Engineering quantum materials through light-matter interaction Topics: 1) nonequilibrium dynamics from two-temperature models

1 dressed states during a pulse: Floquet engineering

3 from Floquet to cavity engineering · short laser pulses thanks to chirped pulse amplification Brief history: (Shichland & Mourou 1985, Nobel Prize 2018) (incomplete!) · Ca. 1990: pump-prole experiments, e.g., on elemental 2103.14888 metals / superconductors (Brosson et al., PRL 1990) -> Colleguion to . photoinduced phase transitions (Koshihara et al., PRB 1950) appear in Rev. · ultafast spir dynamics, e.g., in ferromagnetic Ni Mod. Phys. (Beaurepaire et al., PRB 1996) · photoinduced structural phase transitions, e.g., in VO2 (Cavaller et al., PRL 2001) · until mid 2000 s mostly driving with optical frequeries. infrared laser (Ti: Sa) 1=800 nm, tw=15eV -> typical energy scales for electronic dipole transitions · new development: mid-infrared laser pulses -> drive phonons resonantly e.g. - Rin; et al., Norture 2007 lattice - Controlled

- Forst et al., Nort. Phys. 2011 metal-insulator transition

- Subsedictal., PRB 2014 nonlinear phononics

- Subsedictal., proportionee of phonon monlinear thes -> light-induced superconducting-like optical properties across a range of makials (cuprates, fullerides, organic conductors) but no July microscopic explanation yet. · theory-driven conceptual development: Floquet engineering = coherent dressing of electronic structure through
periodic driving
=> Floquet topological insulators (Dka & Ablei, PRB2009) 2003.08252 Rudner & Lindner, "The Floquet Engineer's handbook"

1) Nonequilibrium dynamics from two-temperature models to

Higgs spectroscopy

1.1 From frequency domain to time domain

Reminder: traditional spectroscopy works in frequency domain

and relies on linear-response theory

H(t) = Ho + H, (t)

H, (t) = - $\int d^3r \int \int h(\vec{r},t) A(\vec{r})$ e.g., magnetic e.g., Paul; spin matrices

— time-dependent perturbation theory gives

 $\langle B(\vec{r},t) \rangle = \langle B(\vec{r}) \rangle_{eq} + \delta \langle B(\vec{r},t) \rangle$ B = observable that we are interested inand $\delta \langle B(\vec{q}',\omega) \rangle = \chi_{BA}^{R}(\vec{q},\omega) \delta h(\vec{q},\omega)$ with

dynamical susceptibility $\chi_{CA}^{R}(\vec{q}_{i}\omega) = \int dt \int_{0}^{3} i\vec{q}\vec{r} i(\omega + i\sigma^{t})t$ $\times \chi_{BA}^{R}(\vec{r},t)$

with the retarded commutation

 $\mathcal{X}_{BA}^{R}(\vec{r}-\vec{r}',t-t')=\frac{i}{t}\left(\left[B(\vec{r},t),A(\vec{r}',t')\right]\right)_{eq}\Theta(t-t')$

1) response of observable B to field that caples to our system via A

(A and B are both operators that belong to the system of interest)

- 2) < [B,A])eq is an equilibrium (=inhinsic)
 property of the system
- 3 Linearity: response at momentum of and frequency wis only to field at same of w; independent of response at other of all w

-> very useful techniques to investigate materials,

but: frequency resolution often an issue in

practice, especially at low frequencies

("emergent low-energy properties" like magnons)

x"(w) 1 model

can be hard to disentangle

—) Complementarity of frequency (every) and time $t_0 = 0.658 \text{ eV} \cdot fs$ Wavelength

Out 100 mm 10 mm 10

-> things that are hard to measure in the frequency domain can be easier to measure in the time domain!

