2.2 Keldysh contour

2.2.1 Time-dependent quantum averages

Goal: Compute time-dependent quantum average of operator \(\hat{O}(t) \) at time \(t \) when system is initially in state \(|\psi(t_0)\rangle = |\psi_0\rangle \).

Possible solution: Propagate the state via Schrödinger equation

\[
|\psi(t)\rangle = \hat{U}(t, t_0) |\psi_0\rangle
\]

with the time evolution operator \((t > t_0)\)

\[
\hat{U}(t, t_0) = T \{ e^{-i \int_{t_0}^{t} dt \hat{A}(t')} \}
\]

where:

- \(T \) = time-ordering operator, places times to the left.

This leads to explicit time dependence of operator

\[
O(t) = \langle \psi(t) | \hat{O}(t) | \psi(t) \rangle = \langle \psi_0 | \overline{T} \{ e^{i \int_{t_0}^{t} dt \hat{A}(t')} \} \hat{O}(t) \times T \{ e^{-i \int_{t_0}^{t} dt \hat{A}(t')} \} | \psi_0 \rangle,
\]

where \(T \) = anti-time-ordering.

\[
\rightarrow \text{computing an operator expectation value naturally requires forward and backward propagation in time!}
\]

Def.: We define the oriented contour \(\gamma \) in the complex time plane — the convenience of choosing complex time will become clear later:

\[
\gamma = (t_0, t) \cup (-t, t_0)
\]

Forward: \(t > t_0 \)

Backward: \(t < t_0 \)

Note: time arguments on both \(\gamma_+ \) and \(\gamma_- \) are real — the forward and backward branches are for bookkeeping.
Def. Operators with contour arguments
\[\hat{A}(z') = \begin{cases} \hat{A}_-(z') & \text{if } z' = z_- \\ \hat{A}_+(z') & \text{if } z' = z_+ \end{cases} \] [\(\hat{A}_+ \) and \(\hat{A}_- \) could be different]

Def. Contour time-ordering operator \(\mathcal{T} \) moves operators with later contour time to the left — in particular, all operators on the \(\hat{J}_+ \)-branch are to the left of all operators on the \(\hat{J}_- \)-branch, and the \(\hat{J}_- \)-branch operators are physically time-ordered \((T)\) the \(\hat{J}_+ \)-branch operators are physically anti-time-ordered \((\overline{T})\) by the \(\mathcal{T} \) operator.

For two operators \(\hat{A}(z_1) \) and \(\hat{B}(z_2) \) there are the following possibilities:
\[
\mathcal{T} \{ \hat{A}(z_1) \hat{B}(z_2) \} = \begin{cases} \mathcal{T} \{ \hat{A}_-(z_1) \hat{B}_-(z_2) \} & \text{if } \tau_1 = \tau_{1-}, \tau_2 = \tau_{2-} \\ \hat{A}_+(z_1) \hat{B}_-(z_2) & \text{if } \tau_1 = \tau_{1+}, \tau_2 = \tau_{2-} \\ \hat{B}_+(z_2) \hat{A}_-(z_1) & \text{if } \tau_1 = \tau_{1-}, \tau_2 = \tau_{2+} \\ \mathcal{T} \{ \hat{A}_+(z_1) \hat{B}_+(z_2) \} & \text{if } \tau_1 = \tau_{1+}, \tau_2 = \tau_{2+} \end{cases}
\]

Now we can rewrite the operator expectation value in a more compact way:
\[
\mathcal{O}(t) = \langle \Psi_0 | \mathcal{T} \left\{ e^{-i \int_{t_0}^{t} d\hat{z} \hat{A}(\hat{z})} \hat{O}(t_\pm) e^{-i \int_{t_0}^{t} d\hat{z} \hat{A}(\hat{z})} \right\} | \Psi_0 \rangle
\]

