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Floquet engineering of quantum materials

A. de la Torre, D. Kennes, M. Claassen, S. Gerber, J. McIver, MAS, review in prep.

Oka & Kitamura, Ann. Rev. Condens. Matter Phys. 2019

Rudner & Lindner, Nat. Rev. Phys. 2020

Floquet engineering of spin exchange

Mentink, Balzer, and Eckstein, Nat. Commun. 6, 6708 (2015)

Photon dressing of intermediate states modifies kinetic exchange

But: need for strong lasers, problems with heating, short-lived effect

Question: can we control spin exchange with cavities?

Answer: yes, if we replace strong fields by strong light-matter coupling 
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QED quantum materials: strong light-matter coupling
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M. Ruggenthaler et al., Nat. Rev. Chem. 2, 0118 (2018)

R. F. Ribeiro et al., Chem. Sci. 9, 6325 (2018)

J. Flick et al., Nanophotonics 7, 1479 (2018)

A. F. Kockum et al., Nat. Rev. Phys. 1, 19 (2019)

M. A. Sentef, M. Ruggenthaler, A. Rubio, 

Science Advances 4, eaau6969 (2018)  

Quantum materials: towards cavity-controlled electron-boson coupling, superconductivity

Cavity materials: Laussy, Kavokin, Shelykh 2010, Cotlet et al 2016, Kavokin & Lagoudakis 2016, Schlawin, Cavalleri, Jaksch 2019, Hagenmüller et al 2019, Curtis et al 2019, Wang, Ronca, MAS 2019,

Kiffner et al 2019, Mazza & Georges 2019, Andolina et al 2019, Gao et al 2020, Chakraborty & Piazza arXiv 2020, Li & Eckstein 2020, Hübener et al 2020, Ashida et al 2020, Latini et al arXiv 2021, …

Our work: cavity control of spin exchange

Crossover from quantum to classical Floquet engineering
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QED quantum materials: quantum to classical crossover

Cavity control of Hubbard model

M. A. Sentef, J. Li, F. Künzel, M. Eckstein,

PRResearch 2, 033033 (2020)

Quantum system -> Floquet system for

(large photon number, weak light-matter coupling strength g)

Photon number states are good enough to see Floquet-engineering effects

at sufficiently large coupling strength g – coherent states not required!

Question: can we control spin exchange with cavities?

Answer: yes, if we replace strong fields by strong light-matter coupling 

Cavity Schrieffer-Wolff transformation

(confirmed by numerics)
Cavity Schrieffer-Wolff transformation

(confirmed by numerics)

A: effective vector potential

g: light-matter coupling strength

Hubbard model in cavity
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QED quantum materials: how to reach strong coupling?

trivial quantum geometry non-trivial quantum geometry

Light-matter coupling and quantum 
geometry in moiré materials

G. E. Topp, C. Eckhardt, D. M. Kennes,

M. A. Sentef, P. Törmä,

arXiv:2103.04967

Non-trivial quantum geometry

enables light-matter coupling in flat 
bands


Can we reach strong light-matter 
coupling by quenching electronic 
kinetic energy?

Also cf. Iskin PRA 2019;

Ahn, Guo, Nagaosa, Viswanath arXiv 2021
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TABLE I. Linear and quadratic intra- and inter-band light-matter couplings. The dependence on the quasi-momentum k is
not marked explicitly, it should be kept in mind that all the couplings are k-local. The light-matter couplings are determined
not only by the bandstructure but also by the quantum geometric properties of the wavefunctions.

expectation for the LMC in flat-band systems is that
LMC should vanish since both the band velocity and the
band curvature are zero in a strictly flat band. Obvi-
ously this is the case in single flat bands corresponding
to the atomic limit, and may happen also in multi-band
systems. However, we will show in the following that
in multi-band systems with specific geometric properties
the LMC actually does not vanish.

We now proceed to calculate the light-matter couplings
(LMCs) for generic multi-orbital tight-binding models
with the Hamiltonian

H0 =
X

i,j

X

a,b

ta,b(i, j)c
†
i,acj,b . (1)

Here i, j are sites on a Bravais-lattice and a, b are orbital
indices. Furthermore, c(†) are annihilation (creation) op-
erators of electrons and t denotes the hopping integral.
Throughout the paper we omit the spin of the electrons.
We couple this system to light via the Peierls substitution
adding a phase to the hopping integral
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where Aµ(r, t) is the component in µ direction of the elec-
tromagnetic vector potential in the Coulomb gauge. We
use natural units setting e = ~ = c = 1 and throughout
the paper employ Einstein’s summation convention. One
can expand the exponential in Eq. (2) which yields
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where we have defined the light-matter couplings as

L
A
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We denote these terms as linear and quadratic LMC, re-
spectively.

In this work we are mainly interested in the long-
wavelength limit and thus set Aµ(r, t) = Aµ(t) in
what follows. In this part we also suppress the time-
dependence of the vector potential denoting it as Aµ as
it is irrelevant to the derivations.

We now diagonalize the Hamiltonian H0 to

H0 =

Z
dk  

†
k h(k) k , (5)

where  (†)
k is an annihilation (creation) operators in the

orbital basis and h(k) is a matrix in orbital space that
depends continuously on the quasi-momentum parameter
k. Performing a Fourier transform of the light-matter
coupled Peierls Hamiltonian H and assuming a spatially
constant vector potential one obtains

H =

Z
dk  

†
k h(k + A) k . (6)

In this manner we may interpret the Hamiltonian and the
LMCs as matrices that continuously depend on the quasi-
momentum k as a parameter. We can thus calculate the
matrix elements of the LMCs in a convenient way as

L
A
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(7)

where |ai and |bi are again vectors in the orbital basis.
Through a standard basis transform the above equation
can be written in any basis and not only the orbital one.
However, in order for Eq. (7) to hold one must only dif-
ferentiate the k-dependence of the LMC with respect to
the quasi-momentum k and not a possible k-dependence
of the basis vectors.

In what follows we will be particularly interested in
the matrix elements of the LMCs in the band basis – i.e.

curvature without band curvature
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Summary

trivial quantum geometry non-trivial quantum geometry
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