1.2 Simplest dynamics in the time domain: twotemperature model Consider electrus in a metal coupled to a phonon bath.

Idea: two subsystems that are each in a local therman equilibrium, but not in a global equilibrium.

laser heats electrons el-ph phonons electrons quickly coupling

- two-temperature model (Anisimon 1974, Alber 1987)

Formal derivation: semiclassical Boltzmann kinetic equations

$$H = \left(\begin{array}{c} \sum_{k} \mathcal{E}_{k} \mathcal{L}_{k}^{\dagger} \mathcal{L}_{k} \\ = \hat{N}_{k} \end{array} \right) + \left(\begin{array}{c} \sum_{k} \mathcal{L}_{k} \mathcal{L}_{k}$$

kinetic eqns.: (assume "well-defined quasiparticles")

$$\frac{\partial n_{k}}{\partial t} = -2\pi \sum_{k',k} \delta(k-k'-\omega) |M_{R}|^{2} \left\{ n_{k}(1-n_{k'}) \left[(N_{R}+1) \delta(G_{k}-G_{k'}-\omega_{R}) + N_{R} \delta(G_{k}-G_{k'}+\omega_{R}) \right] - (1-n_{k}) n_{k'} \left[(N_{R}+1) \delta(G_{k}-G_{k'}+\omega_{R}) \right] + N_{R} \delta(G_{k}-G_{k'}+\omega_{R}) \right\}$$

$$\frac{\partial N_{R}}{\partial t} = -4\pi \sum_{k',k'} \delta(k-k'-\omega) |M_{R}|^{2} \left\{ n_{k}(1-n_{k'}) \left[N_{R} \delta(G_{k}-G_{k'}+C\omega_{R}) - (N_{R}+1) \delta(G_{k}-G_{k'}+C\omega_{R}) \right] \right\}$$

$$-(N_{R}+1) \delta(G_{k}-G_{k'}-\omega_{R}) \right\}$$

-> relaxation rate of hot electrons after lase

excitation provides information about the

Eliashberg function, which for instance

determines superconducting critical temperatures

in Conventional superconductors,

(measured using time-resolved photoenissin spechasopy).

1.3 Dynamics of ordered states; Higgs spectroscopy.

So far: change of distributions of electrons and phonons in a fixed band structure.

Now: What if the band structure itself becomes a dynamical quantity?

How can this happen? When there is a time-dependent self-energy. Simplest case: the self-energy is instantaneous.

 $\sum (t-t') \sim \delta(t-t')$

"static" mean-field theory.

Example: BCS theory of Superconductivity.

Attractive Hubbard model: H = Exor Chor Chor - U = Cit Cit Cit Cit supports an S-wave superconducting solution with mean-field BCS Hamiltonian HBCS = ELOT CHOT CHOT - U Z CHT CHT CHIL CHIT) ELT = ELJ = EL $= \sum_{k} \underline{Y}_{k}^{\dagger} h_{RC}(k) \underline{Y}_{k}$ Nambu spinor The = (Ckt, C-kd) $\frac{4}{4} = (\frac{4}{4})^{+}$ Matrix Hamiltonian $h_{BCS}(k) = \begin{bmatrix} \varepsilon_k & \Delta \\ \Delta^* & -\varepsilon_k \end{bmatrix}$ Gap function $\Delta \equiv U \sum_{k'} \frac{C_{k'} r}{C_{k'} r}$.

("self-energy") $= f_{k'}$ "anomalous expectation value" (i) Equilibrium: The gap A is determined self-Consistently by solving the self-consistency equa hon $\Delta = U \sum_{k'} \frac{\Delta}{\sqrt{\varepsilon_{k}^{2} + \Delta^{2}}} \tanh \left(\frac{\beta \sqrt{\varepsilon_{k'}^{2} + \Delta^{2}}}{2} \right)$ with inverse temperature B= 1/kgT.

(ii) Nonequilibrium: Starting from the equilibrium solution we propagate forward in time under an external driving field. Light-matter coupling is modelled through I'minimal coupling " $\vec{p} \longrightarrow \vec{p} - e\vec{A}$, which in the Context of lattice elections is achieved through "Peierlo substitution".

tij $C_i^{\dagger}C_j^{\dagger}$ hopping from $j \neq i$ i is dressed as $t_{ij} = \frac{ie}{\hbar} \int_{r_i}^{r_i} d\vec{\ell} \cdot \vec{A}(\vec{\ell},t)$ $t_{ij} = \frac{ie}{\hbar} \int_{r_i}^{r_i} d\vec{\ell} \cdot \vec{A}(\vec{\ell},t)$

Here $\vec{A}(\vec{r},t)$ is the vector potential (gauge field). Optical laser: focus on electric field $\vec{E} = -\frac{\partial \vec{A}}{\partial t}$, variety $\vec{l} = 800 \text{ nm} \Rightarrow \text{atomic length scales}$

=> can neglect spatial dependence

"dipole approximation" e 19.7 & 1 for 9=21 & 0

=> Rierlo substitution amounts to the replacement li-slient.