Inside the \(\mathcal{T} \) sign we can treat all operators "as if they commute"—remember that \(\mathcal{T} \) will order them contour-chronologically anyway.

\[
\Rightarrow \mathcal{O}(t) = \langle \Psi_0 | \mathcal{T} \left\{ e^{-i \int_{\delta_-}^{\delta_+} d\hat{z} \hat{A}(\hat{z})} \hat{O}(t_\pm) \right\} | \Psi_0 \rangle
\]

with \(\int_{\delta} \equiv \int_{\delta_-} + \int_{\delta_+} \)
All physical observables have $\hat{O}(t_+ - t_-) = \hat{O}(t)$ — the same on both \mathcal{H}_+ and \mathcal{H}_-.

Important: $\hat{O}(t)$ is not $\hat{O}_H(t) = \text{operator in Heisenberg picture}$.

The t-argument in $\hat{O}(t)$ is meant as a reminder where along \mathcal{H} to insert the operator.

Extend contour to infinity:

\[
\int \left\{ e^{-i \int_{\mathcal{H}_+} d\tau \hat{A}(\tau)} \hat{O}(\tau) \right\} = \hat{U}(t_0, \infty) \hat{U}(\infty, t) \hat{O}(t) \hat{U}(t, t_0) = \hat{U}(t_0, t) \hat{O}(t) \hat{U}(t, t_0)
\]

and

\[
\int \left\{ e^{-i \int_{\mathcal{H}_+} d\tau \hat{A}(\tau)} \hat{O}(\tau) \right\} = \hat{U}(t_0, t) \hat{O}(t) \hat{U}(t, \infty) \hat{U}(\infty, t_0) = \hat{U}(t_0, t) \hat{O}(t) \hat{U}(t, t_0)
\]

which shows that $\hat{O}(t)$ does not change if we extend the contour:

\[
\hat{O}(t) = \langle \psi_0 | \int \left\{ e^{-i \int_{\mathcal{H}_+} d\tau \hat{A}(\tau)} \hat{O}(\tau) \right\} | \psi_0 \rangle
\]

\mathcal{H} = Keldysh contour (Keldysh, 1964)

But: Used by Schwinger already in 1961

\Rightarrow also known as Schwinger-Keldysh contour.

Next step: extend the \mathcal{H} contour to include imaginary times (cf. Chapter 1.8)

\Rightarrow L-shaped contour
2.2.2 Time-dependent ensemble averages

Now: pure state \(|\Psi_0 \rangle \rightarrow \) mixed state with probability distribution \(\{w_n\} \), \(w_n \in [0,1] \) and \(\sum_n w_n = 1 \), \(w_n \)
the probability of finding the system in state \(|X_n \rangle \)
with \(\langle X_n | X_n \rangle = 1 \) (normalized) but \(\langle X_n | X_m \rangle \neq \delta_{mn} \)
(no orthogonality required).

E.g., Thermal ensemble with \(w_n = \frac{e^{-\beta E_n}}{\sum_n e^{-\beta E_n}} \)
(canonical)

Expectation value: \(\hat{O}(t_0) = \sum_n w_n \langle X_n | \hat{O}(t_0) | X_n \rangle \).

Def.: Density matrix operator
\[\hat{\rho} = \sum_n w_n |X_n \rangle \langle X_n | \]
\[\hat{\rho} = \hat{\rho}^+ \quad (\text{self-adjoint}) \]
\[\langle \psi | \hat{\rho}^+ | \psi \rangle = \sum_n w_n |\langle \psi | X_n \rangle|^2 \geq 0 \quad \text{pos. semi-def.} \]

