offsets of joint movement commands (originally produced by

CPGs), thereby extending or flexing the legs to maintain the robot body par-

allel to the horizontal (see Fig. S.7 (b)). In addition, Zhao et al. applied a

vestibular reflex to adjust the frequency and amplitude of the joint movement640

commands [27]. This allows the quadruped robot AIBO to trot steadily over

slight slopes using a high step frequency and short step length. Despite the

successful implementation of vestibular reflexes in these cases, all were limited

to gentle slopes (below 20◦, see Table 1).

In contrast to vestibular reflexes, the DFFB reflex can translate the ZMP645

coordination into a proper position along the slope direction. Thus, the robot

body’s orientation is aligned to the slope when the stability margin is increased

(see Fig. S.7 (c)). As a result, the front and hind legs are in a far more natu-

ral position to distance themselves from singular configurations or joint limits.

Thus, these robots can adapt to steeper slopes. The two distinct strategies (body650

orientation parallel to the horizontal and parallel to the slope) are referred to

in biomechanics as the “telescoping strut” and “lever mechanics”, respectively

[28]. Unfortunately, the vestibular reflex cannot realize the lever mechanics

strategy because it requires a body orientation parallel to the slope rather than

the horizontal. The DFFB reflex is based on the lever mechanics strategy and655

enables quadruped robots to trot on steep-sloped terrains (e.g., 35◦ for Lilibot

and −45◦ and 50◦ for Laikago).

To clarify the relationship between the joint offset and the slope inclination

upon which the quadruped robot can trot, we analyze the underlying mechanism

using a simplified quadrupedal robot model (see Supplementary material). The660

analytical model not only proves the functionality of the DFFB reflex strategy
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but also predicts the maximum inclination upon which the quadruped robot

can trot without considering factors such as friction, joint torque limit, and

asymmetric structure. Moreover, the analytical results match the simulation

results.665

The stability margin for quadruped locomotion can be defined as the mini-

mum distance between the ZMP and support-polygon boundaries [61, 62]. The

stability margin of locomotion on the level ground is relatively larger than that

on slopes. This is because the ZMP approaches one set of feet when traversing

slopes (e.g., the ZMP approaches the hind feet on uphill surfaces and the front670

feet on downhill ones, see Figs. 4 and S.5). Locomotion stability is affected not

only by the joint offsets but also the step length and period (see Fig. 4). The

step length determines the motion distance of the ZMP during one step period.

In some cases (e.g., when trotting on steep slopes), a small step length is nec-

essary to prevent the ZMP from moving outside the support polygon. In the675

proposed CPG-based control, the MNs can scale the joint command amplitudes

to reduce the step length and height on slopes when the MN offsets are shifted.

For instance, when robots trot on a steep slope, the MN offsets are shifted close

to the saturation zones of the MN transfer function (i.e., Eq. (5)) owing to

the DFFB reflex. As a result, the joint command amplitudes will be decreased,680

and the robot’s step length and height will be reduced. This strategy allows

the robot to stabilize its posture during locomotion over slopes (see Figs. 14

and 18). This accords with biomechanical investigations into animal locomotion

[63].

We developed the control software based on a standard language (C++) with685

the robot operating system (ROS) interface. Thus it can be applied to ROS-

based quadruped robots. To maximize the contribution and dissemination of our

study to the research community, we also provide our control method as open-

source software which can be accessed at https://gitlab.com/neutron-nuaa/

dfrl.690
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5. Conclusion

This paper demonstrates that DFRL-based AQMC can allow quadruped

robots to stably trot on diverse slope terrains. This is because the DFRL auto-

matically generates adaptive CPG/joint offsets to ensure a robot posture appro-

priate to the distribution of GRFs. Moreover, the adaptability and flexibility695

of the DFRL are significantly improved by the DIL learning mechanism, which

online-modulates the reflex gains of the DFFB reflex network of the DFRL.

As a result, the DIL provides the DFRL with faster adaptation and greater

generalizability across platforms of different sizes and weights (e.g., Lilibot and

Laikago).700

Appendix A. Abbreviations and Acronyms

AQMC = Adaptive quadruped motor control.

BBO = Black-box optimization.

CPG(s) = Central pattern generator(s).

DFFB = Distributed-force-feedback-based705

DFRL = Distributed-force-feedback-based reflex with online learning

DIL = Dual integral learner

GRF(s) = Ground reaction force(s).

LF = Left-front leg.

LH = Left-hind leg.710

MN(s) = Motor neuron(s).

MPC = Model predictive control.

PI2 = Path integrals.

RF = Right-front leg.

RH = Right-hind leg.715

RL = Reinforcement learning.

ROS = Robot operation system.

ZMP = Zero moment point.
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