 $H_{BCS}(t) = \sum_{k} \psi_{k}^{\dagger} \begin{bmatrix} \epsilon_{k-eA(t)} & \Delta(t) \\ \Delta^{*}(t) & -\epsilon_{-k-eA(t)} \end{bmatrix} \psi_{k}$

Note: t-dependence in A(t) is from external laser field. t-dependence in A(t) is from internal dynamics reacting to the external field.

Now: Need equation of motion for dynamics. We will use the Heisenberg picture (time-depandent operators): ide & (k,t,t) = [\(\bugger_{BCS}(k,t) \), \(\bugger_{C}(k,t,t) \) 4ith &

G<(6, 4,4) := i < 4th (4) /6 (4) Idea (Anderson, Phys. Rev. 112, 1900 (1958)): introduce Anderson pseudospin: $\overrightarrow{T}_{k} = \frac{1}{2} \underbrace{\psi_{k}^{+}} \cdot \underbrace{\overrightarrow{T}}_{k} \cdot \underbrace{\psi_{k}^{-}}_{k} \quad \text{with Paul; matrices } \overrightarrow{T} = \begin{pmatrix} \frac{1}{2} \\ T^{2} \end{pmatrix}$ one can show that this leads to EOMS

(**) $2\sqrt{\sigma_{k}} = 2 \vec{b}_{k} \times \langle \vec{\sigma}_{k} \rangle$ with $\vec{b}_{k} = \begin{pmatrix} \Delta^{l} \\ \Delta^{ll} \\ \varepsilon_{k-eA} + \varepsilon_{k+eA} \end{pmatrix}$.

For example: $\sigma_{k}^{\times} = \frac{1}{2} \left(C_{kq}^{+}, C_{-kl} \right) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} C_{kq} \\ C_{ks} \end{pmatrix}$ $= \frac{1}{2} \left(C_{k1}^{+} C_{-k1}^{+} + C_{-k1} C_{kn} \right)$ $\mathcal{J}_{u}^{3} = \frac{4}{2} \left(c_{u\sigma}^{\dagger}, c_{-u} \right) \left(\begin{array}{c} 0 & -i \\ i & D \end{array} \right) \left(\begin{array}{c} c_{u\sigma} \\ c & t \end{array} \right)$ = 1/-1 Char C- 6+ + i Che Char) => $\langle G_{k}^{*} \rangle = \frac{1}{2} \left(f_{k}^{*} + f_{k} \right) = Re f_{k} = f_{k}^{*}$ $\langle \sigma_u^{\dagger} \rangle = \frac{1}{2} \left(-i f_u^{\dagger} + i f_u \right) = Im f_u = f_u^{\dagger}$ So that (*) implies $\partial_{t} f_{u}^{\dagger} = 2 \Delta^{u} \cdot \frac{1}{2} (2n_{u}-1) - 2 \underbrace{\epsilon_{u}-\epsilon_{u}+\epsilon_{u}+\epsilon_{u}}_{2} f_{u}^{\dagger}$ $\partial_{t} f_{u}^{\dagger} = 2 \underbrace{\epsilon_{u}-\epsilon_{u}+\epsilon_{u}+\epsilon_{u}}_{2} f_{u}^{\dagger} - 2 \Delta^{u} \cdot \frac{1}{2} (2n_{u}-1)$ $\partial_{t} \frac{1}{2} (2n_{u}-1) = 2 \Delta^{u} f_{u}^{\dagger} - 2 \Delta^{u} f_{u}^{\dagger}$ $= \partial_{t} n_{u}$

Intuitive picture of Anderson pseudospin: spins in le space

TTTTT S JJJJL

BCS state = s in-plane component near les

Signals SC condensate

Now back to dynamics: Pseudospin precession is governed by $\vec{b}_{u} = \begin{pmatrix} \Delta' \\ \Delta'' \end{pmatrix}$ $\frac{E_{u-eA(t)} + E_{u+eA(t)}}{2}$