Let \(\{ |\Psi_k \rangle \} \) be a generic orthonormal basis set. Then
\[\hat{O}(t_0) = \sum_{kn} w_n \langle X_n | \hat{O}(t_0) | X_k \rangle = \sum_k \langle \Psi_k | \hat{O}(t_0) \hat{\rho} | \Psi_k \rangle = \text{Tr}[\hat{O}(t_0) \hat{\rho}] \]
In particular, since \(\hat{O}(t_0) = 1 \) implies \(\hat{O}(t_0) = 1 \) and
the \(\{ |X_n \rangle \} \) are normalized, one has \(\text{Tr}[\hat{\rho}] = 1 \).
We choose \(\{ |\Psi_k \rangle \} \) as eigenkets of \(\hat{\rho} \): \(\hat{\rho} |\Psi_k \rangle = \omega_k |\Psi_k \rangle \).
\[\Rightarrow \hat{\rho} = \sum_k \omega_k |\Psi_k \rangle \langle \Psi_k | \]
\[\Rightarrow \text{Tr}[\hat{\rho}^2] \leq 1 \quad (\ast \ast) \]
Most general expression fulfilling \((\ast)\) and \((\ast \ast)\): \(\omega_k = \frac{e^{\frac{x_k}{\beta}}}{\sum_{\beta} e^{\frac{x_p}{\beta}}} \), \(x_k \in \mathbb{R} \).
we can write \(x_k = \beta E_k^M \) with \(\beta > 0 \) and define
\[M = \sum_k E_k^M |\Psi_k \rangle \langle \Psi_k | \]
\[\Rightarrow \hat{\rho} = \sum_k \frac{e^{-\beta E_k^M}}{Z} |\Psi_k \rangle \langle \Psi_k | = \frac{e^{-\beta H^M}}{Z} \]
with \(Z = \sum_k e^{-\beta E_k^M} = \text{Tr}[e^{-\beta H^M}] \)

\(M = \text{Makonbar} \).
For example, in a grand-canonical ensemble we choose
\[\hat{H}^N = \hat{H} - \mu \hat{N} \quad \text{and} \quad \beta = \frac{1}{k_B T}, \]
where \(k_B \) is Boltzmann constant, \(T \) is temperature, \(\mu \) is chemical potential, and \(\hat{N} \) is the total particle number operator.

Ensemble Time Evolution:

Evolve each subsystem of the ensemble, then perform the weighted average. Same \(\mathcal{A}(\tau) \) for all subsystems!

\[
\mathcal{O}(\tau) = \sum_h w_h \langle \chi_h | \hat{U}(t, \tau) \mathcal{A}(\tau) \hat{U}(\tau, t_0) | \chi_h \rangle = \text{Tr} \left[\hat{S} \hat{U}(t_0, \tau) \mathcal{A}(\tau) \hat{U}(\tau, t_0) \right] = \text{Tr} \left[\hat{S} \int \left\{ e^{-i \frac{d}{dt} \hat{A}(\tau)} \hat{O}(\tau) \right\} \right] = \frac{\text{Tr} \left[e^{-\beta \hat{H}^N} \mathcal{O}(\tau) \right]}{\text{Tr} \left[e^{-\beta \hat{H}^N} \right]} \quad (\ast)
\]

We observe the following:

1. \(\int \left\{ e^{-i \frac{d}{dt} \hat{A}(\tau)} \right\} = \hat{U}(t_0, \infty) \hat{U}(\infty, t_0) = \hat{I} \)

 \(\Rightarrow \) can be inserted into trace in denominator of (\ast).

2. The exponential can be written as

 \[e^{-\beta \hat{H}^N} = e^{-i \int \sigma_m dt \hat{A}^m(\tau)} \]

 where \(\gamma^m \) is a contour \(z_a \rightarrow z_b \) with \(z_b - z_a = -i \beta \).

Using (1) and (2) in (\ast) gives

\[
\mathcal{O}(\tau) = \frac{\text{Tr} \left[e^{-i \int \sigma_m dt \hat{A}^m(\tau)} \mathcal{O}(\tau) \right]}{\text{Tr} \left[e^{-i \int \sigma_m dt \hat{A}^m(\tau)} \right]}.
\]

Note: Statistical averaging amounts precisely to time propagation along the imaginary time axis \(\gamma^m \).

