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In recent times, machine-learning inspired methods have started to play an increasingly 
important role in many areas of physics. Among those methods are neural quantum states 
(NQS), which are a class of variational states for which the mapping from basis 
configuration to probability amplitudes of a trial state is expressed by a neural network. The 
network weights are trained as variational parameters (Fig. 1).

NQS are not constrained by volume-law entanglement scaling and have been successfully 
used to simulate dynamical properties of two-dimensional Heisenberg and Ising model 
systems (Fig. 2). Here, we present results and currently ongoing projects of our own work 
on utilizing NQS for studying dynamics in such systems.

Introduction

Stability of NQS time propagation algorithms

NetKet – Machine learning toolkit for quantum physics
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Conclusion
We have presented our work on the development of widely usable open source software for 
NQS computations, improving algorithms for time propagation, and our ongoing efforts on 
applying NQS to quantum spin liquids as well as understanding which properties determine 
whether a quantum state is learnable by an NQS.

● NetKet is a software framework providing machine learning 
models and methods for quantum physics built around neural 
quantum states and variational Monte Carlo algorithms [2, 3].

● NetKet is developed as a collaborative open source project with 
contributors from several research institutions. Our own code is 
built on NetKet and in the interest of growing the NQS 
community and software ecosystem, we contribute back 
improvements and new features to the project.

● Key features of the current version (NetKet 3) include the ability 
to define networks in pure Python (supporting just-in-time 
compilation and automatic differentiation through the JAX 
framework), comprehensive support for discrete symmetry 
groups, and built-in support for t-VMC propagation.

● In NQS methods, quantum expectation values of observables and their gradients are 
approximated by variational Monte Carlo (VMC), i.e., by “classical” stochastic sampling 
over the Born distribution |ψ(σ)|2.

● Neural quantum states can be time-propagated using time-dependent variational Monte 
Carlo (t-VMC), which is based on a stochastic approximation of the time-dependent 
variational principle (TDVP).

● The stability of this propagation method has been identified as a key challenge in several 
works, whereas the representation capabilities of the ansatz were not a limiting factor.

● In our project, we have performed a systematic analysis of stability properties and 
sources of error in small benchmark system [1], comparing the antiferromagnetic 
Heisenberg model on a square lattice versus a two-leg ladder.

Learning quantum spin liquid phases of matter

● The two-dimensional antiferromagnetic Heisenberg model on the square lattice was 
among the first systems successfully simulated with NQS methods. Recent advances in 
network architectures have made it possible to efficiently learn states with more complex 
sign structures.

● In this project we apply symmetric NQS based on group-convolutional neural networks 
(GCNNs) to a generalization of the Kitaev-Heisenberg model (Fig. 5), with the aim of 
studying the nonequilibrium physics of ɑ-RuCl3.

Representative capabilities of NQS for the SYK model

Figure 1: Illustration of a neural quantum state for 
a two-dimensional spin system. The neural net-
work is used to represent the mapping from a spin 
configuration to its corresponding probability 
amplitude.

Figure 2: NQS have shown some potential to fill 
an important gap in the current lineup of compu-
tational methods for simulating strongly correlated 
two-dimensional systems.
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● Unmitigated noise is strongly amplified by the nonlinear equation of motion, which causes 
numerical instability in the propagation. Regularization is required to remedy these 
instabilities, which however comes at the cost of accuracy in the overregularized regime 
(Fig. 3).

● We provide an interpretation of instabilities as caused by overfitting to a specific 
realization of the noisy equation of motion and propose a validation-set error diagnostic 
inspired by ML practice to assist with tuning hyperparameters for a stable and accurate 
propagation (Fig. 4).

● We expect that implementing and improving this and other types of diagnostics and 
regularization schemes will be an important step towards reliable and widely usable NQS 
time propagation algorithms.
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Figure 3: Numerical instabilities in t-VMC propagation can occur, 
depending on regularization strength λ. Stability improves with inc-
reased regularization, but physical dynamics are suppressed when 
the regularization becomes too strong.
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Figure 4: Validation error for 
assessing the consistency of 
parameter gradients.

● The abilities of NQS to represent and 
learn specific quantum states are im-
portant questions of current research.

● In this ongoing project, we study the 
Sachdev-Ye-Kitaev (SYK) and random-
hopping model (RHM). Both models 
feature volume-law entanglement, 
making them ideal candidates to 
investigate NQS capabilities.

● In our first results (Fig. 6), we observe 
that NQS can learn the ground state of 
specific realizations of the SYK model 
in small systems. We compare results 
for a multi-layer feed-forward network 
(FFNN) to the restricted Boltzmann 
machine (RBM).
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Figure 5: Optimized variational ground 
state energy using a GCNN ansatz for 
varying system sizes up to 6×6 unit cells 
with 72 sites. The mixing parameter ɸ 
determines the relative strength of Kitaev 
and Heisenberg interactions.

Figure 6: Ground state energy distributions for 
the 12-site SYK model for two neural network 
architectures compared with ED data.


