The Berry phase in quantum mechanics

Motivation: The past decade has seen tremendous developments in various branches of physics, related to topology and (quantum) geometry.

- Nobel Prize in Physics 2016 (Thouless, Kosterlitz, Haldane)
- Breakthrough Prize 2018 (Kane, Mele) → topological insulators, quantum spin Hall effect

Key concept: quantum-mechanical wavefunctions have an intrinsic property that measures how they change when moving in some parameter space; this can lead to new forces, new phenomena, and new states of matter.

Starting point: time-dependent Schrödinger equation

\[i \hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H}(t) |\psi(t)\rangle \]

\[|\psi(0)\rangle = |0\rangle = \text{ground state of } \hat{H}(0) \text{ for simplicity (not necessary to define Berry phase)} \]

Assumptions:
1. Time dependence in \(\hat{H}(t) \) is slow (see below)
2. \(\hat{H}(T) = \hat{H}(0) \) periodic

Question: What is \(|\psi(T)\rangle \)? We will see that there is a non-intuitive geometric/topological contribution.

Let us assume that \(\hat{H} \) depends on time via a parameter vector \(\lambda \):
\[i\hbar \partial_t |\psi(t)\rangle = \hat{H} \left[\hat{\lambda}(t) \right] |\psi(t)\rangle \]
\[\hat{\lambda}(0) = \hat{\lambda}(t) \]
e.g. magnetic field

- What does "slow" temporal variation mean?
- Define instantaneous eigenstates \(|n; t\rangle \):
 \[\hat{H} \left[\hat{\lambda}(t) \right] |n; t\rangle = E_n(t) |n; t\rangle \]

One can show: "slowness" (adiabaticity) \(\Leftrightarrow \)
\[|\langle n; t | \hat{\lambda}(t) | 0; t \rangle| \ll \left[E_n(t) - E_0(t) \right] / \tau \]
for all \(t \) and all \(n \geq 0 \).
Here \(\tau \) is a characteristic time scale for temporal variation of \(\hat{H}(t) \), e.g., \(T_{\text{wo}} \).

\[\Rightarrow \text{for adiabatic evolution, transitions to excited states suppressed.} \]

Geometric phase = Berry phase:
\[
\begin{align*}
\text{Geometric} & \quad \text{Berry phase:} \\
\begin{cases}
 i\hbar \partial_t |\psi(t)\rangle = \hat{H} \left[\hat{\lambda}(t) \right] |\psi(t)\rangle \\
 |\psi(t)\rangle = e^{i\varphi(t)} |0; t\rangle, \quad \varphi(0) = 0
\end{cases}
\end{align*}
\]

Only phase is allowed, since norm must be conserved

\[i\hbar \partial_t |\psi(t)\rangle = E_0(t) |\psi(t)\rangle \]
\[\varphi(t) = -\frac{1}{\hbar} \int_0^t E_0(t') dt' + \gamma \]
\[\gamma = \Omega_d = \text{dynamical phase} \quad \text{(always present)} \]
\[\text{Berry phase} \]
\[\Rightarrow \text{i} \hbar \partial_t \left[e^{i \theta_d} e^{i \mathbf{A} \cdot \mathbf{r}} \left| 0; t \right> \right] = E_0(t) \left| 0; t \right> \]

\[\Rightarrow \text{i} \hbar \left(\text{i} \partial_d \right) \left| \psi(t) \right> + \text{i} \hbar \left(\text{i} \partial_t \right) \left| \psi(t) \right> + \text{i} \hbar c \partial_t \left| 0; t \right> = e^{i \left(\theta_d + \mathbf{A} \cdot \mathbf{r} \right)} \left| 0; t \right> = E_0(t) \left| \psi(t) \right> \]

\[\Rightarrow \mathbf{\dot{y}}(0; t) = \text{i} \partial_t \left| 0; t \right> \]

\[\Rightarrow \mathbf{\gamma}(T) = \text{i} \int_0^T \left< 0; t \left| \frac{\partial}{\partial t} \left| 0; t \right> \right> dt \]

Geometric interpretation:

\[\partial_t = \frac{\partial}{\partial t} = \frac{\partial \mathbf{A}}{\partial t} \frac{\partial}{\partial \mathbf{A}} \Rightarrow \mathbf{\gamma}_c = \text{i} \oint \left< 0; \mathbf{r} \left| \frac{\partial}{\partial \mathbf{A}} \left| 0; \mathbf{r} \right> \right> \cdot d\mathbf{A} \]

Definition:

\[\mathbf{A}(\mathbf{r}) := \text{i} \left< 0; \mathbf{r} \left| \frac{\partial}{\partial \mathbf{A}} \right| 0; \mathbf{r} \right> \quad \text{"Berry connection"} \]

\[= \text{vector potential} \]

\[\Rightarrow \text{electromagnetism: magnetic field} \quad \mathbf{B}(\mathbf{r}) = \nabla \times \mathbf{A}(\mathbf{r}) \]

Here: fictitious magnetic field

\[\mathbf{B}(\mathbf{r}) := \nabla \times \mathbf{A}(\mathbf{r}) \]

\[\Rightarrow \mathbf{\gamma}_c = \oint_{\mathbf{F}_c} \mathbf{A}(\mathbf{r}) \cdot d\mathbf{r} = \iint \mathbf{B}(\mathbf{r}) \cdot d\mathbf{r}_c(\mathbf{r}) \]

\[\Rightarrow \mathbf{\gamma}_c \quad \text{is the flux of a fictitious magnetic field,} \quad \mathbf{B}, \]

\[\text{which is called Berry curvature.} \]
Question: Why is the Berry phase only well-defined on a closed loop γ?

(A) norm is not conserved on open contours
(B) adiabaticity can be violated if loop is not closed
(C) the wave function's phase can be modified at each point through a gauge transformation, hence the Berry phase is not gauge-invariant on open contours

Final remark: classical Hall effect is due to Lorentz force in \vec{E} and \vec{B} fields: $\vec{F} = q (\vec{E} + \vec{v} \times \vec{B})$.

The quantum (anomalous/spin) Hall effects are due to a quantum-geometric version: $\vec{F}_{\text{quantum}} = q (\vec{E} + \vec{v} \times \vec{B})$ (Berry curvature)