\(\Rightarrow \) we can add \(\gamma^m \) to the two-branch contour!

\[\gamma = \gamma_- \oplus \gamma_+ \oplus \gamma^m \]

"the contour"
Note: In practice \(Y \) does not extend to \(\infty \) but has finite length, depending on the maximal time at which we wish to obtain information about the system.

We finally have
\[
\mathcal{O}(t) = \frac{\text{Tr} \left[\oint \{ e^{-i \int_{t_0}^{t} \, d\tau \hat{A}(\tau) \} \hat{\mathcal{O}}(\tau) \} \right]}{\text{Tr} \left[\oint \{ e^{-i \int_{t_0}^{t} \, d\tau \hat{H}(\tau) \} \} \right]}.
\]

2.3 Many-body perturbation theory — towards Feynman diagrams

2.3.1 Equations of motion on the contour

Def. Contour evolution operator
\[
\hat{U}(t_2, t_1) = \begin{cases} \int \{ e^{-i \int_{t_1}^{t_2} \, d\tau \hat{A}(\tau) \} \} & \text{if } t_2 > t_1, \\ \int \{ e^{i \int_{t_1}^{t_2} \, d\tau \hat{A}(\tau) \} \} & \text{if } t_2 < t_1. \end{cases}
\]

Properties:
1. \(\hat{U}(t_2, t_2) = \mathbb{1} \)
2. \(\hat{U}(t_3, t_2) \hat{U}(t_2, t_1) = \hat{U}(t_3, t_1) \)
3. **Differential equation** for \(t > t_0 \):
\[
i \frac{d}{dt} \hat{U}(t, t_0) = \int \left\{ i \frac{d}{dt} e^{-i \int_{t_0}^{t} \, d\tau \hat{A}(\tau)} \right\} = \int \left\{ \hat{A}(t) e^{-i \int_{t_0}^{t} \, d\tau \hat{A}(\tau)} \right\} = \hat{A}(t) \hat{U}(t, t_0)
\]
and accordingly
\[
i \frac{d}{dt} \hat{U}(t_0, t) = -\hat{U}(t_0, t) \hat{A}(t).
\]

Contour derivatives:
\[
\begin{align*}
\dot{Z} = t_-: & \quad \frac{d}{dt} \hat{A}(t) \lim_{t_+ \rightarrow t} = \lim_{t_+ \rightarrow t} = \frac{\hat{A}(t) - \hat{A}(t_+)}{t_+ - t} = \frac{\hat{A}(t) - \hat{A}(t_+)}{t_+ - t} = \frac{d}{dt} \hat{A}(t), \\
\dot{Z} = t_+: & \quad \frac{d}{dt} \hat{A}(t) = \frac{d}{dt} \hat{A}(t) \rightarrow \text{some derivatives on } \mathcal{X} \text{ and } \mathcal{Y} \\
t \in \mathcal{Y}: & \quad \frac{d}{dt} \hat{A}(t) = \lim_{t_+ \rightarrow t} = \frac{\hat{A}(t) - \hat{A}(t_+)}{t_+ - t} = \lim_{t_+ \rightarrow t} = \frac{\hat{A}(t) - \hat{A}(t_+)}{t_+ - t} = \frac{d}{dt} \hat{A}(t_0 - i \tau).
\end{align*}
\]
We can rewrite the ensemble average
\[O(t) = \frac{\text{Tr} \left[e^{-i \int_0^t dz A(z) B(z)} \right]}{\text{Tr} \left[e^{-i \int_0^t dz A(z)} \right]} \]

using \(z_i = t_0 \) as initial point and \(z_f = t_0 - i \beta \) as final point on \(\gamma \)

\[O(t) = \frac{\text{Tr} \left[\hat{U}(z_f, z) \hat{B}(z) \hat{U}(z, z_i) \right]}{\text{Tr} \left[\hat{U}(z_f, z_i) \right]} = \frac{\text{Tr} \left[\hat{U}(z_f, z) \hat{B}(z) \hat{U}(z, z_i) \hat{U}(z, z_i) \right]}{\text{Tr} \left[\hat{U}(z_f, z_i) \right]} \]

