

TECHNISCHE UNIVERSITÄT Vienna Austria

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Max-Planck-Institut für Struktur und Dynamik der Materie

Parquet approach - the most fundamental diagrammatic method?

Christian Eckhardt*+[†], Carsten Honerkamp*, Patrik Kappl⁺, Anna Kauch⁺, Karsten Held⁺

RWTH Aachen* TU Vienna⁺ MPSD Hamburg[†]

Parquet approach - the most fundamental diagrammatic method?

\rightarrow It is *very* fundamental

C.E. et al. - in preparation

$\rightarrow~$ It is now doable for relevant system sizes

C.E. et al. Rev. B 101, 155104, (2020) T. Schäfer et al. arXiv:2006.10769 - to appear in PRX, (2021)

The 2D Hubbard model

B. Keimer et al. - Nature 518, Feb. 2015

How to tackle problem? \rightarrow Diagrammatic point of view

Goal: Calculate $G_{2particle}$

Challenge: Competing orders

How to tackle problem of correlated electrons?

 \rightarrow parquet

 $G_{2 particle} = GG + GGF GG$

 \rightarrow Iterative method to calculate Σ and F consistently

Is parquet the *most fundamental* diagrammatic method?

Answer: It is very fundamental!

1. Reason: Very fundamental derivation possible!

Action + Legendre transform = . . . lots of algebra \cdots = parquet equation

C.E., P. Kauch, A. Kauch, K. Held - in preparation

2. Reason: Many diagrammatic methods try to approximate parquet

fRG - 2ndtruncation
F. Kugler and J. von Delft 2018 New J. Phys. 20 123029
C. Hille et al. Phys. Rev. Research 2, 033372 Published 8 September 2020

• GW γ

F. Krien, A.Kauch, K. Held 2020 arXiv:2009.12868

Diagrammatic extensions of DMFT

G. Rohringer et al. Rev. Mod. Phys. 90, 025003 2018

Parquet's *big* problem:

Memory Consumption!

Bad scaling: $F^{k_1,k_2,q} \rightarrow \mathcal{O}(N_k^3 \times N_\omega^3)$

'Small' example:

 $N_{\rm x} \times N_{\rm y} = (10 \times 10); \ N_{\omega} = 100 \Rightarrow F \sim 16 {\rm TB}$

 \rightarrow previously reachable system sizes: 8 × 8 grid (> 5 TB of memory)

G. Li et al. - Comput. Phys. Commun. 241 (2019)

S. Yang et al. - Phys. Rev. E (2009)

Try to extract the relevant physics - Extra approximation

F = Λ + Φ_{ph} + $\Phi_{\overline{ph}}$ + Φ_{pp}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Truncated Unity approximation

C.E. et al. Phys. Rev. B 98, (2018) C.E. et al. Phys. Rev. B 101, (2020)

Parquet is now a competitive many-body method!

Double occupancies (top) and AF correlation lengths (bottom)

T. Schäfer et al. arXiv:2006.10769 \rightarrow to appear in PRX

We are able to reproduce the pseudogap

 $\rightarrow\!\mathsf{Able}$ to study origin of peusdogap

C. Hille et al. Phys. Rev. Research 2, (2020)

Inverse AF susceptibility

First indication of fulfillment of Mermin-Wagner with parquet

C.E. et al. Phys. Rev. B 101, (2020)

ADVADVATVATV TO OOR

Parquet approach - the most fundamental diagrammatic method?

\rightarrow It is *very* fundamental

Can be derived from fundamental priciples Other methods try to approximate it

C.E. et al. - in preparation

$\rightarrow\,$ It is now doable for relevant system sizes

C.E. et al. Rev. B 101, 155104 (2020) T. Schäfer et al. arXiv:2006.10769 - to appear in PRX (2021)

Many thanks to ...

Carsten Honerkamp RWTH Aachen

Anna Kauch TU Wien

Sabine Andergassen Uni Tübingen

Karsten Held TU Wien

Michael Sentef MPSD Hamburg

Dante Kennes RWTH / MPSD