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Phase transitions occurring in a non-equilibrium steady state

Nonequilibrium phase transition in the antiferromagnetic phase of the driven Hubbard model
[N. Walldorf et al Phys. Rev. B 100, 121110(R) (2019)]
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Floquet-driven Antiferromagnet
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[N. Walldorf et al Phys. Rev. B 100, 121110(R) (2019)]

→ Superthermal magnons at large driving
amplitudes

→ Nonequilibrium Phase Transition
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Floquet-driven Antiferromagnet [N. Walldorf et al Phys. Rev. B 100, 121110(R) (2019)]

→ Superthermal magnons at large driving
amplitudes

→ Nonequilibrium Phase Transition
bla

Limitations of the calculation
bla

• Mean Field + one loop calculation
(non-interacting magnon approximation)

• The transition is driven by the external drive and
the magnon-relaxation into the bath,
magnon-magnon scattering is not included.

Question

Does this Nonequilibrium phase transition
persist in an interacting theory?
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Magnon Interactions in a 2d Heisenberg antiferromagnet

HXXZ = J
∑

〈ij〉
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}
→ H = E0 +H0 + V︸ ︷︷ ︸

E0 = Ground State Energy

H0 = ~
∑

k

ωk

(
α†kαk + β†kβk

)
= Bilinear Hamiltonian

V = Magnon Interactions

Magnon expansion around ordered
ground state

bla

→ Use Boltzmann Formalism to include magnon interactions
blaaaaaaaaaaaaaaaaaaa(perturbative, leading order 1

S )
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The Driven-Dissipative System without interactions
[N. Walldorf et al Phys. Rev. B 100, 121110(R) (2019)]

∂tn = gin(1 + n)− γout
(
n+

(
n

nT̃ (ω)

)2
)

with g =
gin
γout

Dynamical Critical Point g = 1

• g > 1→ n (ω) diverges faster than 1/ω

• g < 1→ n (ω) is finite for all ω

• g = 1 Thermal Distribution at
temperature T̃
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g > 1→ Diverges faster than 1
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g < 1→ Finite Occupation
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The driven-dissipative system with magnon-interactions
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The transition survives the
inclusion of interactions
bla

g < 1: Magnons get shifted to
lower frequencies, but there is no
fundamental change in behavior.
bla

g > 1: Interactions drive system
towards a thermal distribution plus
a δ-Function at ω = 0
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Static and dynamic criticality
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• dNm/dg develops singularity that moves
closer to g = 1 as `→∞

• Decay Rate goes to zero as `→∞
↓

Time scale diverges as `→∞
• Characteristic scaling behavior
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Static and dynamic criticality
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• dNm/dg develops singularity that moves
closer to g = 1 as `→∞

• Decay Rate goes to zero as `→∞
↓

Time scale diverges as `→∞
• Characteristic scaling behavior

Summary
Does the nonequilibrium phase transition

persist in an interacting theory?
Yes: Superthermal magnons → thermal

distribution + δ-function
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