(x) motivates to introduce the Heisenberg picture on the contour:

\[\hat{\mathcal{O}}_H(z) = \hat{U}(z_f, z) \hat{\mathcal{O}}(z) \hat{U}(z, z_i) \]

which gives \(\hat{\mathcal{O}}_H(t_f) = \hat{\mathcal{O}}_H(t_i) = \hat{\mathcal{O}}_H(t) \)

= operator in standard Heisenberg picture for real times.

Equation of motion:
\[i \frac{d}{dt} \hat{\mathcal{O}}_H(z) = \hat{U}(z_f, z) \left[\hat{\mathcal{O}}(z), \hat{\mathcal{H}}(z) \right] \hat{U}(z, z_i) + i \frac{\partial}{\partial z} \hat{\mathcal{O}}_H(z) \]

\[= \left[\hat{\mathcal{O}}_H(z), \hat{\mathcal{H}}(z) \right] + i \frac{\partial}{\partial z} \hat{\mathcal{O}}_H(z) \]

explicit time dependence.

We will consider Hamiltonians of the generic form
\[\hat{\mathcal{H}}^M = \int \text{d}x \int \text{d}x' \left\langle x' | \hat{\mathcal{H}}^M | x' \right\rangle \psi(x) \psi^+(x') \equiv \hat{\mathcal{H}}_0^M \]

\[+ \frac{1}{2} \int \text{d}x \int \text{d}x' \left\langle x' | \hat{\mathcal{V}}^M(x, x') \psi(x) \psi^+(x') \psi(x) \psi^+(x') \right\rangle \]

\[\equiv \hat{\mathcal{H}}_\text{int}^M \]

With field operators \(\psi, \psi^+ \) that fulfill (anti-)commutation relations

\[[\psi(x), \psi^+(y)] = \delta(x-y) \]

for fermions or bosons.
Using the Heisenberg EOM and the notation with a local density operator
\[\hat{\psi}_H(x', t) = \hat{\gamma}^+(x', t) \hat{\gamma}_H(x', t) \]

one obtains the equations of motion for the field operators:

\[
\begin{align*}
 i \frac{d}{dt} \psi_H(x, t) &= \int dx' \langle x | \hat{h}(t) | x' \rangle \psi_H(x', t) + \int dx' V(x, x', t) \hat{\gamma}_H(x', t) \psi_H(x', t) \\
- i \frac{d}{dx} \psi^+_H(x, t) &= \int dx' \psi^+_H(x', t) \langle x' | \hat{h}(t) | x \rangle + \int dx' V(x, x', t) \psi^+_H(x', t) \hat{\gamma}_H(x', t) \\
\end{align*}
\]

Where
\[\hat{h}(t = t^\pm) = \hat{h}(t) \quad V(x, x', t^\pm) = V(x, x') \quad V(x, x', t^\pm) V^M(x, x') = V^M(x, x') \]

2.3.2 Operator Correlators on the Contour

Our continued goal is to compute expectation values \(\langle O(t) \rangle \) on the contour. The key obstacle is to treat the time-ordered exponentials (time evolution operators) in cases where we do not a priori know all the eigenstates of the Hamiltonian. The expansion of the time-ordered exponentials yields strings of operators (operator correlators)
\[\hat{\psi}(z_1, \ldots, z_n) = \mathcal{T} \{ \hat{\gamma}(z_1) \ldots \hat{\gamma}(z_n) \}, \]

e.g., \(\mathcal{T} \{ \psi_H(x, t^+), \psi_H(x, t^-) \} \), where \(t^+ < t^- \) infinitesimally.