=> particle-hole-symmetric by construction => linear response vanishes since.

$$\frac{1}{2}\left(\mathcal{E}_{k-eA} + \mathcal{E}_{k+eA}\right) = \mathcal{E}_{k} + \frac{1}{2}\frac{\partial\mathcal{E}_{k}}{\partial k}\left(-eA + eA\right)$$

$$+ \frac{1}{2}\frac{1}{2}\frac{\partial^{2}\mathcal{E}_{k}}{\partial k}\left((eA)^{2} + (eA)^{2}\right)$$

$$= \mathcal{E}_{k} + \frac{1}{2}\frac{\partial^{2}\mathcal{E}_{k}}{\partial k}\left((eA)^{2}\right)$$

$$= \mathcal{E}_{k} + \mathcal{E}$$

-> Collective made that is excited by this nonlinear process corresponds to "Higgs mode" (oscillation at 2 \D frequency) = Amplitude mode of the SC condensate.

/11

-> "ldiggs spectroscopy". Review by Shimano (Isuji,
Annu. Rev. 11, 103 (2020)
of Card. Mat. Phys.

So far: " hat election dynamics"

· honlinear response of collective mode in fine domain specho scopy

-> information about micro scopic couplings and collective modes of the natural itself.

But: Can we also change (control) makerials properties with light?

2) Dressed states during a pulse: Floquet engineering

Q: What happens when electrons couple to a time-dependent laser field?

Simplest case: Add is periodic in the, f(t+T) = f(t).

Real-space analogy: spatially periodic potential => Block theorem

=> we can use quasi-momentum le to label eigenstates (Good quartum number) => similar construction in time-energy space?

Time-dependent Schrödinger equation:

it dt (4(t)) = H(t) (4(t)), H(t+T) = H(t).

M

Floquet theorem: we can define floquet states and latel Hen will quasi-energy & (good quantum number) Floquet states are stationary states of the shoboscopie ("Ploquet") time evolution garator $U(T) \equiv \int_{\eta} e^{-\frac{i}{\hbar} \int_{\eta} dt' H(t')}$ 2.1 Frequency - (extended) space formulation Reminder: the Block theorem allows us to convert the problem of solving a differential equation $\left(-\frac{t_1^2 \nabla^2}{2m} + V(x)\right) \Psi(x) = E \Psi(x)$ into an eigenvalue problem (V(x) = \(\frac{7}{6} \end{are} \(U_G \) (***) $\frac{t^2}{2n}(k+G)^2$ $C_G(k) + \sum_{g'} U_{G-G'} C_{G'}(k) = \varepsilon_k C_G(k)$ with Block wave functions (same periodicity as lattice!) $U_k(x \pm a) = U_k(x)$ (**) $u_{k}(x) = \sum_{G} C_{G}(k) e^{i6x}$ a = lattice constant and full ware function

(x) $\Psi_{\kappa}(x) = e^{ikx} U_{\kappa}(x) = plane Leave \times Block finetians

with quasi-momentum he and reciprocal lattice vector G.$

Real-time construction: (4) $|\Psi_n(t)\rangle = e^{-i\varepsilon_n t/\hbar} |\phi_n(t)\rangle, |\phi_n(t+T)\rangle = |\phi_n(t)\rangle$

 $Q_{n} = \left\{ \left| \phi_{n}^{(m)} \right\rangle, m = -\infty, ..., \infty \right\}$ and writing

$$\frac{H}{H} = E_{n} = E_{n} = \frac{Q_{n}}{H}, \quad H^{(-1)} = \frac{H^{(-1)}}{H^{(1)}} = \frac{H^{(-1)}}{H$$

 $H_0 = H^{(0)} = \frac{1}{T} \int_0^T dt \ H(t)$ dc' = time-averaged part of Hamiltonian.

Each entry in H is itself a dxd madrix, with d= dinension of original Hillert space.

=> we have simplified the solution of a time-periodic problem to the solution of an (infinite-diner sional) eigenvalue problem.

