Nonequilibrium phase transition in an optically driven 2D Heisenberg antiferromagnet

M. H. Kalthoff¹, D. M. Kennes^{1,2}, A. J. Millis^{3,4}, M. A. Sentef¹

¹Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany ²Institut fr Theorie der Statistischen Physik, RWTH Aachen University, 52056 Aachen, Germany ³Center for Computational Quantum Physics, Flatiron Institute, New York, USA ⁴Department of Physics, Columbia University, New York, USA

This work was supported by the DFG Emmy Noether program SE 2558/2-1, the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Grant No. DE SC0012375, the Flatiron Institute (Division of the Simons Foundation) and the Max Planck-New York Center for Nonequilibrium Quantum Phenomena

Phase transitions occurring in a non-equilibrium steady state

Nonequilibrium phase transition in the antiferromagnetic phase of the driven Hubbard model [N. Walldorf *et al* Phys. Rev. B **100**, 121110(R) (2019)]

Floquet-driven Antiferromagnet

[N. Walldorf et al Phys. Rev. B 100, 121110(R) (2019)]

- $\rightarrow\,$ Superthermal magnons at large driving amplitudes
- \rightarrow Nonequilibrium Phase Transition

Floquet-driven Antiferromagnet

[N. Walldorf et al Phys. Rev. B 100, 121110(R) (2019)]

- → Superthermal magnons at large driving amplitudes
- \rightarrow Nonequilibrium Phase Transition

Limitations of the calculation

- Mean Field + one loop calculation (non-interacting magnon approximation)
- The transition is driven by the **external drive** and the magnon-relaxation into the **bath**, magnon-magnon scattering is not included.

Question

Does this Nonequilibrium phase transition persist in an interacting theory?

Magnon Interactions in a 2d Heisenberg antiferromagnet

$$\mathcal{H}_{XXZ} = J \sum_{\langle ij \rangle} \left\{ \frac{1}{2} \left(S_i^+ S_j^- + S_i^- S_j^+ \right) + \Delta S_i^z S_j^z \right\} \to \underbrace{\mathcal{H} = E_0 + H_0 + V}_{\mathcal{H} = E_0 + H_0 + V}$$

Magnon expansion around ordered ground state

$$E_0 =$$
Ground State Energy
 $H_0 = \hbar \sum_{k} \omega_k \left(\alpha_k^{\dagger} \alpha_k + \beta_k^{\dagger} \beta_k \right) =$ Bilinear Hamiltoniar

 \rightarrow Use Boltzmann Formalism to include magnon interactions (perturbative, leading order $\frac{1}{S})$

The Driven-Dissipative System without interactions

[N. Walldorf et al Phys. Rev. B 100, 121110(R) (2019)]

$$\partial_t n = g_{\rm in}(1+n) - \gamma_{\rm out} \left(n + \left(\frac{n}{n_{\tilde{T}}(\omega)} \right)^2 \right) \quad {\rm with} \quad g = \frac{g_{\rm in}}{\gamma_{\rm out}}$$

Dynamical Critical Point g = 1

- $g>1 \rightarrow n\left(\omega
 ight)$ diverges faster than $1/\omega$
- $g < 1 \rightarrow n\left(\omega\right)$ is finite for all ω
- g = 1 Thermal Distribution at temperature \tilde{T}

The driven-dissipative system with magnon-interactions

The transition survives the inclusion of interactions

g < 1: Magnons get shifted to lower frequencies, but there is no fundamental change in behavior.

g>1: Interactions drive system towards a thermal distribution plus a δ -Function at $\omega=0$

Static and dynamic criticality

- $d\mathcal{N}_{\rm m}/dg$ develops singularity that moves closer to g=1 as $\ell \to \infty$
- Decay Rate goes to zero as $\ell \to \infty$ \downarrow Time scale diverges as $\ell \to \infty$
- · Characteristic scaling behavior

Static and dynamic criticality

- $d\mathcal{N}_{\rm m}/dg$ develops singularity that moves closer to g=1 as $\ell \to \infty$
- Decay Rate goes to zero as $\ell \to \infty$ \downarrow Time scale diverges as $\ell \to \infty$
- Characteristic scaling behavior

Summary

Does the nonequilibrium phase transition persist in an interacting theory? Yes: Superthermal magnons \rightarrow thermal distribution + δ -function