We need to find relations for operator correlators.

Abbreviation: \(\delta_j = \delta_j(t^\pm) \).

Example: \(\mathcal{T} \{ \delta_j, \delta_k \} = \Theta(t^\pm, t^\pm) \delta_j \delta_k + \Theta(t^\pm, t^\pm) \delta_k \delta_j \)

EOM
\[
\begin{align*}
\frac{d}{dt} \mathcal{T} \{ \delta_j, \delta_k \} &= \delta_\Gamma(t^\pm, t^\pm) \{ \delta_j, \delta_k \} + \mathcal{T} \{ \frac{d}{dt} \delta_j, \delta_k \} \\
\end{align*}
\]
with \(\gamma = \text{Dirac spinor} \) \(\delta (z_1, z_2) \equiv \frac{d}{dz} \Theta (z_1, z_2) = -\frac{d}{dz} \Theta (z_1, z_2) \)

\[
\int_{z_1}^{z_2} \delta (\bar{z}, z) \hat{A} (\bar{z}) = \hat{A} (z)
\]

Most important case: \(\delta \), and \(\delta \), field operators. For bosons the structure with commutators \([\hat{\delta}, \hat{\delta}]\) at equal time is convenient. For fermions, we prefer an anticommutator in order to obtain simpler expressions. Hence we define fermionic time-ordered as

\[
T \{ \delta_1, \delta_2 \} = \Theta (z_1, z_2) \delta_1 \delta_2 - \Theta (z_2, z_1) \delta_2 \delta_1
\]

which gives

\[
\frac{d}{dz_2} T \{ \delta_1, \delta_2 \} = \delta (z_1, z_2) [\delta_1, \delta_2] + T \left\{ (\frac{d}{dz_1}) \delta_2 \right\}
\]

Generalized definition for strings of operators:

\[
T \{ \delta_1, ..., \delta_n \} = (\pm) P T \{ \delta_{p(1)}, ..., \delta_{p(n)} \}
\]

with \(\pm \) bosons and \(P \) the time-ordering permutation.

Graphical way to find the sign of a permutation:

e.g., contour ordering with \(z_2 > z_1 > z_4 > z_5 > z_3 \).

Draw \(1 \)

\(2 \)

\(3 \)

\(4 \)

\(5 \)

\(\Rightarrow \) \(T \{ \delta_1, \delta_2, \delta_3, \delta_4, \delta_5 \} = (-1)^2 \delta_2 \delta_3 \delta_4 \delta_5 \delta_1 \delta_2 \).

\(\text{with } P(1,2,3,4,5) = (2,1,4,5,3) \) here.

Equipped with this knowledge, we can now derive eq. of motion for a string of operators.
\[\frac{d}{dt} \mathcal{J} \{ \delta_1, \ldots, \delta_n \} = 2 \Theta \mathcal{J} \{ \delta_1, \ldots, \delta_n \} + \mathcal{J} \{ \delta_1 \ldots \delta_{k-1} \left(\frac{d}{dt_k} \delta_k \right) \delta_{k+1} \ldots \delta_n \} \]

with \[2 \Theta \mathcal{J} \{ \delta_1, \ldots, \delta_n \} = \sum_p (\pm) \left(\frac{d}{dt_k} \left(2 \Theta_{p(n)} \ldots 2 \Theta_{m} \right) \delta_{p(n)} \ldots \delta_{p(m)} \right) \]

More explicitly, one can show that

\[2 \Theta \mathcal{J} \{ \delta_1, \ldots, \delta_n \} = \sum_{\ell=1}^{k-1} (\pm) \delta(t_k, t_\ell) \mathcal{J} \{ \delta_1 \ldots \delta_{k-1} [\delta_k, \delta_\ell] \delta_{k+1} \ldots \delta_n \} \]

\[+ \sum_{\ell=1}^{n} (\pm) \delta(t_k, t_\ell) \mathcal{J} \{ \delta_1 \ldots \delta_{k-1} [\delta_k, \delta_\ell] \delta_{k+1} \ldots \delta_n \} \]

\((***)\) and \((*)\) are the n-operator generalizations of the Ehf for two operators.