The time-periodic part of the Floquet state wavefunction is then obtained from

$$|\phi_n(t)\rangle = P(wt) C_n = \sum_{n=1}^{\infty} e^{-inwt} |\phi_n(m)\rangle$$
rectangular matrix
with blocks $e^{-imwt} \int dxd$

Overcompleteness: Like in band structure theory, the Fourier space solution has redundancy. Le con shift

/15

each solution via En -> En + m'thow by integer multiples of the vithout changing the physical rtake. => "Floquet Brillouin Zone". of width two (restects conservation of energy only modulo integer multiples of the photon energy)

2.2 Truncation of frequency space

What have we sained by the Hoquet picture?

Consider H(t) = Ho + V(t), V(t) = Ve ist +Vt e -ist

-> purely harmonic drive that caples linearly to the system

 $- > H^{(-1)} = V, H^{(1)} = V^{+}, H^{(\Delta m)} = 0 \text{ for } km/>1$

=> block - tridiagonal form

 $\frac{H}{2} = \begin{bmatrix} \dot{V} & V & O \\ V^{\dagger} & H_{o} - m\hbar\omega & V \\ O & V^{\dagger} & \ddots \end{bmatrix}$

-> closely analogous to happing an a tripst-binding lattice ... of to +\$ 12\$

with an energy offset $\Delta E = \phi$ between heighboring sites. (Physics of Roch oscillations and dc Lannier-Stark effect.)

16

Frequency or Energy The The Man The Ma

Fourier harmonic index m

- => the temporally periodic potential with strength V
 hybridizes the "local" Hilbert spaces
 which are offset by multiples of two.
- a certain energy window, we can often truncate the harmonics because higher-lying states will only on tribute perurbatively as ~ V" if their distance is now.
- convergence as the cutoff is varied.

2.3 Two elementary examples of thoquet engineering

How can periodic driving be used to change ("Control with light") a band structure?

(a) Dynamical localization

Particle hopping in a 1D chain exposed to electromagnetic field: $E(k) = -2t_0 Cos(ka)$

 $H = -\sum_{n} t_{o} C_{n}^{\dagger} C_{h+n} + h.c. = \sum_{k} \epsilon(k) C_{k}^{\dagger} C_{k}$

Priech substitution: to-> th(t) = to e i ea A(t)/th

 $A(t) = \frac{E_0}{\omega} \cos(\omega t)$

=> consider high-frequency limit w>>> to

-s effectively time-averaged Hamiltonian

 $H_o = \frac{1}{T} \int_0^T (-2t_0) \cos \left(\left(k - \frac{eE_0}{t_0} \cos \left(\omega t \right) \right) a \right) dt$

=> Sas (cos) yields a Bessel function

=> Ho = - I teff Cut Chin + h.c.

with teff = to Jo (F)

F = ae Es/(tw) Ploquet parameter/18

 $|t_{eff}| \le t_0$ due to $|J_o(x)| \le 1$

-> reduction of effective hopping amplitude; in strong field it can lung this sign

-> "dynamical localitation"

(Dunlap & Kenhre 1986; Bucksbaum et al. 1990)

bond softening in hydrogen molecules under laser irradiation

(b) Gap opening in Dirac fermions under circularly polarited light: "Floquet topological insulator"

This iden was put forward by Ohn & Abhi in 2009 and inspired by the Haldane model (1988):

"modified honey can b lattice"

grant regular hopping on honey comb: Dirac comes

at U, U'=-K in hexagonal Brillovin some

19

massless Dirac fermions: $k = K^{(1)}$

 $H(k) \approx V_{\text{p}} \begin{bmatrix} 0 & k_{\text{x}} \pm i k_{\text{y}} \\ k_{\text{x}} \mp k_{\text{y}} & 0 \end{bmatrix}$ where \pm refers

How can one create a gap (= mass tern)?

=> break one (or boll) of two symmetries:

1) inversion

27 time reversal

case 1): introduce on site potential Ex + EB

case 1): introduce "effective magnetic field" via se cond neighbor hopping vith complex phase; "chiral hopping"

7 itz (intra-sublattice)

$$= H_{\bullet}(\vec{l}) + M_{\sigma_{t}} + 2t_{z} + 2t_{z} = \sigma_{t} \sin(\vec{l}\cdot\vec{b}_{i})$$

$$= \varepsilon_{A} - \varepsilon_{B}$$

 $t_2 = \pm \frac{M}{3\sqrt{3}}$ can close trivial M gap at one of the Dirac points

-, transition from trivial to Chern insulator

Q: Can one Floquet-engineer the tz term?

