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Instead of irradiating materials with strong lasers, control Fig. 4 Control of electron-electron interactions with lasers has
over materials using the vacuum fluctuations of the previously been achieved by driving an IR-active optical
electromagnetic field that can be shaped using optical g1, g phonon in organic molecular compounds [Buzzi et al., PRX
resonators has been proposed [1]. We explore the coupling 10, 031028 (2020)]. IR-active phonons hybridize with photons
between band electrons and light [2], study an exactly iInside a cavity to form phonon polaritons (Fig. 4). Here we
solvable model for band electrons coupled to a cavity [3] and explore the possibility to influence effective electron-electron
further investigate control over electron-electron interactions interactions via phonon polaritons [4].
by coupling a cavity to optical phonons [4]. phen - ) ) ) )
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The coupling between band electrons and light is intrinsically related to the geometry of the = 0.114 {ncreased Intaraclions Hyhon + Hphot = prhon bib; + wonot @'
electronic wave functions rather than only to the band structure [2]. = \>
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| In a dark cavity, formation of phonon polaritons increases electron-electron interactions leading
Inter-band (n, m)  (en —em)(m|0un) | (Open — Opem)(m|0vn) + Sem(Iuvm|n) to a decrease in the double occupancy in the ground-state (Fig. 5).
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This has striking consequences in flat-band systems: Here the linear intra-band coupling :; wp = 55" M‘MMM wE:iwa
vanishes. The quadratic intra-band coupling contains a quantum-geometric term together with S; < MW | }\mw '“J i ,\ q q q Q q Q Q {\ [} ,\ ,\
the linear coupling to other, potentially dispersive bands. We show that these features are ) 011 1 g s, WV VI /wp ’ | \
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We study an exactly solvable model to understand interactions between a single cavity mode
and band electrons — a 1D chain coupled to a single mode of an optical resonator [3].

Fig. 1
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= 0 & - At T=0 the system is in a product state between the o _ _ _
= i/ = o electronic ground-state of the uncoupled chain and a Upon weak driving of the cavity (~1 photon) electronic correlations decrease. In the strong
5, = L squeezed state of photons. We warn that truncations cou_pling regime — yvher_e thg light-matter coupling outwe_ighs Cavit.y losses — the em-field of the
5 of the light-matter coupling break gauge invariance cavity and the lattice vibrations undergo a beating motion enabling complete energy transfer
. z T o and can lead to a false superradiant phase hosting a from the photons to the phonpns irr.espe(.:tive of the strength of the light-matter couplipg (Fig.
£S center current in the ground-state accompanied 6a). In the ultra strong coupling regime light and matter degrees of freedom are significantly

hybridized changing the resonant frequencies of the system (Fig. 6b).

by a photon number that scales with the system size, reminiscent of the superradiant phase
transition in the Dicke model (Fig.1).
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K "l Cavity-mediated superconductivity in flat band systems
The electronic spectral function shows quantum analogs to Floquet results, like quantum Cavity-mediated superconductivity was proposed by Schlawin et al., PRL 122, 133602 (2019).
shake-off bands and dynamical localization induced by vacuum fluctuations (Fig. 2). The We are exploring the possibility of realizing this in flat-band systems (where competing energy
classical Floquet limit is recovered when the cavity is prepared in a coherent state with large scales are small) via the geometric terms in the light-matter coupling.
photon number (Fig. 3). The Drude peak in the optical conductivity (not shown) is suppressed
by the presence of the cavity, similarly to the free electron gas [Rokaj et al., PRResearch 4, Surface-matter hybrids Fio g _ Conduction band
013012 (2022)]. Nonlinear electron-phonon interactions, 8. oo urface plasmons

previously used to explain decreased
electron-electron  interactions  upon

optical driving, can be derived from BI/G\ - RN
- : - 3ilayer Graphene \
1] ES, DMK, MAS, Applied Physics Reviews 9, 011312 (2022) linear coupling of a phonon to a dipole
- T transition. We use this insight to explain STiO3
2] G. E. Topp, CJE, DMK, MAS, P. Torma, Phys. Rev. B 104, 064306 (2021). how phonons can mediate an attractive
3 %, G. PaSSGtti, M. Othman, C. KarraSCh, F. Cavaliere, MAS, DMK, electron-electron interaction. AS a
arXiv:2107.12236 (2021), to appear in a Communications Physics Focus Collection. platform to test our predictions we propose bilayer graphene on top of a SrTiO, substrate
[4] BLD, CJE, DMK, MAS, J. Phys. Mater. 5, 024006 (2022). where dipole excitations couple to the surface plasmons (Fig. 8).
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