Example with 5 operators:

\[\frac{d}{dt_3} \mathcal{J} \{ \delta_1, \delta_2, \delta_3, \delta_4, \delta_5 \} = \delta(t_3, t_4) \mathcal{J} \{ \delta_3 \left[\delta_2, \delta_1 \right]_+ \delta_4 \delta_5 \} \]

\[\pm \delta(t_3, t_4) \mathcal{J} \{ \delta_3 \left[\delta_2, \delta_1 \right]_+ \delta_4 \delta_5 \} \]

\[+ \delta(t_3, t_4) \mathcal{J} \{ \delta_3 \delta_4 \left[\delta_2, \delta_5 \right] \delta_1 \delta_5 \} \]

\[\pm \delta(t_3, t_4) \mathcal{J} \{ \delta_3 \delta_4 \left[\delta_2, \delta_5 \right] \delta_1 \delta_5 \} \]

\[+ \mathcal{J} \{ \delta_3, \delta_4 \left(\frac{d}{dt_3} \delta_3 \right) \delta_1 \delta_5 \} \]

with signs determined by the required number of interchanges to shift \(\delta_k \) \((l=1, 2, 3, 4, 5)\) directly after \(\delta_k \) with \(k=3 \) here.

Specifically, for field operators in the contour Heisenberg picture,

\[\left[\delta_k(t), \delta_l(t) \right]_+ = \frac{\mathcal{C}_{\text{He}}(t)}{\text{number}} \]

The \(\mathcal{A} \) commute with all Fock space operators and can be
We now work out the time derivative for a case of field operators:

Define $i' = x_i, t_i, j' = x_j, t_j, i'' = x_i', t_i', j'' = x_j', t_j', \text{ etc.}$

Then we have

$$\frac{d}{dt} \mathcal{T} \{ \Phi^+(1) \Phi^+(2) \Phi^+(3) \Phi^+(4) \} = \mathcal{T} \{ \Phi^+(1) \left(\frac{d}{dt} \Phi^+(2) \right) \Phi^+(3) \Phi^+(4) \}$$

$$+ \delta^{(2, 2)} \mathcal{T} \{ \Phi^+(1) \Phi^+(4) \} \pm \delta^{(2, 4)} \mathcal{T} \{ \Phi^+(1) \Phi^+(3) \}.$$

We define the n-particle correlator (Green's function) as

$$\hat{G}_n (1, ..., n; 1', ..., n') = \frac{1}{i^n} \mathcal{T} \{ \Phi^+_H (1) \cdots \Phi^+_H (n) \Phi^+_H (n) \cdots \Phi^+_H (1) \}$$

with $\hat{G}_0 = 1$ ($n=0$).

We identify $\delta_j = \begin{cases} \Phi^+_H (j) & \text{for } j = 1, \ldots, n \\ \Phi^+_H (2n-j+1) & \text{for } j = n+1, \ldots, 2n \end{cases}$

and

$$i \frac{d}{dx_k} \hat{G}_n (1, ..., n; 1', ..., n') = \frac{1}{i^n} \mathcal{T} \{ \Phi^+_H (1) \cdots \left(i \frac{d}{dx_k} \Phi^+_H (k) \right) \cdots \Phi^+_H (n) \Phi^+_H (n) \cdots \Phi^+_H (1) \}$$

$$+ \sum_{j=1}^n (\pm)^{k+j} \delta(k, j) \hat{G}_{n-1} (1, ..., k, ..., n; 1', ..., j', ..., n')$$