A: Yes! Need to break trs => circularly polarized light.

Two models:

1) toy model: 4-step process where ve rotate a vector potential over quarters of a driving period $\frac{1}{4}$.

Bloch Hamiltonian $\frac{1}{2} = V_F \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] \cdot \vec{\sigma}$ in step $n \in \{1, 2, 3, 4\}$.

=> Floquet time evolution operator

 $U(\vec{l}',T) = U_4(\vec{l}) U_3(\vec{l}) U_2(\vec{l}) U_1(\vec{l})$ $U_n(\vec{l}) = e^{-iH_n(\vec{l})T/(4t_n)}$

At the Dirac point (le = 0 here):

 $U(0,T) = e^{-i\phi \sigma_y} e^{-i\phi \sigma_x} e^{i\phi \sigma_y} e^{i\phi \sigma_x}$

with $\phi = ev_F A_0 T/(4t)$.

High-frequency (small T) limit: expand exp's.

 $U(o_1T) = 1 + \phi^2 \left[\sigma_{x_1} \sigma_{y_2} \right] + O(\phi^3)$ $= 1 + 2i \phi^2 \sigma_{z_1} \approx e^{2i \phi^2 \sigma_{z_2}}$

Define U(O,T) =: e-iHeff(li=0)T/4

and T= 2T

 $= > |H_{eff}(\vec{l}=0)| = |\tilde{\Delta}\sigma_{z}|, \; \tilde{\Delta} = -\frac{T(ev_{F}A_{o})^{2}}{4\hbar\omega}$

- · circularly polarited driving opens gap at Dirac point, gap & (field) = interity o) la ser.
- reversal of handedness => reversal of gap.

 of light (sign of mass term)
- o reversal of chirality of Dirac fernion also reverses the sign of mass term ! => corresponds to its happing in Haldane model
- (2) Dirac model with Continuous drive A (t) = A (Gs wt)

H(I,t) = V= (til-eAt)J·J·J = VF \ \tau \ \tau \ \tau \ \equiv \ \tau \ \equiv \ \tau \ \equiv \ \tau \ \equiv \ \quad \equiv \ \equiv \quad \equiv \ \equiv \quad \equiv \q\quad \equiv \q\quad \equiv \quad \equiv \q\quad \equiv

h := kx + ihy

Flaquet Haniltonian: Hmn = 1 Sdt H(t)e + m 8mt wl 23

3.) From classical to quantum tenquet engineeing in QED cavities

We can envision that photon dressing effects? can also change materials properties even when classical EM fields are absent.

Cavity

H= Hmatter + Height-matter

Laser Marter A(t) Proporter

H= H_{matter} + $\sum_{qs} \omega_{q} a_{qs}^{\dagger} a_{qs}^{\dagger}$ + H_{light} -matter $(\widetilde{A} \rightarrow \widetilde{A}(\overrightarrow{r}) = i \sum_{qs} \sqrt{\frac{t}{\epsilon \epsilon_{b} V_{wq}}} e^{i \overrightarrow{q} \cdot \overrightarrow{r}} \times \hat{e}_{qs} (a_{qs}^{\dagger} + a_{qs}^{\dagger}))$

Floquet: laser prepares photors in many-photon Coherent state ("classical"); À has finite amplitude. Cavity: Â ~ (a + a⁺) can have tero amplitude (no macroscopic field) but still inpact mather through its fluctuations.

Examples: Casimir effect, lurcell effect
(enlancement of
sportaneous emission)

Nou: one example, namely quantum analogue

a) Thoquet Chern insulator

X. Wang et al., PRB 99, 235156 (2019)

Single Dirac fermion: H(k) $H = \begin{bmatrix} C_{A_1k} \\ C_{B_1k} \end{bmatrix} \begin{bmatrix} C_{A_1k} \\ C_{A_1k} \end{bmatrix} \begin{bmatrix} C_{A_1k} \\ C_{A_$

$$S(\vec{b}) = h V_F (b_x + i b_y)$$
single brand of right-landed circularly polarized photons:
$$\vec{e}_R = \frac{1}{\sqrt{2}} (1, i)$$