and
\[-i \frac{d}{dz_k} \hat{G}_n (1, \ldots, n; 1', \ldots, n') = \frac{1}{i^n} \sum_{(\pm)} \hat{\Psi}_H (k) \hat{\Phi}_H (n) \hat{\Phi}_H^+ (n) \cdots (i \frac{d}{dz_k} \hat{\Phi}_H^+ (1') \cdots \hat{\Phi}_H^+ (1)) \]

\[+ \sum_{j=1}^{n} (\pm) \hat{\Psi}_H (j) \delta (j, k') \hat{G}_{n-1} (1, \ldots, n; j, 1', \ldots, n') \]

with \((n-j)+ (n-k)\) interchanges, and \((\pm)^{n-j+(n-k)} = (\pm)^{k+j}\).

Now we assume that \(\hat{h}\) is diagonal in spin space:
\[
\langle x_i | \hat{h} (x) | x_\ell \rangle = h (1) \delta (x_i - x_\ell) = \delta (x_i - x_\ell) h (2).
\]

The EOMs then become (for the field operators):
\[
i \frac{d}{dz_k} \hat{\Phi}_H (k) = h (k) \hat{\Phi}_H (k) + \int d\tau \nabla (k, \tau) \hat{\Phi}_H (\tau) \hat{\Phi}_H (k)
\]

\[-i \frac{d}{dz_k} \hat{\Phi}_H^+ (k') = \hat{\Phi}_H^+ (k') h (k') + \int d\tau \nabla (k', \tau) \hat{\Phi}_H^+ (\tau) \hat{\Phi}_H (k')
\]

with \(\nabla (i, j) = \delta (i, j) \nabla (x_i - x_j, \xi_j).\)

Inside the \(\int\) we can write
\[\int \ldots \hat{\Phi}_H (\tau) \hat{\Phi}_H (k) \ldots \rangle = \pm \int \ldots \hat{\Psi}_H (k') \hat{\Phi}_H (\tau) \hat{\Phi}_H^+ (k) \ldots \rangle
\]
where \(\hat{1}\) has a time later on \(\tau\) than \(\hat{1}\).

Then we can write
\[
\frac{1}{i^n} \int_\mathbb{R} \{ \hat{\Phi}_H (1) \cdots (i \frac{d}{dz_k} \hat{\Phi}_H (k)) \cdots \hat{\Phi}_H (n) \hat{\Phi}_H^+ (n) \cdots \hat{\Phi}_H^+ (1) \}
\]

\[= h (k) \hat{G}_n (1, \ldots, n; n', 1') \]
\[\pm \frac{1}{i^n} \int d\tau \nabla (k, \tau) \int \{ \hat{\Phi}_H (1) \cdots \hat{\Psi}_H (n) \hat{\Phi}_H (\tau) \hat{\Phi}_H (k') \hat{\Phi}_H^+ (k) \cdots \hat{\Phi}_H^+ (1) \}
\]

\[-h (k) \hat{G}_n \pm i \int d\tau \nabla (k, \tau) \hat{G}_{n+1} (1, \ldots, n; 1', 1', \ldots, n', \tau')
\]
and analogous for the second eq. with \(\hat{\eta}\).

Inserting into the EOMs we find
\[
\left[i \frac{d}{d \omega} - h(\omega) \right] \widehat{G}_n (1, \ldots, n; \bar{1}, \ldots, \bar{n}) = \pm i \int d\bar{\omega} V(\omega, \bar{\omega}) \widehat{G}_{n+1} (1, \ldots, n, \bar{1}, \ldots, \bar{n}, \bar{\omega}) + \sum_{j=1}^{n} \left(\pm \delta_{ij} \right) \widehat{G}_{n-1} (1, \ldots, \bar{1}, \ldots, \bar{n}, \bar{1}, \ldots, \bar{n})
\]

- hierarchy of operator equations in Fock space
- independent of specific shape of contour
- basis for diagrammatic perturbation theory