$$\Rightarrow Y(\vec{b} - \vec{A}) \longrightarrow h V_F (b_x + i b_y - \sqrt{2} A_0 a^+)$$

$$Define \quad g = h V_F A_0 \sqrt{2}$$

$$\Rightarrow h(h) = \begin{bmatrix} 0 & h V_F (b_x + i b_y) - g a^+ \\ h V_F (b_x - i b_y) - g a & 0 \end{bmatrix}$$

$$- \cdot do \quad perhor bation + leavy$$

$$\hat{G}(b_1 + c) = -T_T \begin{pmatrix} (C_{A_1 Y}(T) C_{A_1 k}) & A B \\ BA & BB \end{pmatrix}$$

$$\hat{G}^{-1} = \hat{G}_0^{-1} - \hat{\Sigma}_0$$

$$\sum_{o,aa} (\vec{l}_{i} | p_{n}) = -\frac{g^{2}}{B} \sum_{m} \frac{-1}{ic_{m}+c_{w}} G_{o,bb} (\vec{l}_{i} | p_{n}+ic_{m})$$

$$\sum_{o,bb} (\vec{l}_{i} | p_{n}) = -\frac{g^{2}}{B} \sum_{m} \frac{1}{ic_{m}-c_{w}} G_{o,aa} (\vec{l}_{i} | p_{n}+ic_{m})$$

$$\sum_{a} (\vec{l}_{i} | p_{n}) = -\frac{g^{2}}{B} \sum_{m} \frac{1}{ic_{m}-c_{w}} G_{o,aa} (\vec{l}_{i} | p_{n}+ic_{m})$$

$$\sum_{a} (\vec{l}_{i} | p_{n}) = -\frac{g^{2}}{B} \sum_{m} \frac{1}{ic_{m}-c_{w}} G_{o,aa} (\vec{l}_{i} | p_{n}+ic_{m})$$

$$\sum_{a} (\vec{l}_{i} | p_{n}) = -\frac{g^{2}}{B} \sum_{m} \frac{1}{ic_{m}-c_{w}} G_{o,aa} (\vec{l}_{i} | p_{n}+ic_{m})$$

-s evaluate Matsubara sun by Contour integral (cf. Malar)

eg.
$$\sum_{0,\alpha\alpha} = -g^{2}S$$

$$S = \frac{1}{1^{3}} \sum_{m} \frac{1}{(\omega_{n} + \omega_{n})^{2} + V_{+}^{2} l_{+}^{2}}{(\rho_{n} + \omega_{n})^{2} + V_{+}^{2} l_{+}^{2}}$$

$$= -\frac{1}{1^{3}} \sum_{m} f(i\omega_{m})$$

Use integral
$$I = \lim_{R \to \infty} \int \frac{dz}{2\pi i} f(z) N_B(z)$$

$$f(z) = \frac{1}{z+\omega} \frac{i\rho_x + z}{(i\rho_x + z)^2 - V_F^2 h^2}$$

(...)

Final result 9th Dirac point after analytical Continuation in -> E +18t :

$$\sum_{0 \mid \alpha \alpha} (\vec{k} = 0, \epsilon) = \frac{g^2}{2} \frac{1}{\xi + i0^4 - \omega}$$

$$\sum_{0 \mid b \mid b} (\vec{k} = 0, \epsilon) = \frac{g^2}{2} \frac{1}{\xi + i0^4 + \omega}$$

$$= 3 \quad g^{\alpha} \rho \quad \Delta = \frac{g^2}{\omega} \approx \frac{2 V_F^2 A^2}{\omega} \quad (e = t)$$

$$= \frac{2g^2}{\omega} \ll 1$$

-> same form as in Plaquet case!

only difference: As is not the amplitude of classical field, but of quantum fluctuations

Summary;

- dynamics after pump excitation often 'O.K.'s described by hinetic equations (two-temperature model), but they fail to describe more interesting phenomena:
 - Short time (flu fs) dynamics
 - ordered states
 - Floquer photodressing
- Flaquet engineering useful to modify effective Hamiltonians (but issues in materials: heating, need for strong levers, short-lived effects only during pump)
- cavity engineering can be used to advieve similar effects as in Floquet but in cavity-matter ground state (no heating lang-lived). Lut need to engineer small effective made volumes, near-field effects, stong light-valuer coupling /30